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Preface

Let X be a nice topological space (for example, a CW complex). One goal
of algebraic topology is to study the topology of X by means of algebraic
invariants, such as the singular cohomology groups Hn(X;G) of X with co-
efficients in an abelian group G. These cohomology groups have proven to be
an extremely useful tool largely because they enjoy excellent formal proper-
ties (which have been axiomatized by Eilenberg and Steenrod, see [26]) and
because they tend to be very computable. However, the usual definition of
Hn(X;G) in terms of singular G-valued cochains on X is perhaps somewhat
unenlightening. This raises the following question: can we understand the
cohomology group Hn(X;G) in more conceptual terms?

As a first step toward answering this question, we observe that Hn(X;G)
is a representable functor of X. That is, there exists an Eilenberg-MacLane
space K(G,n) and a universal cohomology class η ∈ Hn(K(G,n);G) such
that, for any nice topological space X, pullback of η determines a bijection

[X,K(G,n)] → Hn(X;G).

Here [X,K(G,n)] denotes the set of homotopy classes of maps from X to
K(G,n). The space K(G,n) can be characterized up to homotopy equiva-
lence by the above property or by the formula

πkK(G,n) �
{

∗ if k �= n

G if k = n.

In the case n = 1, we can be more concrete. An Eilenberg-MacLane space
K(G, 1) is called a classifying space for G and is typically denoted by BG.
The universal cover of BG is a contractible space EG, which carries a free
action of the group G by covering transformations. We have a quotient map
π : EG → BG. Each fiber of π is a discrete topological space on which the
group G acts simply transitively. We can summarize the situation by saying
that EG is a G-torsor over the classifying space BG. For every continuous
map X → BG, the fiber product X̃ : EG ×BG X has the structure of
a G-torsor on X: that is, it is a space endowed with a free action of G
and a homeomorphism X̃/G � X. This construction determines a map
from [X,BG] to the set of isomorphism classes of G-torsors on X. If X is a
sufficiently well-behaved space (such as a CW complex), then this map is a
bijection. We therefore have (at least) three different ways of thinking about
a cohomology class η ∈ H1(X;G):
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(1) As a G-valued singular cocycle on X, which is well-defined up to
coboundaries.

(2) As a continuous map X → BG, which is well-defined up to homotopy.

(3) As a G-torsor on X, which is well-defined up to isomorphism.

These three points of view are equivalent if the space X is sufficiently nice.
However, they are generally quite different from one another. The singular
cohomology of a space X is constructed using continuous maps from sim-
plices ∆k into X. If there are not many maps into X (for example, if every
path in X is constant), then we cannot expect singular cohomology to tell
us very much about X. The second definition uses maps from X into the
classifying space BG, which (ultimately) relies on the existence of continuous
real-valued functions on X. If X does not admit many real-valued functions,
then the set of homotopy classes [X,BG] is also not a very useful invariant.
For such spaces, the third approach is the most powerful: there is a good
theory of G-torsors on an arbitrary topological space X.

There is another reason for thinking about H1(X;G) in the language of
G-torsors: it continues to make sense in situations where the traditional ideas
of topology break down. If X̃ is a G-torsor on a topological space X, then the
projection map X̃ → X is a local homeomorphism; we may therefore identify
X̃ with a sheaf of sets F on X. The action of G on X̃ determines an action of
G on F. The sheaf F (with its G-action) and the space X̃ (with its G-action)
determine each other up to canonical isomorphism. Consequently, we can
formulate the definition of a G-torsor in terms of the category ShvSet(X) of
sheaves of sets on X without ever mentioning the topological space X itself.
The same definition makes sense in any category which bears a sufficiently
strong resemblance to the category of sheaves on a topological space: for
example, in any Grothendieck topos. This observation allows us to construct
a theory of torsors in a variety of nonstandard contexts, such as the étale
topology of algebraic varieties (see [2]).

Describing the cohomology of X in terms of the sheaf theory of X has still
another advantage, which comes into play even when the space X is assumed
to be a CW complex. For a general spaceX, isomorphism classes of G-torsors
on X are classified not by the singular cohomology H1

sing(X;G) but by the
sheaf cohomology H1

sheaf(X; G) of X with coefficients in the constant sheaf
G associated to G. This sheaf cohomology is defined more generally for any
sheaf of groups G on X. Moreover, we have a conceptual interpretation of
H1

sheaf(X; G) in general: it classifies G-torsors on X (that is, sheaves F on X
which carry an action of G and locally admit a G-equivariant isomorphism
F � G) up to isomorphism. The general formalism of sheaf cohomology is
extremely useful, even if we are interested only in the case where X is a nice
topological space: it includes, for example, the theory of cohomology with
coefficients in a local system on X.

Let us now attempt to obtain a similar interpretation for cohomology
classes η ∈ H2(X;G). What should play the role of a G-torsor in this case?
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To answer this question, we return to the situation where X is a CW com-
plex, so that η can be identified with a continuous map X → K(G, 2).
We can think of K(G, 2) as the classifying space of a group: not the dis-
crete group G but instead the classifying space BG (which, if built in a
sufficiently careful way, comes equipped with the structure of a topological
abelian group). Namely, we can identify K(G, 2) with the quotient E/BG,
where E is a contractible space with a free action of BG. Any cohomology
class η ∈ H2(X;G) determines a map X → K(G, 2) (which is well-defined
up to homotopy), and we can form the pullback X̃ = E ×BG X. We now
think of X̃ as a torsor over X: not for the discrete group G but instead for
its classifying space BG.

To complete the analogy with our analysis in the case n = 1, we would
like to interpret the fibration X̃ → X as defining some kind of sheaf F on
the space X. This sheaf F should have the property that for each x ∈ X, the
stalk Fx can be identified with the fiber X̃x � BG. Since the space BG is not
discrete (or homotopy equivalent to a discrete space), the situation cannot be
adequately described in the usual language of set-valued sheaves. However,
the classifying space BG is almost discrete: since the homotopy groups πiBG
vanish for i > 1, we can recover BG (up to homotopy equivalence) from its
fundamental groupoid. This suggests that we might try to think about F as
a “groupoid-valued sheaf” on X, or a stack (in groupoids) on X.

Remark. The condition that each stalk Fx be equivalent to a classifying
space BG can be summarized by saying that F is a gerbe on X: more pre-
cisely, it is a gerbe banded by the constant sheaf G associated to G. We refer
the reader to [31] for an explanation of this terminology and a proof that
such gerbes are indeed classified by the sheaf cohomology group H2

sheaf(X; G).

For larger values of n, even the language of stacks is not sufficient to de-
scribe the nature of the sheaf F associated to the fibration X̃ → X. To ad-
dress the situation, Grothendieck proposed (in his infamous letter to Quillen;
see [35]) that there should be a theory of n-stacks on X for every integer
n ≥ 0. Moreover, for every sheaf of abelian groups G on X, the cohomol-
ogy group Hn+1

sheaf(X; G) should have an interpretation as classifying a special
type of n-stack: namely, the class of n-gerbes banded by G (for a discus-
sion in the case n = 2, we refer the reader to [13]; we will treat the general
case in §7.2.2). In the special case where the space X is a point (and where
we restrict our attention to n-stacks in groupoids), the theory of n-stacks
on X should recover the classical homotopy theory of n-types: that is, CW
complexes Z such that the homotopy groups πi(Z, z) vanish for i > n (and
every base point z ∈ Z). More generally, we should think of an n-stack (in
groupoids) on a general space X as a “sheaf of n-types” on X.

When n = 0, an n-stack on a topological space X is simply a sheaf of sets
on X. The collection of all such sheaves can be organized into a category
ShvSet(X), and this category is a prototypical example of a Grothendieck
topos. The main goal of this book is to obtain an analogous understanding
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of the situation for n > 0. More precisely, we would like answers to the
following questions:

(Q1) Given a topological space X, what should we mean by a “sheaf of
n-types” on X?

(Q2) Let Shv≤n(X) denote the collection of all sheaves of n-types on X.
What sort of a mathematical object is Shv≤n(X)?

(Q3) What special features (if any) does Shv≤n(X) possess?

Our answers to questions (Q2) and (Q3) may be summarized as follows
(our answer to (Q1) is more elaborate, and we will avoid discussing it for
the moment):

(A2) The collection Shv≤n(X) has the structure of an ∞-category.

(A3) The ∞-category Shv≤n(X) is an example of an (n+ 1)-topos: that is,
an ∞-category which satisfies higher-categorical analogues of Giraud’s
axioms for Grothendieck topoi (see Theorem 6.4.1.5).

Remark. Grothendieck’s vision has been realized in various ways thanks to
the work of a number of mathematicians (most notably Brown, Joyal, and
Jardine; see for example [41]), and their work can also be used to provide
answers to questions (Q1) and (Q2) (for more details, we refer the reader to
§6.5.2). Question (Q3) has also been addressed (at least in the limiting case
n = ∞) by Toën and Vezzosi (see [78]) and in unpublished work of Rezk.

To provide more complete versions of the answers (A2) and (A3), we
will need to develop the language of higher category theory. This is gener-
ally regarded as a technical and forbidding subject, but fortunately we will
only need a small fragment of it. More precisely, we will need a theory of
(∞, 1)-categories: higher categories C for which the k-morphisms of C are
required to be invertible for k > 1. In Chapter 1, we will present such a the-
ory: namely, one can define an ∞-category to be a simplicial set satisfying
a weakened version of the Kan extension condition (see Definition 1.1.2.4;
simplicial sets satisfying this condition are also called weak Kan complexes
or quasi-categories in the literature). Our intention is that Chapter 1 can
be used as a short “user’s guide” to ∞-categories: it contains many of the
basic definitions and explains how many ideas from classical category theory
can be extended to the ∞-categorical context. To simplify the exposition,
we have deferred many proofs until later chapters, which contain a more
thorough account of the theory. The hope is that Chapter 1 will be use-
ful to readers who want to get the flavor of the subject without becoming
overwhelmed by technical details.

In Chapter 2 we will shift our focus slightly: rather than study individual
examples of ∞-categories, we consider families of ∞-categories {CD}D∈D

parametrized by the objects of another ∞-category D. We might expect



PREFACE xi

such a family to be given by a map of ∞-categories p : C → D: given such
a map, we can then define each CD to be the fiber product C×D{D}. This
definition behaves poorly in general (for example, the fibers CD need not
be ∞-categories), but it behaves well if we make suitable assumptions on
the map p. Our goal in Chapter 2 is to study some of these assumptions
in detail and to show that they lead to a good relative version of higher
category theory.

One motivation for the theory of ∞-categories is that it arises naturally
in addressing questions like (Q2) above. More precisely, given a collection of
mathematical objects {Fα} whose definition has a homotopy-theoretic flavor
(like n-stacks on a topological space X), one can often organize the collection
{Fα} into an ∞-category (in other words, there exists an ∞-category C

whose vertices correspond to the objects Fα). Another important example is
provided by higher category theory itself: the collection of all ∞-categories
can itself be organized into a (very large) ∞-category, which we will denote
by Cat∞. Our goal in Chapter 3 is to study Cat∞ and to show that it
can be characterized by a universal property: namely, functors χ : D →
Cat∞ are classified (up to equivalence) by certain kinds of fibrations C → D

(see Theorem 3.2.0.1 for a more precise statement). Roughly speaking, this
correspondence assigns to a fibration C → D the functor χ given by the
formula χ(D) = C×D{D}.

Classically, category theory is a useful tool not so much because of the light
it sheds on any particular mathematical discipline but instead because cat-
egories are so ubiquitous: mathematical objects in many different settings
(sets, groups, smooth manifolds, and so on) can be organized into cate-
gories. Moreover, many elementary mathematical concepts can be described
in purely categorical terms and therefore make sense in each of these settings.
For example, we can form products of sets, groups, and smooth manifolds:
each of these notions can simply be described as a Cartesian product in the
relevant category. Cartesian products are a special case of the more general
notion of limit, which plays a central role in classical category theory. In
Chapter 4, we will make a systematic study of limits (and the dual theory of
colimits) in the ∞-categorical setting. We will also introduce the more gen-
eral theory of Kan extensions, in both absolute and relative versions; this
theory plays a key technical role throughout the later parts of the book.

In some sense, the material of Chapters 1 through 4 of this book should be
regarded as purely formal. Our main results can be summarized as follows:
there exists a reasonable theory of ∞-categories, and it behaves in more or
less the same way as the theory of ordinary categories. Many of the ideas
that we introduce are straightforward generalizations of their ordinary coun-
terparts (though proofs in the ∞-categorical setting often require a bit of
dexterity in manipulating simplicial sets), which will be familiar to mathe-
maticians who are acquainted with ordinary category theory (as presented,
for example, in [52]). In Chapter 5, we introduce ∞-categorical analogues
of more sophisticated concepts from classical category theory: presheaves,
Pro-categories and Ind-categories, accessible and presentable categories, and
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localizations. The main theme is that most of the ∞-categories which appear
“in nature” are large but are nevertheless determined by small subcategories.
Taking careful advantage of this fact will allow us to deduce a number of
pleasant results, such as an ∞-categorical version of the adjoint functor the-
orem (Corollary 5.5.2.9).

In Chapter 6 we come to the heart of the book: the study of ∞-topoi, the
∞-categorical analogues of Grothendieck topoi. The theory of ∞-topoi is our
answer to the question (Q3) in the limiting case n = ∞ (we will also study
the analogous notion for finite values of n). Our main result is an analogue of
Giraud’s theorem, which asserts the equivalence of “extrinsic” and “intrinsic”
approaches to the subject (Theorem 6.1.0.6). Roughly speaking, an ∞-topos
is an ∞-category which “looks like” the ∞-category of all homotopy types.
We will show that this intuition is justified in the sense that it is possible to
reconstruct a large portion of classical homotopy theory inside an arbitrary
∞-topos. In other words, an ∞-topos is a world in which one can “do”
homotopy theory (much as an ordinary topos can be regarded as a world in
which one can “do” other types of mathematics).

In Chapter 7 we will discuss some relationships between our theory of
∞-topoi and ideas from classical topology. We will show that, if X is a para-
compact space, then the ∞-topos of “sheaves of homotopy types” on X can
be interpreted in terms of the classical homotopy theory of spaces over X.
Another main theme is that various ideas from geometric topology (such
as dimension theory and shape theory) can be described naturally using the
language of ∞-topoi. We will also formulate and prove “nonabelian” general-
izations of classical cohomological results, such as Grothendieck’s vanishing
theorem for the cohomology of Noetherian topological spaces and the proper
base change theorem.

Prerequisites and Suggested Reading

We have made an effort to keep this book as self-contained as possible.
The main prerequisite is familiarity with the classical homotopy theory of
simplicial sets (good references include [56] and [32]; we have also provided
a very brief review in §A.2.7). The remaining material that we need is either
described in the appendix or developed in the body of the text. However,
our exposition of this background material is often somewhat terse, and the
reader might benefit from consulting other treatments of the same ideas.
Some suggestions for further reading are listed below.

Warning. The list of references below is woefully incomplete. We have not
attempted, either here or in the body of the text, to give a comprehensive
survey of the literature on higher category theory. We have also not at-
tempted to trace all of the ideas presented to their origins or to present a
detailed history of the subject. Many of the topics presented in this book
have appeared elsewhere or belong to the mathematical folklore; it should
not be assumed that uncredited results are due to the author.
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• Classical Category Theory: Large portions of this book are de-
voted to providing ∞-categorical generalizations of the basic notions
of category theory. A good reference for many of the concepts we use
is MacLane’s book [52] (see also [1] and [54] for some of the more
advanced material of Chapter 5).

• Classical Topos Theory: Our main goal in this book is to describe an
∞-categorical version of topos theory. Familiarity with classical topos
theory is not strictly necessary (we will define all of the relevant con-
cepts as we need them) but will certainly be helpful. Good references
include [2] and [53].

• Model Categories: Quillen’s theory of model categories provides a
useful tool for studying specific examples of ∞-categories, including the
theory of ∞-categories itself. We will summarize the theory of model
categories in §A.2; more complete references include [40], [38], and [32].

• Higher Category Theory: There are many approaches to the theory
of higher categories, some of which look quite different from the ap-
proach presented in this book. Several other possibilities are presented
in the survey article [48]. More detailed accounts can be found in [49],
[71], and [75].

In this book, we consider only (∞, 1)-categories: that is, higher cate-
gories in which all k-morphisms are assumed to be invertible for k > 1.
There are a number of convenient ways to formalize this idea: via
simplicial categories (see, for example, [21] and [7]), via Segal cate-
gories ([71]), via complete Segal spaces ([64]), or via the theory of ∞-
categories presented in this book (other references include [43], [44],
[60], and [10]). The relationship between these various approaches is
described in [8], and an axiomatic framework which encompasses all of
them is described in [76].

• Higher Topos Theory: The idea of studying a topological space X
via the theory of sheaves of n-types (or n-stacks) on X goes back at
least to Grothendieck ([35]) and has been taken up a number of times
in recent years. For small values of n, we refer the reader to [31], [74],
[13], [45], and [61]. For the case n = ∞, we refer the reader to [14],
[41], [39], and [77]. A very readable introduction to some of these ideas
can be found in [4].

Higher topos theory itself can be considered an abstraction of this
idea: rather than studying sheaves of n-types on a particular topo-
logical space X, we instead study general n-categories with the same
formal properties. This idea has been implemented in the work of Toën
and Vezzosi (see [78] and [79]), resulting in a theory which is essen-
tially equivalent to the one presented in this book. (A rather different
variation on this idea in the case n = 2 can be also be found in [11].)
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The subject has also been greatly influenced by the unpublished ideas
of Charles Rezk.

TERMINOLOGY

Here are a few comments on some of the terminology which appears in this
book:

• The word topos will always mean Grothendieck topos.

• We let Set∆ denote the category of simplicial sets. If J is a linearly
ordered set, we let ∆J denote the simplicial set given by the nerve of
J , so that the collection of n-simplices of ∆J can be identified with the
collection of all nondecreasing maps {0, . . . , n} → J . We will frequently
apply this notation when J is a subset of {0, . . . , n}; in this case, we
can identify ∆J with a subsimplex of the standard n-simplex ∆n (at
least if J �= ∅; if J = ∅, then ∆J is empty).

• We will refer to a category C as accessible or presentable if it is locally
accessible or locally presentable in the terminology of [54].

• Unless otherwise specified, the term ∞-category will be used to indicate
a higher category in which all n-morphisms are invertible for n > 1.

• We will study higher categories using Joyal’s theory of quasi-categories.
However, we do not always follow Joyal’s terminology. In particular,
we will use the term ∞-category to refer to what Joyal calls a quasi-
category (which are, in turn, the same as the weak Kan complex of
Boardman and Vogt); we will use the terms inner fibration and inner
anodyne map where Joyal uses mid-fibration and mid-anodyne map.

• Let n ≥ 0. We will say that a homotopy type X (described by either
a topological space or a Kan complex) is n-truncated if the homo-
topy groups πi(X,x) vanish for every point x ∈ X and every i > n.
By convention, we say that X is (−1)-truncated if it is either empty
or (weakly) contractible, and (−2)-truncated if X is (weakly) con-
tractible.

• Let n ≥ 0. We will say that a homotopy type X (described either by a
topological space or a Kan complex) is n-connective if X is nonempty
and the homotopy groups πi(X,x) vanish for every point x ∈ X and
every integer i < n. By convention, we will agree that every homotopy
type X is (−1)-connective.

• More generally, we will say that a map of homotopy types f : X → Y is
n-truncated (n-connective) if the homotopy fibers of f are n-truncated
(n-connective).



PREFACE xv

Remark. For n ≥ 1, a homotopy type X is n-connective if and only if it is
(n−1)-connected (in the usual terminology). In particular, X is 1-connective
if and only if it is path-connected.

Warning. In this book, we will often be concerned with sheaves on a topo-
logical space X (or some Grothendieck site) taking values in an ∞-category
C. The most “universal” case is that in which C is the ∞-category of S of
spaces. Consequently, the term “sheaf on X” without any other qualifiers
will typically refer to a sheaf of spaces on X rather than a sheaf of sets on X.
We will see that the collection of all S-valued sheaves on X can be organized
into an ∞-category, which we denote by Shv(X). In particular, Shv(X) will
not denote the ordinary category of set-valued sheaves on X; if we need to
consider this latter object, we will denote it by ShvSet(X).
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Chapter One

An Overview of Higher Category Theory

This chapter is intended as a general introduction to higher category theory.
We begin with what we feel is the most intuitive approach to the subject
using topological categories. This approach is easy to understand but difficult
to work with when one wishes to perform even simple categorical construc-
tions. As a remedy, we will introduce the more suitable formalism of ∞-
categories (called weak Kan complexes in [10] and quasi-categories in [43]),
which provides a more convenient setting for adaptations of sophisticated
category-theoretic ideas. Our goal in §1.1.1 is to introduce both approaches
and to explain why they are equivalent to one another. The proof of this
equivalence will rely on a crucial result (Theorem 1.1.5.13) which we will
prove in §2.2.

Our second objective in this chapter is to give the reader an idea of how to
work with the formalism of ∞-categories. In §1.2, we will establish a vocab-
ulary which includes ∞-categorical analogues (often direct generalizations)
of most of the important concepts from ordinary category theory. To keep
the exposition brisk, we will postpone the more difficult proofs until later
chapters of this book. Our hope is that, after reading this chapter, a reader
who does not wish to be burdened with the details will be able to understand
(at least in outline) some of the more conceptual ideas described in Chapter
5 and beyond.

1.1 FOUNDATIONS FOR HIGHER CATEGORY THEORY

1.1.1 Goals and Obstacles

Recall that a category C consists of the following data:

(1) A collection {X,Y, Z, . . .} whose members are the objects of C. We
typically write X ∈ C to indicate that X is an object of C.

(2) For every pair of objects X,Y ∈ C, a set HomC(X,Y ) of morphisms
from X to Y . We will typically write f : X → Y to indicate that
f ∈ HomC(X,Y ) and say that f is a morphism from X to Y .

(3) For every object X ∈ C, an identity morphism idX ∈ HomC(X,X).

(4) For every triple of objects X,Y, Z ∈ C, a composition map

HomC(X,Y ) × HomC(Y, Z) → HomC(X,Z).
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Given morphisms f : X → Y and g : Y → Z, we will usually denote
the image of the pair (f, g) under the composition map by gf or g ◦ f .

These data are furthermore required to satisfy the following conditions,
which guarantee that composition is unital and associative:

(5) For every morphism f : X → Y , we have idY ◦f = f = f ◦ idX in
HomC(X,Y ).

(6) For every triple of composable morphisms

W
f→ X

g→ Y
h→ Z,

we have an equality h ◦ (g ◦ f) = (h ◦ g) ◦ f in HomC(W,Z).

The theory of categories has proven to be a valuable organization tool in
many areas of mathematics. Mathematical structures of virtually any type
can be viewed as the objects of a suitable category C, where the morphisms
in C are given by structure-preserving maps. There is a veritable legion of
examples of categories which fit this paradigm:

• The category Set whose objects are sets and whose morphisms are
maps of sets.

• The category Grp whose objects are groups and whose morphisms are
group homomorphisms.

• The category Top whose objects are topological spaces and whose mor-
phisms are continuous maps.

• The category Cat whose objects are (small) categories and whose mor-
phisms are functors. (Recall that a functor F from C to D is a map
which assigns to each object C ∈ C another object FC ∈ D, and to
each morphism f : C → C ′ in C a morphism F (f) : FC → FC ′ in D,
so that F (idC) = idFC and F (g ◦ f) = F (g) ◦ F (f).)

• · · ·
In general, the existence of a morphism f : X → Y in a category C

reflects some relationship that exists between the objects X,Y ∈ C. In some
contexts, these relationships themselves become basic objects of study and
can be fruitfully organized into categories:

Example 1.1.1.1. Let Grp be the category whose objects are groups and
whose morphisms are group homomorphisms. In the theory of groups, one
is often concerned only with group homomorphisms up to conjugacy. The
relation of conjugacy can be encoded as follows: for every pair of groups
G,H ∈ Grp, there is a category Map(G,H) whose objects are group ho-
momorphisms from G to H (that is, elements of HomGrp(G,H)), where a
morphism from f : G → H to f ′ : G → H is an element h ∈ H such
that hf(g)h−1 = f ′(g) for all g ∈ G. Note that two group homomorphisms
f, f ′ : G → H are conjugate if and only if they are isomorphic when viewed
as objects of Map(G,H).
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Example 1.1.1.2. Let X and Y be topological spaces and let f0, f1 : X →
Y be continuous maps. Recall that a homotopy from f0 to f1 is a continuous
map f : X× [0, 1] → Y such that f |X×{0} coincides with f0 and f |X×{1}
coincides with f1. In algebraic topology, one is often concerned not with
the category Top of topological spaces but with its homotopy category: that
is, the category obtained by identifying those pairs of morphisms f0, f1 :
X → Y which are homotopic to one another. For many purposes, it is better
to do something a little bit more sophisticated: namely, one can form a
category Map(X,Y ) whose objects are continuous maps f : X → Y and
whose morphisms are given by (homotopy classes of) homotopies.

Example 1.1.1.3. Given a pair of categories C and D, the collection of all
functors from C to D is itself naturally organized into a category Fun(C,D),
where the morphisms are given by natural transformations. (Recall that,
given a pair of functors F,G : C → D, a natural transformation α : F → G
is a collection of morphisms {αC : F (C) → G(C)}C∈C which satisfy the
following condition: for every morphism f : C → C′ in C, the diagram

F (C)
F (f) ��

αC

��

F (C ′)

αC′

��
G(C)

G(f) �� G(C ′)

commutes in D.)

In each of these examples, the objects of interest can naturally be orga-
nized into what is called a 2-category (or bicategory): we have not only a
collection of objects and a notion of morphisms between objects but also
a notion of morphisms between morphisms, which are called 2-morphisms.
The vision of higher category theory is that there should exist a good notion
of n-category for all n ≥ 0 in which we have not only objects, morphisms,
and 2-morphisms but also k-morphisms for all k ≤ n. Finally, in some sort
of limit we might hope to obtain a theory of ∞-categories, where there are
morphisms of all orders.

Example 1.1.1.4. Let X be a topological space and 0 ≤ n ≤ ∞. We can
extract an n-category π≤nX (roughly) as follows. The objects of π≤nX are
the points of X. If x, y ∈ X, then the morphisms from x to y in π≤nX
are given by continuous paths [0, 1] → X starting at x and ending at y.
The 2-morphisms are given by homotopies of paths, the 3-morphisms by
homotopies between homotopies, and so forth. Finally, if n < ∞, then two
n-morphisms of π≤nX are considered to be the same if and only if they are
homotopic to one another.

If n = 0, then π≤nX can be identified with the set π0X of path components
of X. If n = 1, then our definition of π≤nX agrees with the usual definition
for the fundamental groupoid of X. For this reason, π≤nX is often called the
fundamental n-groupoid of X. It is called an n-groupoid (rather than a mere
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n-category) because every k-morphism of π≤kX has an inverse (at least up
to homotopy).

There are many approaches to realizing the theory of higher categories. We
might begin by defining a 2-category to be a “category enriched over Cat.”
In other words, we consider a collection of objects together with a category
of morphisms Hom(A,B) for any two objects A and B and composition
functors cABC : Hom(A,B)×Hom(B,C) → Hom(A,C) (to simplify the dis-
cussion, we will ignore identity morphisms for a moment). These functors are
required to satisfy an associative law, which asserts that for any quadruple
(A,B,C,D) of objects, the diagram

Hom(A,B) × Hom(B,C) × Hom(C,D)

��

�� Hom(A,C) × Hom(C,D)

��
Hom(A,B) × Hom(B,D) �� Hom(A,D)

commutes; in other words, one has an equality of functors

cACD ◦ (cABC × 1) = cABD ◦ (1 × cBCD)

from Hom(A,B) × Hom(B,C) × Hom(C,D) to Hom(A,D). This leads to
the definition of a strict 2-category.

At this point, we should object that the definition of a strict 2-category
violates one of the basic philosophical principles of category theory: one
should never demand that two functors F and F ′ be equal to one another.
Instead one should postulate the existence of a natural isomorphism be-
tween F and F ′. This means that the associative law should not take the
form of an equation but of additional structure: a collection of isomorphisms
γABCD : cACD ◦ (cABC×1) � cABD ◦ (1×cBCD). We should further demand
that the isomorphisms γABCD be functorial in the quadruple (A,B,C,D)
and satisfy certain higher associativity conditions, which generalize the “Pen-
tagon axiom” described in §A.1.3. After formulating the appropriate condi-
tions, we arrive at the definition of a weak 2-category.

Let us contrast the notions of strict 2-category and weak 2-category. The
former is easier to define because we do not have to worry about the higher
associativity conditions satisfied by the transformations γABCD. On the
other hand, the latter notion seems more natural if we take the philoso-
phy of category theory seriously. In this case, we happen to be lucky: the
notions of strict 2-category and weak 2-category turn out to be equivalent.
More precisely, any weak 2-category is equivalent (in the relevant sense) to
a strict 2-category. The choice of definition can therefore be regarded as a
question of aesthetics.

We now plunge onward to 3-categories. Following the above program, we
might define a strict 3-category to consist of a collection of objects together
with strict 2-categories Hom(A,B) for any pair of objects A and B, to-
gether with a strictly associative composition law. Alternatively, we could
seek a definition of weak 3-category by allowing Hom(A,B) to be a weak
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2-category, requiring associativity only up to natural 2-isomorphisms, which
satisfy higher associativity laws up to natural 3-isomorphisms, which in turn
satisfy still higher associativity laws of their own. Unfortunately, it turns out
that these notions are not equivalent.

Both of these approaches have serious drawbacks. The obvious problem
with weak 3-categories is that an explicit definition is extremely complicated
(see [33], where a definition is given along these lines), to the point where
it is essentially unusable. On the other hand, strict 3-categories have the
problem of not being the correct notion: most of the weak 3-categories which
occur in nature are not equivalent to strict 3-categories. For example, the
fundamental 3-groupoid of the 2-sphere S2 cannot be described using the
language of strict 3-categories. The situation only gets worse (from either
point of view) as we pass to 4-categories and beyond.

Fortunately, it turns out that major simplifications can be introduced if
we are willing to restrict our attention to ∞-categories in which most of
the higher morphisms are invertible. From this point forward, we will use
the term (∞, n)-category to refer to ∞-categories in which all k-morphisms
are invertible for k > n. The ∞-categories described in Example 1.1.1.4
(when n = ∞) are all (∞, 0)-categories. The converse, which asserts that
every (∞, 0)-category has the form π≤∞X for some topological space X,
is a generally accepted principle of higher category theory. Moreover, the
∞-groupoid π≤∞X encodes the entire homotopy type of X. In other words,
(∞, 0)-categories (that is, ∞-categories in which all morphisms are invert-
ible) have been extensively studied from another point of view: they are
essentially the same thing as “spaces” in the sense of homotopy theory, and
there are many equivalent ways to describe them (for example, we can use
CW complexes or simplicial sets).

Convention 1.1.1.5. We will sometimes refer to (∞, 0)-categories as ∞-
groupoids and (∞, 2)-categories as ∞-bicategories. Unless we specify other-
wise, the generic term “∞-category” will refer to an (∞, 1)-category.

In this book, we will restrict our attention almost entirely to the theory
of ∞-categories (in which we have only invertible n-morphisms for n ≥ 2).
Our reasons are threefold:

(1) Allowing noninvertible n-morphisms for n > 1 introduces a number
of additional complications to the theory at both technical and con-
ceptual levels. As we will see throughout this book, many ideas from
category theory generalize to the ∞-categorical setting in a natural
way. However, these generalizations are not so straightforward if we
allow noninvertible 2-morphisms. For example, one must distinguish
between strict and lax fiber products, even in the setting of “classical”
2-categories.

(2) For the applications studied in this book, we will not need to consider
(∞, n)-categories for n > 2. The case n = 2 is of some relevance
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because the collection of (small) ∞-categories can naturally be viewed
as a (large) ∞-bicategory. However, we will generally be able to exploit
this structure in an ad hoc manner without developing any general
theory of ∞-bicategories.

(3) For n > 1, the theory of (∞, n)-categories is most naturally viewed as a
special case of enriched (higher) category theory. Roughly speaking, an
n-category can be viewed as a category enriched over (n−1)-categories.
As we explained above, this point of view is inadequate because it
requires that composition satisfies an associative law up to equality,
while in practice the associativity holds only up to isomorphism or
some weaker notion of equivalence. In other words, to obtain the cor-
rect definition we need to view the collection of (n−1)-categories as an
n-category, not as an ordinary category. Consequently, the naive ap-
proach is circular: though it does lead to a good theory of n-categories,
we can make sense of it only if the theory of n-categories is already in
place.

Thinking along similar lines, we can view an (∞, n)-category as an
∞-category which is enriched over (∞, n − 1)-categories. The collec-
tion of (∞, n− 1)-categories is itself organized into an (∞, n)-category
Cat(∞,n−1), so at a first glance this definition suffers from the same
problem of circularity. However, because the associativity properties
of composition are required to hold up to equivalence, rather than up
to arbitrary natural transformation, the noninvertible k-morphisms in
Cat(∞,n−1) are irrelevant for k > 1. One can define an (∞, n)-category
to be a category enriched over Cat(∞,n−1), where the latter is re-
garded as an ∞-category by discarding noninvertible k-morphisms for
2 ≤ k ≤ n. In other words, the naive inductive definition of higher cat-
egory theory is reasonable provided that we work in the ∞-categorical
setting from the outset. We refer the reader to [75] for a definition of
n-categories which follows this line of thought.

The theory of enriched ∞-categories is a useful and important one but
will not be treated in this book. Instead we refer the reader to [50]
for an introduction using the same language and formalism we employ
here.

Though we will not need a theory of (∞, n)-categories for n > 1, the
case n = 1 is the main subject matter of this book. Fortunately, the above
discussion suggests a definition. Namely, an ∞-category C should consist of a
collection of objects and an ∞-groupoid MapC(X,Y ) for every pair of objects
X,Y ∈ C. These ∞-groupoids can be identified with topological spaces,
and should be equipped with an associative composition law. As before, we
are faced with two choices as to how to make this precise: do we require
associativity on the nose or only up to (coherent) homotopy? Fortunately,
the answer turns out to be irrelevant: as in the theory of 2-categories, any
∞-category with a coherently associative multiplication can be replaced by
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an equivalent ∞-category with a strictly associative multiplication. We are
led to the following:

Definition 1.1.1.6. A topological category is a category which is enriched
over CG, the category of compactly generated (and weakly Hausdorff) topo-
logical spaces. The category of topological categories will be denoted by
Cattop.

More explicitly, a topological category C consists of a collection of objects
together with a (compactly generated) topological space MapC(X,Y ) for any
pair of objects X,Y ∈ C. These mapping spaces must be equipped with an
associative composition law given by continuous maps

MapC(X0, X1) × MapC(X1, X2) × · · · × MapC(Xn−1, Xn) → MapC(X0, Xn)

(defined for all n ≥ 0). Here the product is taken in the category of compactly
generated topological spaces.

Remark 1.1.1.7. The decision to work with compactly generated topolog-
ical spaces, rather than arbitrary spaces, is made in order to facilitate the
comparison with more combinatorial approaches to homotopy theory. This
is a purely technical point which the reader may safely ignore.

It is possible to use Definition 1.1.1.6 as a foundation for higher cate-
gory theory: that is, to define an ∞-category to be a topological category.
However, this approach has a number of technical disadvantages. We will
describe an alternative (though equivalent) formalism in the next section.

1.1.2 ∞-Categories

Of the numerous formalizations of higher category theory, Definition 1.1.1.6
is the quickest and most transparent. However, it is one of the most difficult
to actually work with: many of the basic constructions of higher category
theory give rise most naturally to (∞, 1)-categories for which the composi-
tion of morphisms is associative only up to (coherent) homotopy (for several
examples of this phenomenon, we refer the reader to §1.2). In order to re-
main in the world of topological categories, it is necessary to combine these
constructions with a “straightening” procedure which produces a strictly
associative composition law. Although it is always possible to do this (see
Theorem 2.2.5.1), it is much more technically convenient to work from the
outset within a more flexible theory of (∞, 1)-categories. Fortunately, there
are many candidates for such a theory, including the theory of Segal cate-
gories ([71]), the theory of complete Segal spaces ([64]), and the theory of
model categories ([40], [38]). To review all of these notions and their inter-
relationships would involve too great a digression from the main purpose of
this book. However, the frequency with which we will encounter sophisticated
categorical constructions necessitates the use of one of these more efficient
approaches. We will employ the theory of weak Kan complexes, which goes
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back to Boardman-Vogt ([10]). These objects have subsequently been stud-
ied more extensively by Joyal ([43], [44]), who calls them quasi-categories.
We will simply call them ∞-categories.

To get a feeling for what an ∞-category C should be, it is useful to consider
two extreme cases. If every morphism in C is invertible, then C is equivalent
to the fundamental ∞-groupoid of a topological space X. In this case, higher
category theory reduces to classical homotopy theory. On the other hand, if C

has no nontrivial n-morphisms for n > 1, then C is equivalent to an ordinary
category. A general formalism must capture the features of both of these
examples. In other words, we need a class of mathematical objects which
can behave both like categories and like topological spaces. In §1.1.1, we
achieved this by “brute force”: namely, we directly amalgamated the theory
of topological spaces and the theory of categories by considering topological
categories. However, it is possible to approach the problem more directly
using the theory of simplicial sets. We will assume that the reader has some
familiarity with the theory of simplicial sets; a brief review of this theory is
included in §A.2.7, and a more extensive introduction can be found in [32].

The theory of simplicial sets originated as a combinatorial approach to
homotopy theory. Given any topological space X, one can associate a simpli-
cial set SingX, whose n-simplices are precisely the continuous maps |∆n| →
X, where |∆n| = {(x0, . . . , xn) ∈ [0, 1]n+1|x0 + . . . + xn = 1} is the stan-
dard n-simplex. Moreover, the topological space X is determined, up to weak
homotopy equivalence, by SingX. More precisely, the singular complex func-
tor X �→ SingX admits a left adjoint, which carries every simplicial set K to
its geometric realization |K|. For every topological space X, the counit map
| SingX| → X is a weak homotopy equivalence. Consequently, if one is only
interested in studying topological spaces up to weak homotopy equivalence,
one might as well work with simplicial sets instead.

If X is a topological space, then the simplicial set SingX has an important
property, which is captured by the following definition:

Definition 1.1.2.1. Let K be a simplicial set. We say that K is a Kan
complex if, for any 0 ≤ i ≤ n and any diagram of solid arrows

Λni ��
� �

��

K

∆n,

���
�

�
�

there exists a dotted arrow as indicated rendering the diagram commutative.
Here Λni ⊆ ∆n denotes the ith horn, obtained from the simplex ∆n by
deleting the interior and the face opposite the ith vertex.

The singular complex of any topological space X is a Kan complex: this
follows from the fact that the horn |Λni | is a retract of the simplex |∆n|
in the category of topological spaces. Conversely, any Kan complex K “be-
haves like” a space: for example, there are simple combinatorial recipes for
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extracting homotopy groups from K (which turn out be isomorphic to the
homotopy groups of the topological space |K|). According to a theorem of
Quillen (see [32] for a proof), the singular complex and geometric realiza-
tion provide mutually inverse equivalences between the homotopy category
of CW complexes and the homotopy category of Kan complexes.

The formalism of simplicial sets is also closely related to category theory.
To any category C, we can associate a simplicial set N(C) called the nerve
of C. For each n ≥ 0, we let N(C)n = MapSet∆

(∆n,N(C)) denote the set of
all functors [n] → C. Here [n] denotes the linearly ordered set {0, . . . , n},
regarded as a category in the obvious way. More concretely, N(C)n is the set
of all composable sequences of morphisms

C0
f1→ C1

f2→ · · · fn→ Cn

having length n. In this description, the face map di carries the above se-
quence to

C0
f1→ · · · fi−1→ Ci−1

fi+1◦fi−→ Ci+1
fi+2→ · · · fn→ Cn

while the degeneracy si carries it to

C0
f1→ · · · fi→ Ci

idCi→ Ci
fi+1→ Ci+1

fi+2→ · · · fn→ Cn.

It is more or less clear from this description that the simplicial set N(C) is
just a fancy way of encoding the structure of C as a category. More precisely,
we note that the category C can be recovered (up to isomorphism) from
its nerve N(C). The objects of C are simply the vertices of N(C): that is,
the elements of N(C)0. A morphism from C0 to C1 is given by an edge
φ ∈ N(C)1 with d1(φ) = C0 and d0(φ) = C1. The identity morphism from
an object C to itself is given by the degenerate simplex s0(C). Finally, given

a diagram C0
φ→ C1

ψ→ C2, the edge of N(C) corresponding to ψ ◦ φ may be
uniquely characterized by the fact that there exists a 2-simplex σ ∈ N(C)2
with d2(σ) = φ, d0(σ) = ψ, and d1(σ) = ψ ◦ φ.

It is not difficult to characterize those simplicial sets which arise as the
nerve of a category:

Proposition 1.1.2.2. Let K be a simplicial set. Then the following condi-
tions are equivalent:

(1) There exists a small category C and an isomorphism K � N(C).

(2) For each 0 < i < n and each diagram

Λni� �

��

�� K

∆n,

���
�

�
�

there exists a unique dotted arrow rendering the diagram commutative.
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Proof. We first show that (1) ⇒ (2). Let K be the nerve of a small category
C and let f0 : Λni → K be a map of simplicial sets, where 0 < i < n. We
wish to show that f0 can be extended uniquely to a map f : ∆n → K. For
0 ≤ k ≤ n, let Xk ∈ C be the image of the vertex {k} ⊆ Λni . For 0 < k ≤ n,
let gk : Xk−1 → Xk be the morphism in C determined by the restriction
f0|∆{k−1,k}. The composable chain of morphisms

X0
g1→ X1

g2→ · · · gn→ Xn

determines an n-simplex f : ∆n → K. We will show that f is the desired
solution to our extension problem (the uniqueness of this solution is evident:
if f ′ : ∆n → K is any other map with f ′|Λni = f0, then f ′ must correspond
to the same chain of morphisms in C, so that f ′ = f). It will suffice to prove
the following for every 0 ≤ j ≤ n:

(∗j) If j �= i, then

f |∆{0,...,j−1,j+1,...,n} = f0|∆{0,...,j−1,j+1,...,n}.

To prove (∗j), it will suffice to show that f and f0 have the same restriction
to ∆{k,k′}, where k and k′ are adjacent elements of the linearly ordered set
{0, . . . , j − 1, j + 1, . . . , n} ⊆ [n]. If k and k′ are adjacent in [n], then this
follows by construction. In particular, (∗) is automatically satisfied if j = 0
or j = n. Suppose instead that k = j − 1 and k′ = j + 1, where 0 < j < n.
If n = 2, then j = 1 = i and we obtain a contradiction. We may therefore
assume that n > 2, so that either j − 1 > 0 or j + 1 < n. Without loss of
generality, j − 1 > 0, so that ∆{j−1,j+1} ⊆ ∆{1,...,n}. The desired conclusion
now follows from (∗0).

We now prove the converse. Suppose that the simplicial set K satisfies
(2); we claim that K is isomorphic to the nerve of a small category C. We
construct the category C as follows:

(i) The objects of C are the vertices of K.

(ii) Given a pair of objects x, y ∈ C, we let HomC(x, y) denote the collection
of all edges e : ∆1 → K such that e|{0} = x and e|{1} = y.

(iii) Let x be an object of C. Then the identity morphism idx is the edge
of K defined by the composition

∆1 → ∆0 e→ K.

(iv) Let f : x → y and g : y → z be morphisms in C. Then f and g together
determine a map σ0 : Λ2

1 → K. In view of condition (2), the map σ0

can be extended uniquely to a 2-simplex σ : ∆2 → K. We define the
composition g ◦ f to be the morphism from x to z in C corresponding
to the edge given by the composition

∆1 � ∆{0,2} ⊆ ∆2 σ→ K.
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We first claim that C is a category. To prove this, we must verify the
following axioms:

(a) For every object y ∈ C, the identity idy is a unit with respect to
composition. In other words, for every morphism f : x → y in C and
every morphism g : y → z in C, we have idy ◦f = f and g ◦ idy =
g. These equations are “witnessed” by the 2-simplices s1(f), s0(g) ∈
HomSet∆(∆2,K).

(b) Composition is associative. That is, for every sequence of composable
morphisms

w
f→ x

g→ y
h→ z,

we have h ◦ (g ◦ f) = (h ◦ g) ◦ f . To prove this, let us first choose
2-simplices σ012 and σ123 as indicated below:

x
g

���
��

��
��

� y

h

���
��

��
��

�

w

f
���������� g◦f �� y x

g
���������� h◦g �� z.

Now choose a 2-simplex σ023 corresponding to a diagram
y

h

���
��

��
��

�

w

g◦f
���������� h◦(g◦f) �� z.

These three 2-simplices together define a map τ0 : Λ3
2 → K. Since K

satisfies condition (2), we can extend τ0 to a 3-simplex τ : ∆3 → K.
The composition

∆2 � ∆{0,1,3} ⊆ ∆3 τ→ K

corresponds to the diagram
x

h◦g

���
��

��
��

w

f
���������� h◦(g◦f) �� z,

which witnesses the associativity axiom h ◦ (g ◦ f) = (h ◦ g) ◦ f .

It follows that C is a well-defined category. By construction, we have a
canonical map of simplicial sets φ : K → N C. To complete the proof, it
will suffice to show that φ is an isomorphism. We will prove, by induction on
n ≥ 0, that φ induces a bijection HomSet∆(∆n,K) → HomSet∆(∆n,N C). For
n = 0 and n = 1, this is obvious from the construction. Assume therefore that
n ≥ 2 and choose an integer i such that 0 < i < n. We have a commutative
diagram

HomSet∆(∆n,K) ��

��

HomSet∆(∆n,N C)

��
HomSet∆(Λni ,K) �� HomSet∆(Λni ,N C).
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Since K and NC both satisfy (2) (for NC, this follows from the first part of
the proof), the vertical maps are bijective. It will therefore suffice to show
that the lower horizontal map is bijective, which follows from the inductive
hypothesis.

We note that condition (2) of Proposition 1.1.2.2 is very similar to Def-
inition 1.1.2.1. However, it is different in two important respects. First, it
requires the extension condition only for inner horns Λni with 0 < i < n.
Second, the asserted condition is stronger in this case: not only does any
map Λni → K extend to the simplex ∆n, but the extension is unique.

Remark 1.1.2.3. It is easy to see that it is not reasonable to expect con-
dition (2) of Proposition 1.1.2.2 to hold for outer horns Λni where i ∈ {0, n}.
Consider, for example, the case where i = n = 2 and where K is the nerve
of a category C. Giving a map Λ2

2 → K corresponds to supplying the solid
arrows in the diagram

C1

���
��

��
��

�

C0
��

��	
	

	
	

C2,

and the extension condition would amount to the assertion that one could
always find a dotted arrow rendering the diagram commutative. This is true
in general only when the category C is a groupoid.

We now see that the notion of a simplicial set is a flexible one: a simplicial
set K can be a good model for an ∞-groupoid (if K is a Kan complex) or for
an ordinary category (if it satisfies the hypotheses of Proposition 1.1.2.2).
Based on these observations, we might expect that some more general class
of simplicial sets could serve as models for ∞-categories in general.

Consider first an arbitrary simplicial set K. We can try to envision K as a
generalized category whose objects are the vertices ofK (that is, the elements
of K0) and whose morphisms are the edges of K (that is, the elements of
K1). A 2-simplex σ : ∆2 → K should be thought of as a diagram

Y
ψ

���
��

��
��

X

φ
��������� θ �� Z

together with an identification (or homotopy) between θ and ψ ◦ φ which
witnesses the “commutativity” of the diagram. (In higher category theory,
commutativity is not merely a condition: the homotopy θ � ψ ◦φ is an addi-
tional datum.) Simplices of larger dimension may be thought of as verifying
the commutativity of certain higher-dimensional diagrams.

Unfortunately, for a general simplicial set K, the analogy outlined above
is not very strong. The essence of the problem is that, though we may refer
to the 1-simplices of K as morphisms, there is in general no way to compose
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them. Taking our cue from the example of N(C), we might say that a mor-
phism θ : X → Z is a composition of morphisms φ : X → Y and ψ : Y → Z
if there exists a 2-simplex σ : ∆2 → K as in the diagram indicated above.
We must now consider two potential difficulties: the desired 2-simplex σ may
not exist, and if it does it exist it may not be unique, so that we have more
than one choice for the composition θ.

The existence requirement for σ can be formulated as an extension condi-
tion on the simplicial set K. We note that a composable pair of morphisms
(ψ, φ) determines a map of simplicial sets Λ2

1 → K. Thus, the assertion
that σ can always be found may be formulated as a extension property: any
map of simplicial sets Λ2

1 → K can be extended to ∆2, as indicated in the
following diagram:

Λ2
1

��
� �

��

K

∆2.

��	
	

	
	

The uniqueness of θ is another matter. It turns out to be unnecessary
(and unnatural) to require that θ be uniquely determined. To understand
this point, let us return to the example of the fundamental groupoid of a
topological space X. This is a category whose objects are the points x ∈ X.
The morphisms between a point x ∈ X and a point y ∈ X are given by
continuous paths p : [0, 1] → X such that p(0) = x and p(1) = y. Two
such paths are considered to be equivalent if there is a homotopy between
them. Composition in the fundamental groupoid is given by concatenation
of paths. Given paths p, q : [0, 1] → X with p(0) = x, p(1) = q(0) = y, and
q(1) = z, the composite of p and q should be a path joining x to z. There
are many ways of obtaining such a path from p and q. One of the simplest
is to define

r(t) =

{
p(2t) if 0 ≤ t ≤ 1

2

q(2t− 1) if 1
2

≤ t ≤ 1.

However, we could just as well use the formula

r′(t) =

{
p(3t) if 0 ≤ t ≤ 1

3

q(3t−1
2 ) if 1

3 ≤ t ≤ 1

to define the composite path. Because the paths r and r′ are homotopic to
one another, it does not matter which one we choose.

The situation becomes more complicated if we try to think 2-categorically.
We can capture more information about the space X by considering its fun-
damental 2-groupoid. This is a 2-category whose objects are the points of
X, whose morphisms are paths between points, and whose 2-morphisms are
given by homotopies between paths (which are themselves considered mod-
ulo homotopy). In order to have composition of morphisms unambiguously
defined, we would have to choose some formula once and for all. Moreover,
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there is no particularly compelling choice; for example, neither of the formu-
las written above leads to a strictly associative composition law.

The lesson to learn from this is that in higher-categorical situations, we
should not necessarily ask for a uniquely determined composition of two
morphisms. In the fundamental groupoid example, there are many choices for
a composite path, but all of them are homotopic to one another. Moreover,
in keeping with the philosophy of higher category theory, any path which is
homotopic to the composite should be just as good as the composite itself.
From this point of view, it is perhaps more natural to view composition
as a relation than as a function, and this is very efficiently encoded in the
formalism of simplicial sets: a 2-simplex σ : ∆2 → K should be viewed as
“evidence” that d0(σ) ◦ d2(σ) is homotopic to d1(σ).

Exactly what conditions on a simplicial set K will guarantee that it be-
haves like a higher category? Based on the above argument, it seems reason-
able to require that K satisfy an extension condition with respect to certain
horn inclusions Λni , as in Definition 1.1.2.1. However, as we observed in Re-
mark 1.1.2.3, this is reasonable only for the inner horns where 0 < i < n,
which appear in the statement of Proposition 1.1.2.2.

Definition 1.1.2.4. An ∞-category is a simplicial set K which has the
following property: for any 0 < i < n, any map f0 : Λni → K admits an
extension f : ∆n → K.

Definition 1.1.2.4 was first formulated by Boardman and Vogt ([10]). They
referred to ∞-catgories as weak Kan complexes, motivated by the obvious
analogy with Definition 1.1.2.1. Our terminology places more emphasis on
the analogy with the characterization of ordinary categories given in Propo-
sition 1.1.2.2: we require the same extension conditions but drop the unique-
ness assumption.

Example 1.1.2.5. Any Kan complex is an ∞-category. In particular, if X
is a topological space, then we may view its singular complex SingX as an
∞-category: this is one way of defining the fundamental ∞-groupoid π≤∞X
of X introduced informally in Example 1.1.1.4.

Example 1.1.2.6. The nerve of any category is an ∞-category. We will
occasionally abuse terminology by identifying a category C with its nerve
N(C); by means of this identification, we may view ordinary category theory
as a special case of the study of ∞-categories.

The weak Kan condition of Definition 1.1.2.4 leads to a very elegant and
powerful version of higher category theory. This theory has been developed
by Joyal in [43] and [44] (where simplicial sets satisfying the condition of
Definition 1.1.2.4 are called quasi-categories) and will be used throughout
this book.

Notation 1.1.2.7. Depending on the context, we will use two different
notations in connection with simplicial sets. When emphasizing their role as



AN OVERVIEW OF HIGHER CATEGORY THEORY 15

∞-categories, we will often denote them by calligraphic letters such as C, D,
and so forth. When casting simplicial sets in their different (though related)
role as representatives of homotopy types, we will employ capital Roman
letters. To avoid confusion, we will also employ the latter notation when we
wish to contrast the theory of ∞-categories with some other other approach
to higher category theory, such as the theory of topological categories.

1.1.3 Equivalences of Topological Categories

We have now introduced two approaches to higher category theory: one
based on topological categories and one based on simplicial sets. These two
approaches turn out to be equivalent to one another. However, the equiva-
lence itself needs to be understood in a higher-categorical sense. We take our
cue from classical homotopy theory, in which we can take the basic objects
to be either topological spaces or simplicial sets. It is not true that every
Kan complex is isomorphic to the singular complex of a topological space or
that every CW complex is homeomorphic to the geometric realization of a
simplicial set. However, both of these statements become true if we replace
the words “isomorphic to” by “homotopy equivalent to.” We would like to
formulate a similar statement regarding our approaches to higher category
theory. The first step is to find a concept which replaces homotopy equiva-
lence. If F : C → D is a functor between topological categories, under what
circumstances should we regard F as an equivalence (so that C and D really
represent the same higher category)?

The most naive answer is that F should be regarded as an equivalence if
it is an isomorphism of topological categories. This means that F induces
a bijection between the objects of C and the objects of D, and a home-
omorphism MapC(X,Y ) → MapD(F (X), F (Y )) for every pair of objects
X,Y ∈ C. However, it is immediately obvious that this condition is far
too strong; for example, in the case where C and D are ordinary categories
(which we may view also as topological categories where all morphism sets
are endowed with the discrete topology), we recover the notion of an isomor-
phism between categories. This notion does not play an important role in
category theory. One rarely asks whether or not two categories are isomor-
phic; instead, one asks whether or not they are equivalent. This suggests the
following definition:

Definition 1.1.3.1. A functor F : C → D between topological categories
is a strong equivalence if it is an equivalence in the sense of enriched cate-
gory theory. In other words, F is a strong equivalence if it induces home-
omorphisms MapC(X,Y ) → MapD(F (X), F (Y )) for every pair of objects
X,Y ∈ C, and every object of D is isomorphic (in D) to F (X) for some
X ∈ C.

The notion of strong equivalence between topological categories has the
virtue that, when restricted to ordinary categories, it reduces to the usual
notion of equivalence. However, it is still not the right definition: for a pair
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of objects X and Y of a higher category C, the morphism space MapC(X,Y )
should itself be well-defined only up to homotopy equivalence.

Definition 1.1.3.2. Let C be a topological category. The homotopy category
hC is defined as follows:

• The objects of hC are the objects of C.

• If X,Y ∈ C, then we define HomhC(X,Y ) = π0 MapC(X,Y ).

• Composition of morphisms in hC is induced from the composition of
morphisms in C by applying the functor π0.

Example 1.1.3.3. Let C be the topological category whose objects are
CW complexes, where MapC(X,Y ) is the set of continuous maps from X
to Y , equipped with the (compactly generated version of the) compact-open
topology. We will denote the homotopy category of C by H and refer to H

as the homotopy category of spaces.

There is a second construction of the homotopy category H which will play
an important role in what follows. First, we must recall a bit of terminology
from classical homotopy theory.

Definition 1.1.3.4. A map f : X → Y between topological spaces is said
to be a weak homotopy equivalence if it induces a bijection π0X → π0Y , and
if for every point x ∈ X and every i ≥ 1, the induced map of homotopy
groups

πi(X,x) → πi(Y, f(x))

is an isomorphism.

Given a space X ∈ CG, classical homotopy theory ensures the existence of
a CW complex X ′ equipped with a weak homotopy equivalence φ : X ′ →
X. Of course, X ′ is not uniquely determined; however, it is unique up to
canonical homotopy equivalence, so that the assignment

X �→ [X] = X′

determines a functor θ : CG → H. By construction, θ carries weak homotopy
equivalences in CG to isomorphisms in H. In fact, θ is universal with respect
to this property. In other words, we may describe H as the category ob-
tained from CG by formally inverting all weak homotopy equivalences. This
is one version of Whitehead’s theorem, which is usually stated as follows: ev-
ery weak homotopy equivalence between CW complexes admits a homotopy
inverse.

We can now improve upon Definition 1.1.3.2 slightly. We first observe that
the functor θ : CG → H preserves products. Consequently, we can apply the
construction of Remark A.1.4.3 to convert any topological category C into
a category enriched over H. We will denote this H-enriched category by hC

and refer to it as the homotopy category of C. More concretely, the homotopy
category hC may be described as follows:
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(1) The objects of hC are the objects of C.

(2) For X,Y ∈ C, we have

MaphC(X,Y ) = [MapC(X,Y )].

(3) The composition law on hC is obtained from the composition law on
C by applying the functor θ : CG → H.

Remark 1.1.3.5. If C is a topological category, we have now defined hC

in two different ways: first as an ordinary category and later as a category
enriched over H. These two definitions are compatible with one another in
the sense that hC (regarded as an ordinary category) is the underlying cate-
gory of hC (regarded as an H-enriched category). This follows immediately
from the observation that for every topological space X, there is a canonical
bijection π0X � MapH(∗, [X]).

If C is a topological category, we may imagine that hC is the object which
is obtained by forgetting the topological morphism spaces of C and remem-
bering only their (weak) homotopy types. The following definition codifies
the idea that these homotopy types should be “all that really matter.”

Definition 1.1.3.6. Let F : C → D be a functor between topological cate-
gories. We will say that F is a weak equivalence, or simply an equivalence, if
the induced functor hC → hD is an equivalence of H-enriched categories.

More concretely, a functor F is an equivalence if and only if the following
conditions are satisfied:

• For every pair of objects X,Y ∈ C, the induced map

MapC(X,Y ) → MapD(F (X), F (Y ))

is a weak homotopy equivalence of topological spaces.

• Every object of D is isomorphic in hD to F (X) for some X ∈ C.

Remark 1.1.3.7. A morphism f : X → Y in D is said to be an equivalence
if the induced morphism in hD is an isomorphism. In general, this is much
weaker than the condition that f be an isomorphism in D; see Proposition
1.2.4.1.

It is Definition 1.1.3.6 which gives the correct notion of equivalence be-
tween topological categories (at least, when one is using them to describe
higher category theory). We will agree that all relevant properties of topo-
logical categories are invariant under this notion of equivalence. We say that
two topological categories are equivalent if there is an equivalence between
them, or more generally if there is a chain of equivalences joining them.
Equivalent topological categories should be regarded as interchangeable for
all relevant purposes.
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Remark 1.1.3.8. According to Definition 1.1.3.6, a functor F : C → D is
an equivalence if and only if the induced functor hC → hD is an equivalence.
In other words, the homotopy category hC (regarded as a category which is
enriched over H) is an invariant of C which is sufficiently powerful to detect
equivalences between ∞-categories. This should be regarded as analogous to
the more classical fact that the homotopy groups πi(X,x) of a CW complex
X are homotopy invariants which detect homotopy equivalences between CW
complexes (by Whitehead’s theorem). However, it is important to remember
that hC does not determine C up to equivalence, just as the homotopy type
of a CW complex is not determined by its homotopy groups.

1.1.4 Simplicial Categories

In the previous sections we introduced two very different approaches to the
foundations of higher category theory: one based on topological categories,
the other on simplicial sets. In order to prove that they are equivalent to
one another, we will introduce a third approach which is closely related to
the first but shares the combinatorial flavor of the second.

Definition 1.1.4.1. A simplicial category is a category which is enriched
over the category Set∆ of simplicial sets. The category of simplicial cate-
gories (where morphisms are given by simplicially enriched functors) will be
denoted by Cat∆.

Remark 1.1.4.2. Every simplicial category can be regarded as a simplicial
object in the category Cat. Conversely, a simplicial object of Cat arises from
a simplicial category if and only if the underlying simplicial set of objects is
constant.

Like topological categories, simplicial categories can be used as models of
higher category theory. If C is a simplicial category, then we will generally
think of the simplicial sets MapC(X,Y ) as encoding homotopy types or ∞-
groupoids.

Remark 1.1.4.3. If C is a simplicial category with the property that each of
the simplicial sets MapC(X,Y ) is an ∞-category, then we may view C itself as
a kind of ∞-bicategory. We will not use this interpretation of simplicial cate-
gories in this book. Usually we will consider only fibrant simplicial categories;
that is, simplicial categories for which the mapping objects MapC(X,Y ) are
Kan complexes.

The relationship between simplicial categories and topological categories
is easy to describe. Let Set∆ denote the category of simplicial sets and CG

the category of compactly generated Hausdorff spaces. We recall that there
exists a pair of adjoint functors

Set∆
|| �� CG

Sing
��
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which are called the geometric realization and singular complex functors,
respectively. Both of these functors commute with finite products. Conse-
quently, if C is a simplicial category, we may define a topological category
|C | in the following way:

• The objects of |C | are the objects of C.

• If X,Y ∈ C, then Map|C |(X,Y ) = |MapC(X,Y )|.
• The composition law for morphisms in |C | is obtained from the com-

position law on C by applying the geometric realization functor.

Similarly, if C is a topological category, we may obtain a simplicial cate-
gory Sing C by applying the singular complex functor to each of the morphism
spaces individually. The singular complex and geometric realization functors
determine an adjunction between Cat∆ and Cattop. This adjunction should
be understood as determining an equivalence between the theory of simpli-
cial categories and the theory of topological categories. This is essentially a
formal consequence of the fact that the geometric realization and singular
complex functors determine an equivalence between the homotopy theory
of topological spaces and the homotopy theory of simplicial sets. More pre-
cisely, we recall that a map f : S → T of simplicial sets is said to be a weak
homotopy equivalence if the induced map |S| → |T | of topological spaces is
a weak homotopy equivalence. A theorem of Quillen (see [32] for a proof)
asserts that the unit and counit morphisms

S → Sing |S|
| SingX| → X

are weak homotopy equivalences for every (compactly generated) topological
spaceX and every simplicial set S. It follows that the category obtained from
CG by inverting weak homotopy equivalences (of spaces) is equivalent to the
category obtained from Set∆ by inverting weak homotopy equivalences. We
use the symbol H to denote either of these (equivalent) categories.

If C is a simplicial category, we let hC denote the H-enriched category
obtained by applying the functor Set∆ → H to each of the morphism spaces
of C. We will refer to hC as the homotopy category of C. We note that this is
the same notation that was introduced in §1.1.3 for the homotopy category
of a topological category. However, there is little risk of confusion: the above
remarks imply the existence of canonical isomorphisms

hC � h|C |
hD � hSing D

for every simplicial category C and every topological category D.

Definition 1.1.4.4. A functor C → C′ between simplicial categories is an
equivalence if the induced functor hC → hC′ is an equivalence of H-enriched
categories.
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In other words, a functor C → C′ between simplicial categories is an equiv-
alence if and only if the geometric realization |C | → |C′ | is an equivalence
of topological categories. In fact, one can say more. It follows easily from the
preceding remarks that the unit and counit maps

C → Sing |C |
| Sing D | → D

induce isomorphisms between homotopy categories. Consequently, if we are
working with topological or simplicial categories up to equivalence, we are
always free to replace a simplicial category C by |C | or a topological category
D by Sing D. In this sense, the notions of topological category and simplicial
category are equivalent, and either can be used as a foundation for higher
category theory.

1.1.5 Comparing ∞-Categories with Simplicial Categories

In §1.1.4, we introduced the theory of simplicial categories and explained
why (for our purposes) it is equivalent to the theory of topological cate-
gories. In this section, we will show that the theory of simplicial categories
is also closely related to the theory of ∞-categories. Our discussion requires
somewhat more elaborate constructions than were needed in the previous
sections; a reader who does not wish to become bogged down in details is
urged to skip ahead to §1.2.1.

We will relate simplicial categories with simplicial sets by means of the
simplicial nerve functor

N : Cat∆ → Set∆,
originally introduced by Cordier (see [16]). The nerve of an ordinary category
C is characterized by the formula

HomSet∆(∆n,N(C)) = HomCat([n],C);
here [n] denotes the linearly ordered set {0, . . . , n} regarded as a category.
This definition makes sense also when C is a simplicial category but is clearly
not very interesting: it makes no use of the simplicial structure on C. In order
to obtain a more interesting construction, we need to replace the ordinary
category [n] by a suitable “thickening,” a simplicial category which we will
denote by C[∆n].

Definition 1.1.5.1. Let J be a finite nonempty linearly ordered set. The
simplicial category C[∆J ] is defined as follows:

• The objects of C[∆J ] are the elements of J .

• If i, j ∈ J , then

MapC[∆J ](i, j) =

{
∅ if j < i

N(Pi,j) if i ≤ j.

Here Pi,j denotes the partially ordered set {I ⊆ J : (i, j ∈ I) ∧ (∀k ∈
I)[i ≤ k ≤ j]}.
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• If i0 ≤ i1 ≤ · · · ≤ in, then the composition

MapC[∆J ](i0, i1) × · · · × MapC[∆J ](in−1, in) → MapC[∆J ](i0, in)

is induced by the map of partially ordered sets

Pi0,i1 × · · · × Pin−1,in → Pi0,in

(I1, . . . , In) �→ I1 ∪ · · · ∪ In.
In order to help digest Definition 1.1.5.1, let us analyze the structure of

the topological category |C[∆n]|. The objects of this category are elements
of the set [n] = {0, . . . , n}. For each 0 ≤ i ≤ j ≤ n, the topological space
Map|C[∆n]|(i, j) is homeomorphic to a cube; it may be identified with the set
of all functions p : {k ∈ [n] : i ≤ k ≤ j} → [0, 1] which satisfy p(i) = p(j) = 1.
The morphism space Map|C[∆n]|(i, j) is empty when j < i, and composition
of morphisms is given by concatenation of functions.

Remark 1.1.5.2. Let us try to understand better the simplicial category
C[∆n] and its relationship to the ordinary category [n]. These categories have
the same objects: the elements of {0, . . . , n}. In the category [n], there is a
unique morphism qij : i → j whenever i ≤ j. By virtue of the uniqueness,
these elements satisfy qjk ◦ qij = qik for i ≤ j ≤ k.

In the simplicial category C[∆n], there is a vertex pij ∈ MapC[∆n](i, j) for
each i ≤ j, given by the element {i, j} ∈ Pij . We note that pjk ◦ pij �= pik
(except in degenerate cases where i = j or j = k). Instead, the collection of
all compositions

pinin−1 ◦ pin−1in−2 ◦ · · · ◦ pi1i0 ,
where i = i0 < i1 < · · · < in−1 < in = j constitute all of the different
vertices of the cube MapC[∆n](i, j). The weak contractibility of MapC[∆n](i, j)
expresses the idea that although these compositions do not coincide, they
are all canonically homotopic to one another. We observe that there is a
(unique) functor C[∆n] → [n] which is the identity on objects. This functor
is an equivalence of simplicial categories. We can summarize the situation
informally as follows: the simplicial category C[∆n] is a thickened version of
[n] where we have dropped the strict associativity condition

qjk ◦ qij = qik

and instead have imposed associativity only up to (coherent) homotopy. (We
can formulate this idea more precisely by saying that C[∆•] is a cofibrant
replacement for [•] with respect to a suitable model structure on the category
of cosimplicial objects of Cat∆.)

The construction J �→ C[∆J ] is functorial in J , as we now explain.

Definition 1.1.5.3. Let f : J → J ′ be a monotone map between linearly
ordered sets. The simplicial functor C[f ] : C[∆J ] → C[∆J ′

] is defined as
follows:
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• For each object i ∈ C[∆J ], C[f ](i) = f(i) ∈ C[∆J ′
].

• If i ≤ j in J , then the map MapC[∆J ](i, j) → MapC[∆J′ ](f(i), f(j))
induced by f is the nerve of the map

Pi,j → Pf(i),f(j)

I �→ f(I).

Remark 1.1.5.4. Using the notation of Remark 1.1.5.2, we note that Def-
inition 1.1.5.3 has been rigged so that the functor C[f ] carries the vertex
pij ∈ MapC[∆J ](i, j) to the vertex pf(i)f(j) ∈ MapC[∆J′ ](f(i), f(j)).

It is not difficult to check that the construction described in Definition
1.1.5.3 is well-defined,and compatible with composition in f . Consequently,
we deduce that C determines a functor

∆ → Cat∆

∆n �→ C[∆n],

which we may view as a cosimplicial object of Cat∆.

Definition 1.1.5.5. Let C be a simplicial category. The simplicial nerve
N(C) is the simplicial set described by the formula

HomSet∆(∆n,N(C)) = HomCat∆(C[∆n],C).

If C is a topological category, we define the topological nerve N(C) of C to
be the simplicial nerve of Sing C.

Remark 1.1.5.6. If C is a simplicial (topological) category, we will often
abuse terminology by referring to the simplicial (topological) nerve of C

simply as the nerve of C.

Warning 1.1.5.7. Let C be a simplicial category. Then C can be regarded
as an ordinary category by ignoring all simplices of positive dimension in
the mapping spaces of C. The simplicial nerve of C does not coincide with
the nerve of this underlying ordinary category. Our notation is therefore po-
tentially ambiguous. We will adopt the following convention: whenever C is
a simplicial category, N(C) will denote the simplicial nerve of C unless we
specify otherwise. Similarly, if C is a topological category, then the topolog-
ical nerve of C does not generally coincide with the nerve of the underlying
category; the notation N(C) will be used to indicate the topological nerve
unless otherwise specified.

Example 1.1.5.8. Any ordinary category C may be considered as a simpli-
cial category by taking each of the simplicial sets HomC(X,Y ) to be constant.
In this case, the set of simplicial functors C[∆n] → C may be identified with
the set of functors from [n] into C. Consequently, the simplicial nerve of C

agrees with the ordinary nerve of C as defined in §1.1.2. Similarly, the ordi-
nary nerve of C can be identified with the topological nerve of C, where C is
regarded as a topological category with discrete morphism spaces.
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In order to get a feel for what the nerve of a topological category C looks
like, let us explicitly describe its low-dimensional simplices:

• The 0-simplices of N(C) may be identified with the objects of C.

• The 1-simplices of N(C) may be identified with the morphisms of C.

• To give a map from the boundary of a 2-simplex into N(C) is to give a
diagram (not necessarily commutative)

Y
fY Z

��












X

fXY

��������� fXZ �� Z.

To give a 2-simplex of N(C) having this specified boundary is equivalent
to giving a path from fXZ to fY Z ◦ fXY in MapC(X,Z).

The category Cat∆ of simplicial categories admits (small) colimits. Conse-
quently, by formal nonsense, the functor C : ∆ → Cat∆ extends uniquely (up
to unique isomorphism) to a colimit-preserving functor Set∆ → Cat∆, which
we will denote also by C. By construction, the functor C is left adjoint to the
simplicial nerve functor N. For each simplicial set S, we can view C[S] as
the simplicial category “freely generated” by S: every n-simplex σ : ∆n → S
determines a functor C[∆n] → C[S], which we can think of as a homotopy
coherent diagram [n] → C[S].

Example 1.1.5.9. Let A be a partially ordered set. The simplicial category
C[NA] can be constructed using the following generalization of Definition
1.1.5.1:

• The objects of C[NA] are the elements of A.

• Given a pair of elements a, b ∈ A, the simplicial set MapC[NA](a, b) can
be identified with NPa,b, where Pa,b denotes the collection of linearly
ordered subsets S ⊆ A with least element a and largest element b,
partially ordered by inclusion.

• Given a sequence of elements a0, . . . , an ∈ A, the composition map

MapC[NA](a0, a1) × · · · × MapC[NA](an−1, an) → MapC[NA](a0, an)

is induced by the map of partially ordered sets

Pa0,a1 × · · · × Pan−1,an
→ Pa0,an

(S1, . . . , Sn) �→ S1 ∪ · · · ∪ Sn.
Proposition 1.1.5.10. Let C be a simplicial category having the property
that, for every pair of objects X,Y ∈ C, the simplicial set MapC(X,Y ) is a
Kan complex. Then the simplicial nerve N(C) is an ∞-category.
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Proof. We must show that if 0 < i < n, then N(C) has the right extension
property with respect to the inclusion Λni ⊆ ∆n. Rephrasing this in the
language of simplicial categories, we must show that C has the right extension
property with respect to the simplicial functor C[Λni ] → C[∆n]. To prove this,
we make use of the following observations concerning C[Λni ], which we view
as a simplicial subcategory of C[∆n]:

• The objects of C[Λni ] are the objects of C[∆n]: that is, elements of the
set [n].

• For 0 ≤ j ≤ k ≤ n, the simplicial set MapC[Λn
i ](j, k) coincides with

MapC[∆n](j, k) unless j = 0 and k = n (note that this condition fails
if i = 0 or i = n).

Consequently, every extension problem

Λni� �

��

F �� N(C)

∆n

		�
�

�
�

is equivalent to

MapC[Λn
i ](0, n)

��

�� MapC(F (0), F (n))

MapC[∆n](0, n).



�������

Since the simplicial set on the right is a Kan complex by assumption, it
suffices to verify that the left vertical map is anodyne. This follows by in-
spection: the simplicial set MapC[∆n](0, n) can be identified with the cube
(∆1){1,...,n−1}. Under this identification, MapC[Λn

i ](0, n) corresponds to the
simplicial subset of (∆1){1,...,n−1} obtained by removing the interior of the
cube together with one of its faces.

Remark 1.1.5.11. The proof of Proposition 1.1.5.10 actually provides a
slightly stronger result: if F : C → D is a functor between simplicial cat-
egories which induces Kan fibrations MapC(C,C ′) → MapD(F (C), F (C′))
for every pair of objects C,C ′ ∈ C, then the associated map N(C) → N(D)
is an inner fibration of simplicial sets (see Definition 2.0.0.3).

Corollary 1.1.5.12. Let C be a topological category. Then the topological
nerve N(C) is an ∞-category.

Proof. This follows immediately from Proposition 1.1.5.10 (note that the
singular complex of any topological space is a Kan complex).

We now cite the following theorem, which will be proven in §2.2.4 and
refined in §2.2.5:
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Theorem 1.1.5.13. Let C be a topological category and let X,Y ∈ C be
objects. Then the counit map

|MapC[N(C)](X,Y )| → MapC(X,Y )
is a weak homotopy equivalence of topological spaces.

Using Theorem 1.1.5.13, we can explain why the theory of ∞-categories is
equivalent to the theory of topological categories (or equivalently, simplicial
categories). The adjoint functors N and |C[•]| are not mutually inverse equiv-
alences of categories. However, they are homotopy inverse to one another.
To make this precise, we need to introduce a definition.

Definition 1.1.5.14. Let S be a simplicial set. The homotopy category hS
is defined to be the homotopy category hC[S ] of the simplicial category C[S].
We will often view hS as a category enriched over the homotopy category
H of spaces via the construction of §1.1.4: that is, for every pair of vertices
x, y ∈ S, we have MaphS (x, y) = [MapC[S](x, y)]. A map f : S → T of
simplicial sets is a categorical equivalence if the induced map hS → hT is an
equivalence of H-enriched categories.

Remark 1.1.5.15. In [44], Joyal uses the term “weak categorical equiva-
lence” for what we have called a categorical equivalence, and reserves the
term “categorical equivalence” for a stronger notion of equivalence.

Remark 1.1.5.16. We have introduced the term “categorical equivalence,”
rather than simply “equivalence” or “weak equivalence,” in order to avoid
confusing the notion of categorical equivalence of simplicial sets with the
(more classical) notion of weak homotopy equivalence of simplicial sets.

Remark 1.1.5.17. It is immediate from the definition that f : S → T is
a categorical equivalence if and only if C[S] → C[T ] is an equivalence (of
simplicial categories) if and only if |C[S]| → |C[T ]| is an equivalence (of
topological categories).

We now observe that the adjoint functors (|C[•]|,N) determine an equiv-
alence between the theory of simplicial sets (up to categorical equivalence)
and that of topological categories (up to equivalence). In other words, for
any topological category C the counit map |C[N(C)]| → C is an equivalence of
topological categories, and for any simplicial set S the unit map S → N |C[S]|
is a categorical equivalence of simplicial sets. In view of Remark 1.1.5.17, the
second assertion is a formal consequence of the first. Moreover, the first as-
sertion is merely a reformulation of Theorem 1.1.5.13.

Remark 1.1.5.18. The reader may at this point object that we have ob-
tained a comparison between the theory of topological categories and the
theory of simplicial sets but that not every simplicial set is an ∞-category.
However, every simplicial set is categorically equivalent to an ∞-category.
In fact, Theorem 1.1.5.13 implies that every simplicial set S is categorically
equivalent to the nerve of the topological category |C[S]|, which is an ∞-
category (Corollary 1.1.5.12).
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1.2 THE LANGUAGE OF HIGHER CATEGORY THEORY

One of the main goals of this book is to demonstrate that many ideas from
classical category theory can be adapted to the setting of higher categories.
In this section, we will survey some of the simplest examples.

1.2.1 The Opposite of an ∞-Category

If C is an ordinary category, then the opposite category Cop is defined in the
following way:

• The objects of Cop are the objects of C.

• For X,Y ∈ C, we have HomCop(X,Y ) = HomC(Y,X). Identity mor-
phisms and composition are defined in the obvious way.

This definition generalizes without change to the setting of topological or
simplicial categories. Adapting this definition to the setting of ∞-categories
requires a few additional words. We may define more generally the opposite
of a simplicial set S as follows: for any finite nonempty linearly ordered set
J , we set Sop(J) = S(Jop), where Jop denotes the same set J endowed with
the opposite ordering. More concretely, we have Sopn = Sn, but the face and
degeneracy maps on Sop are given by the formulas

(di : Sopn → Sopn−1) = (dn−i : Sn → Sn−1)

(si : Sopn → Sopn+1) = (sn−i : Sn → Sn+1).

The formation of opposite categories is fully compatible with all of the con-
structions we have introduced for passing back and forth between different
models of higher category theory.

It is clear from the definition that a simplicial set S is an ∞-category if and
only if its opposite Sop is an ∞-category: for 0 < i < n, S has the extension
property with respect to the horn inclusion Λni ⊆ ∆n if and only if Sop has
the extension property with respect to the horn inclusion Λnn−i ⊆ ∆n.

1.2.2 Mapping Spaces in Higher Category Theory

If X and Y are objects of an ordinary category C, then one has a well-defined
set HomC(X,Y ) of morphisms from X to Y . In higher category theory, one
has instead a morphism space MapC(X,Y ). In the setting of topological or
simplicial categories, this morphism space (either a topological space or a
simplicial set) is an inherent feature of the formalism. It is less obvious how
to define MapC(X,Y ) in the setting of ∞-categories. However, it is at least
clear what to do on the level of the homotopy category.

Definition 1.2.2.1. Let S be a simplicial set containing vertices x and y
and let H denote the homotopy category of spaces. We define MapS(x, y) =
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MaphS (x, y) ∈ H to be the object of H representing the space of maps from
x to y in S. Here hS denotes the homotopy category of S regarded as a
H-enriched category (Definition 1.1.5.14).

Warning 1.2.2.2. Let S be a simplicial set. The notation MapS(X,Y ) has
two very different meanings. When X and Y are vertices of S, then our
notation should be interpreted in the sense of Definition 1.2.2.1, so that
MapS(X,Y ) is an object of H. If X and Y are objects of (Set∆)/S , then we
instead let MapS(X,Y ) denote the simplicial mapping object

Y X ×SX {φ} ∈ Set∆,

where φ denotes the structural morphism X → S. We trust that it will
be clear from the context which of these two definitions applies in a given
situation.

We now consider the following question: given a simplicial set S containing
a pair of vertices x and y, how can we compute MapS(x, y)? We have defined
MapS(x, y) as an object of the homotopy category H, but for many purposes
it is important to choose a simplicial setM which represents MapS(x, y). The
most obvious candidate for M is the simplicial set MapC[S](x, y). The advan-
tages of this definition are that it works in all cases (that is, S does not need
to be an ∞-category) and comes equipped with an associative composition
law. However, the construction of the simplicial set MapC[S](x, y) is quite
complicated. Furthermore, MapC[S](x, y) is usually not a Kan complex, so
it can be difficult to extract algebraic invariants like homotopy groups even
when a concrete description of its simplices is known.

In order to address these shortcomings, we will introduce another simpli-
cial set which represents the homotopy type MapS(x, y) ∈ H, at least when
S is an ∞-category. We define a new simplicial set HomR

S (x, y), the space of
right morphisms from x to y, by letting HomSet∆(∆n,HomR

S (x, y)) denote
the set of all z : ∆n+1 → S such that z|∆{n+1} = y and z|∆{0,...,n} is a
constant simplex at the vertex x. The face and degeneracy operations on
HomR

S (x, y)n are defined to coincide with corresponding operations on Sn+1.
We first observe that when S is an ∞-category, HomR

S (x, y) really is a
“space”:

Proposition 1.2.2.3. Let C be an ∞-category containing a pair of objects
x and y. The simplicial set HomR

C(x, y) is a Kan complex.

Proof. It is immediate from the definition that if C is a ∞-category, then
M = HomR

C(x, y) satisfies the Kan extension condition for every horn inclu-
sion Λni ⊆ ∆n, where 0 < i ≤ n. This implies that M is a Kan complex
(Proposition 1.2.5.1).

Remark 1.2.2.4. If S is a simplicial set and x, y, z ∈ S0, then there is no
obvious composition law

HomR
S (x, y) × HomR

S (y, z) → HomR
S (x, z).
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We will later see that if S is an ∞-category, then there is a composition law
which is well-defined up to a contractible space of choices. The absence of a
canonical choice for a composition law is the main drawback of HomR

S (x, y) in
comparison with MapC[S](x, y). The main goal of §2.2 is to show that if S is
an ∞-category, then there is a (canonical) isomorphism between HomR

S (x, y)
and MapC[S](x, y) in the homotopy category H. In particular, we will con-
clude that HomR

S (x, y) represents MapS(x, y) whenever S is an ∞-category.

Remark 1.2.2.5. The definition of HomR
S (x, y) is not self-dual: that is,

HomR
Sop(x, y) �= HomR

S (y, x) in general. Instead, we define HomL
S(x, y) =

HomR

Sop(y, x)op, so that HomL
S(x, y)n is the set of all z ∈ Sn+1 such that

z|∆{0} = x and z|∆{1,...,n+1} is the constant simplex at the vertex y.

Although the simplicial sets HomL
S(x, y) and HomR

S (x, y) are generally not
isomorphic to one another, they are homotopy equivalent whenever S is an
∞-category. To prove this, it is convenient to define a third, self-dual, space
of morphisms: let HomS(x, y) = {x}×S S

∆1 ×S {y}. In other words, to give
an n-simplex of HomS(x, y), one must give a map f : ∆n × ∆1 → S such
that f |∆n×{0} is constant at x and f |∆n×{1} is constant at y. We observe
that there exist natural inclusions

HomR
S (x, y) ↪→ HomS(x, y) ←↩ HomL

S(x, y),

which are induced by retracting the cylinder ∆n×∆1 onto certain maximal-
dimensional simplices. We will later show (Corollary 4.2.1.8) that these in-
clusions are homotopy equivalences provided that S is an ∞-category.

1.2.3 The Homotopy Category

For every ordinary category C, the nerve N(C) is an ∞-category. Informally,
we can describe the situation as follows: the nerve functor is a fully faith-
ful inclusion from the bicategory of categories to the ∞-bicategory of ∞-
categories. Moreover, this inclusion has a left adjoint:

Proposition 1.2.3.1. The nerve functor Cat → Set∆ is right adjoint to
the functor h: Set∆ → Cat, which associates to every simplicial set S its
homotopy category hS (here we ignore the H-enrichment of hS ).

Proof. Let us temporarily distinguish between the nerve functor N : Cat →
Set∆ and the simplicial nerve functor N′ : Cat∆ → Set∆. These two functors
are related by the fact that N can be written as a composition

Cat
i⊆ Cat∆

N′
→ Set∆ .

The functor π0 : Set∆ → Set is a left adjoint to the inclusion functor Set →
Set∆, so the functor

Cat∆ → Cat

C �→ hC
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is left adjoint to i. It follows that N = N′ ◦i has a left adjoint, given by the
composition

Set∆
C[•]→ Cat∆

h→ Cat,
which coincides with the homotopy category functor h : Set∆ → Cat by
definition.

Remark 1.2.3.2. The formation of the homotopy category is literally left
adjoint to the inclusion Cat ⊆ Cat∆. The analogous assertion is not quite true
in the setting of topological categories because the functor π0 : CG → Set is
a left adjoint only when restricted to locally path-connected spaces.

Warning 1.2.3.3. If C is a simplicial category, then we do not necessarily
expect that hC � hN(C). However, this is always the case when C is fibrant
in the sense that every simplicial set MapC(X,Y ) is a Kan complex.

Remark 1.2.3.4. If S is a simplicial set, Joyal ([44]) refers to the category
hS as the fundamental category of S. This is motivated by the observation
that if S is a Kan complex, then hS is the fundamental groupoid of S in the
usual sense.

Our objective for the remainder of this section is to obtain a more explicit
understanding of the homotopy category hS of a simplicial set S. Proposition
1.2.3.1 implies that hS admits the following presentation by generators and
relations:

• The objects of hS are the vertices of S.

• For every edge φ : ∆1 → S, there is a morphism φ from φ(0) to φ(1).

• For each σ : ∆2 → S, we have d0(σ) ◦ d2(σ) = d1(σ).

• For each vertex x of S, the morphism s0x is the identity idx.

If S is an ∞-category, there is a much more satisfying construction of
the category hS . We will describe this construction in detail since it nicely
illustrates the utility of the weak Kan condition of Definition 1.1.2.4.

Let C be an ∞-category. We will construct a category π(C) (which we will
eventually show to be equivalent to the homotopy category hC). The objects
of π(C) are the vertices of C. Given an edge φ : ∆1 → C, we shall say that φ
has source C = φ(0) and target C′ = φ(1) and write φ : C → C ′. For each
object C of C, we let idC denote the degenerate edge s0(C) : C → C.

Let φ : C → C′ and φ′ : C → C ′ be a pair of edges of C having the same
source and target. We will say that φ and φ′ are homotopic if there is a
2-simplex σ : ∆2 → C, which we depict as follows:

C′
idC′

���
��

��
��

�

C

φ
���������� φ′

�� C′.
In this case, we say that σ is a homotopy between φ and φ′.



30 CHAPTER 1

Proposition 1.2.3.5. Let C be an ∞-category and let C and C ′ be objects of
π(C). Then the relation of homotopy is an equivalence relation on the edges
joining C to C′.

Proof. Let φ : ∆1 → C be an edge. Then s1(φ) is a homotopy from φ to
itself. Thus homotopy is a reflexive relation.

Suppose next that φ, φ′, φ′′ : C → C ′ are edges with the same source and
target. Let σ be a homotopy from φ to φ′, and σ′ a homotopy from φ to
φ′′. Let σ′′ : ∆2 → C denote the constant map at the vertex C ′. We have a
commutative diagram

Λ3
1� �

��

(σ′′,•,σ′,σ) �� C

∆3.

τ

��

Since C is an ∞-category, there exists a 3-simplex τ : ∆3 → C as indicated by
the dotted arrow in the diagram. It is easy to see that d1(τ) is a homotopy
from φ′ to φ′′.

As a special case, we can take φ = φ′′; we then deduce that the relation
of homotopy is symmetric. It then follows immediately from the above that
the relation of homotopy is also transitive.

Remark 1.2.3.6. The definition of homotopy that we have given is not
evidently self-dual; in other words, it is not immediately obvious that a
homotopic pair of edges φ, φ′ : C → C′ of an ∞-category C remain homotopic
when regarded as edges in the opposite ∞-category Cop. To prove this, let σ
be a homotopy from φ to φ′ and consider the commutative diagram

Λ3
2� �

��

(σ,s1φ,•,s0φ) �� C

∆3.

τ

��

The assumption that C is an ∞-category guarantees a 3-simplex τ rendering
the diagram commutative. The face d2τ may be regarded as a homotopy
from φ′ to φ in Cop.

We can now define the morphism sets of the category π(C): given vertices
X and Y of C, we let Homπ(C)(X,Y ) denote the set of homotopy classes of
edges φ : X → Y in C. For each edge φ : ∆1 → C, we let [φ] denote the
corresponding morphism in π(C).

We define a composition law on π(C) as follows. Suppose that X, Y , and
Z are vertices of C and that we are given edges φ : X → Y , ψ : Y → Z. The
pair (φ, ψ) determines a map Λ2

1 → C. Since C is an ∞-category, this map
extends to a 2-simplex σ : ∆2 → C. We now define [ψ] ◦ [φ] = [d1σ].
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Proposition 1.2.3.7. Let C be an ∞-category. The composition law on π(C)
is well-defined. In other words, the homotopy class [ψ] ◦ [φ] does not depend
on the choice of ψ representing [ψ], the choice of φ representing [φ], or the
choice of the 2-simplex σ.

Proof. We begin by verifying the independence of the choice of σ. Suppose
that we are given two 2-simplices σ, σ′ : ∆2 → C, satisfying

d0σ = d0σ
′ = ψ

d2σ = d2σ
′ = φ.

Consider the diagram

Λ3
1� �

��

(s1ψ,•,σ′,σ) �� C

∆3.

τ

��

Since C is an ∞-category, there exists a 3-simplex τ as indicated by the
dotted arrow. It follows that d1τ is a homotopy from d1σ to d1σ

′.
We now show that [ψ]◦ [φ] depends only on ψ and φ only up to homotopy.

In view of Remark 1.2.3.6, the assertion is symmetric with respect to ψ and
φ; it will therefore suffice to show that [ψ] ◦ [φ] does not change if we replace
φ by a morphism φ′ which is homotopic to φ. Let σ be a 2-simplex with
d0σ = ψ and d2σ = φ, and let σ′ be a homotopy from φ to φ′. Consider the
diagram

Λ3
1� �

��

(s0ψ,•,σ,σ′) �� C

∆3.

τ

��

Again, the hypothesis that C is an ∞-category guarantees the existence of
a 3-simplex τ as indicated in the diagram. Let σ′′ = d1τ . Then [ψ] ◦ [φ′] =
[d1σ

′]. But d1σ = d1σ
′ by construction, so that [ψ] ◦ [φ] = [ψ] ◦ [φ′], as

desired.

Proposition 1.2.3.8. If C is an ∞-category, then π(C) is a category.

Proof. Let C be a vertex of C. We first verify that [idC ] is an identity with
respect to the composition law on π(C). For every edge φ : C′ → C in C, the
2-simplex s1(φ) verifies the equation

[idC ] ◦ [φ] = [φ].

This proves that idC is a left identity; the dual argument (Remark 1.2.3.6)
shows that [idC ] is a right identity.
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The only other thing we need to check is the associative law for composi-
tion in π(C). Suppose we are given a composable sequence of edges

C
φ→ C ′ φ′

→ C ′′ φ′′
→ C ′′′.

Choose 2-simplices σ, σ′, σ′′ : ∆2 → C corresponding to diagrams

C′
φ′

���
��

��
��

�

C

φ
���������� ψ �� C′′

C′′
φ′′

���
��

��
��

�

C

ψ
��								 θ �� C′′′

C′′
φ′′

���
��

��
��

�

C′

φ′
���������� ψ′

�� C′′′,

respectively. Then [φ′] ◦ [φ] = [ψ], [φ′′] ◦ [ψ] = [θ], and [φ′′] ◦ [φ′] = [ψ′].
Consider the diagram

Λ3
2

(σ′′,σ′,•,σ) ��
� �

��

C

∆3.

τ

��

Since C is an ∞-category, there exists a 3-simplex τ rendering the diagram
commutative. Then d2(τ) verifies the equation [ψ′] ◦ [φ] = [θ], so that

([φ′′] ◦ [φ′]) ◦ [φ] = [θ] = [φ′′] ◦ [ψ] = [φ′′] ◦ ([φ′] ◦ [φ]),

as desired.

We now show that if C is an ∞-category, then π(C) is naturally equivalent
(in fact, isomorphic) to hC.

Proposition 1.2.3.9. Let C be an ∞-category. There exists a unique functor
F : hC → π(C) with the following properties:

(1) On objects, F is the identity map.

(2) For every edge φ of C, F (φ) = [φ].

Moreover, F is an isomorphism of categories.
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Proof. The existence and uniqueness of F follows immediately from our pre-
sentation of hC by generators and relations. It is obvious that F is bijective
on objects and surjective on morphisms. To complete the proof, it will suffice
to show that F is faithful.

We first show that every morphism f : x → y in hC may be written as
φ for some φ ∈ C. Since the morphisms in hC are generated by morphisms
having the form φ under composition, it suffices to show that the set of such
morphisms contains all identity morphisms and is stable under composition.
The first assertion is clear since s0x = idx. For the second, we note that if
φ : x → y and φ′ : y → z are composable edges, then there exists a 2-simplex
σ : ∆2 → C which we may depict as follows:

y
φ′

���
��

��
��

�

x

φ
��������� ψ �� z.

Thus φ′ ◦ φ = ψ.
Now suppose that φ, φ′ : x → y are such that [φ] = [φ′]; we wish to show

that φ = φ′. By definition, there exists a homotopy σ : ∆2 → C joining φ
and φ′. The existence of σ entails the relation

idy ◦φ = φ′

in the homotopy category hS , so that φ = φ′, as desired.

1.2.4 Objects, Morphisms, and Equivalences

As in ordinary category theory, we may speak of objects and morphisms in a
higher category C. If C is a topological (or simplicial) category, these should
be understood literally as the objects and morphisms in the underlying cat-
egory of C. We may also apply this terminology to ∞-categories (or even
more general simplicial sets): if S is a simplicial set, then the objects of S
are the vertices ∆0 → S, and the morphisms of S are the edges ∆1 → S. A
morphism φ : ∆1 → S is said to have source X = φ(0) and target Y = φ(1);
we will often denote this by writing φ : X → Y . If X : ∆0 → S is an object
of S, we will write idX = s0(X) : X → X and refer to this as the identity
morphism of X.

If f, g : X → Y are two morphisms in a higher category C, then f and
g are homotopic if they determine the same morphism in the homotopy
category hC. In the setting of ∞-categories, this coincides with the notion
of homotopy introduced in the previous section. In the setting of topological
categories, this simply means that f and g lie in the same path component
of MapC(X,Y ). In either case, we will sometimes indicate this relationship
between f and g by writing f � g.

A morphism f : X → Y in an ∞-category C is said to be an equivalence
if it determines an isomorphism in the homotopy category hC. We say that
X and Y are equivalent if there is an equivalence between them (in other
words, if they are isomorphic as objects of hC).
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If C is a topological category, then the requirement that a morphism f :
X → Y be an equivalence is quite a bit weaker than the requirement that f
be an isomorphism. In fact, we have the following:

Proposition 1.2.4.1. Let f : X → Y be a morphism in a topological cate-
gory. The following conditions are equivalent:

(1) The morphism f is an equivalence.

(2) The morphism f has a homotopy inverse g : Y → X: that is, a mor-
phism g such that f ◦ g � idY and g ◦ f � idX .

(3) For every object Z ∈ C, the induced map MapC(Z,X) → MapC(Z, Y )
is a homotopy equivalence.

(4) For every object Z ∈ C, the induced map MapC(Z,X) → MapC(Z, Y )
is a weak homotopy equivalence.

(5) For every object Z ∈ C, the induced map MapC(Y, Z) → MapC(X,Z)
is a homotopy equivalence.

(6) For every object Z ∈ C, the induced map MapC(Y,Z) → MapC(X,Z)
is a weak homotopy equivalence.

Proof. It is clear that (2) is merely a reformulation of (1). We will show that
(2) ⇒ (3) ⇒ (4) ⇒ (1); the implications (2) ⇒ (5) ⇒ (6) ⇒ (1) follow using
the same argument.

To see that (2) implies (3), we note that if g is a homotopy inverse to
f , then composition with g gives a map MapC(Z, Y ) → MapC(Z,X) which
is homotopy inverse to composition with f . It is clear that (3) implies (4).
Finally, if (4) holds, then we note that X and Y represent the same functor
on hC so that f induces an isomorphism between X and Y in hC.

Example 1.2.4.2. Let C be the category of CW complexes which we regard
as a topological category by endowing each of the sets HomC(X,Y ) with the
(compactly generated) compact open topology. A pair of objects X,Y ∈ C

are equivalent (in the sense defined above) if and only if they are homotopy
equivalent (in the sense of classical topology).

If C is an ∞-category (topological category, simplicial category), then we
shall write X ∈ C to mean that X is an object of C. We will generally
understand that all meaningful properties of objects are invariant under
equivalence. Similarly, all meaningful properties of morphisms are invariant
under homotopy and under composition with equivalences.

In the setting of ∞-categories, there is a very useful characterization of
equivalences which is due to Joyal.

Proposition 1.2.4.3 (Joyal [44]). Let C be an ∞-category and φ : ∆1 → C

a morphism of C. Then φ is an equivalence if and only if, for every n ≥ 2 and
every map f0 : Λn0 → C such that f0|∆{0,1} = φ, there exists an extension of
f0 to ∆n.
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The proof requires some ideas which we have not yet introduced and will
be given in §2.1.2.

1.2.5 ∞-Groupoids and Classical Homotopy Theory

Let C be an ∞-category. We will say that C is an ∞-groupoid if the homo-
topy category hC is a groupoid: in other words, if every morphism in C is an
equivalence. In §1.1.1, we asserted that the theory of ∞-groupoids is equiva-
lent to classical homotopy theory. We can now formulate this idea in a very
precise way:

Proposition 1.2.5.1 (Joyal [43]). Let C be a simplicial set. The following
conditions are equivalent:

(1) The simplicial set C is an ∞-category, and its homotopy category hC

is a groupoid.

(2) The simplicial set C satisfies the extension condition for all horn in-
clusions Λni ⊆ ∆n for 0 ≤ i < n.

(3) The simplicial set C satisfies the extension condition for all horn in-
clusions Λni ⊆ ∆n for 0 < i ≤ n.

(4) The simplicial set C is a Kan complex; in other words, it satisfies the
extension condition for all horn inclusions Λni ⊆ ∆n for 0 ≤ i ≤ n.

Proof. The equivalence (1) ⇔ (2) follows immediately from Proposition
1.2.4.3. Similarly, the equivalence (1) ⇔ (3) follows by applying Proposi-
tion 1.2.4.3 to Cop. We conclude by observing that (4) ⇔ (2) ∧ (3).

Remark 1.2.5.2. The assertion that we can identify ∞-groupoids with
spaces is less obvious in other formulations of higher category theory. For
example, suppose that C is a topological category whose homotopy category
hC is a groupoid. For simplicity, we will assume furthermore that C has
a single object X. We may then identify C with the topological monoid
M = HomC(X,X). The assumption that hC is a groupoid is equivalent to
the assumption that the discrete monoid π0M is a group. In this case, one
can show that the unit map M → ΩBM is a weak homotopy equivalence,
where BM denotes the classifying space of the topological monoid M . In
other words, up to equivalence, specifying C (together with the object X) is
equivalent to specifying the space BM (together with its base point).

Informally, we might say that the inclusion functor i from Kan complexes
to ∞-categories exhibits the ∞-category of (small) ∞-groupoids as a full
subcategory of the ∞-bicategory of (small) ∞-categories. Conversely, ev-
ery ∞-category C has an “underlying” ∞-groupoid, which is obtained by
discarding the noninvertible morphisms of C:
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Proposition 1.2.5.3 ([44]). Let C be an ∞-category. Let C′ ⊆ C be the
largest simplicial subset of C having the property that every edge of C′ is
an equivalence in C. Then C′ is a Kan complex. It may be characterized by
the following universal property: for any Kan complex K, the induced map
HomSet∆(K,C′) → HomSet∆(K,C) is a bijection.

Proof. It is straightforward to check that C′ is an ∞-category. Moreover, if
f is a morphism in C′, then f has a homotopy inverse g ∈ C. Since g is
itself an equivalence in C, we conclude that g belongs to C′ and is therefore
a homotopy inverse to f in C′. In other words, every morphism in C′ is an
equivalence, so that C′ is a Kan complex by Proposition 1.2.5.1. To prove
the last assertion, we observe that if K is an ∞-category, then any map of
simplicial sets φ : K → C carries equivalences in K to equivalences in C. In
particular, if K is a Kan complex, then φ factors (uniquely) through C′.

We can describe the situation of Proposition 1.2.5.3 by saying that C′

is the largest Kan complex contained in C. The functor C �→ C′ is right
adjoint to the inclusion functor from Kan complexes to ∞-categories. It is
easy to see that this right adjoint is an invariant notion: that is, a categorical
equivalence of ∞-categories C → D induces a homotopy equivalence C′ → D′

of Kan complexes.

Remark 1.2.5.4. It is easy to give analogous constructions in the case of
topological or simplicial categories. For example, if C is a topological cate-
gory, then we can define C′ to be another topological category with the same
objects as C, where MapC′(X,Y ) ⊆ MapC(X,Y ) is the subspace consisting
of equivalences in MapC(X,Y ), equipped with the subspace topology.

Remark 1.2.5.5. We will later introduce a relative version of the construc-
tion described in Proposition 1.2.5.3, which applies to certain families of
∞-categories (Corollary 2.4.2.5).

Although the inclusion functor from Kan complexes to ∞-categories does
not literally have a left adjoint, it does have such an in a higher-categorical
sense. This left adjoint is computed by any “fibrant replacement” functor
(for the usual model structure) from Set∆ to itself, for example, the functor
S �→ Sing |S|. The unit map u : S → Sing |S| is always a weak homotopy
equivalence but generally not a categorical equivalence. For example, if S is
an ∞-category, then u is a categorical equivalence if and only if S is a Kan
complex. In general, Sing |S| may be regarded as the ∞-groupoid obtained
from S by freely adjoining inverses to all the morphisms in S.

Remark 1.2.5.6. The inclusion functor i and its homotopy-theoretic left
adjoint may also be understood using the formalism of localizations of model
categories. In addition to its usual model category structure, the category
Set∆ of simplicial sets may be endowed with the Joyal model structure, which
we will define in §2.2.5. These model structures have the same cofibrations
(in both cases, the cofibrations are simply the monomorphisms of simpli-
cial sets). However, the Joyal model structure has fewer weak equivalences
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(categorical equivalences rather than weak homotopy equivalences) and con-
sequently more fibrant objects (all ∞-categories rather than only Kan com-
plexes). It follows that the usual homotopy theory of simplicial sets is a lo-
calization of the homotopy theory of ∞-categories. The identity functor from
Set∆ to itself determines a Quillen adjunction between these two homotopy
theories, which plays the role of i and its left adjoint.

1.2.6 Homotopy Commutativity versus Homotopy Coherence

Let C be an ∞-category (topological category, simplicial category). To a first
approximation, working in C is like working in its homotopy category hC:
up to equivalence, C and hC have the same objects and morphisms. The
main difference between hC and C is that in C one must not ask whether
or not morphisms are equal; instead one should ask whether or not they
are homotopic. If so, the homotopy itself is an additional datum which we
will need to consider. Consequently, the notion of a commutative diagram
in hC, which corresponds to a homotopy commutative diagram in C, is quite
unnatural and usually needs to be replaced by the more refined notion of a
homotopy coherent diagram in C.

To understand the problem, let us suppose that F : I → H is a functor
from an ordinary category I into the homotopy category of spaces H. In
other words, F assigns to each object X ∈ I a space (say, a CW complex)
F (X), and to each morphism φ : X → Y in I a continuous map of spaces
F (φ) : F (X) → F (Y ) (well-defined up to homotopy), such that F (φ ◦ ψ) is
homotopic to F (φ) ◦ F (ψ) for any pair of composable morphisms φ, ψ in I.
In this situation, it may or may not be possible to lift F to an actual functor
F̃ from I to the ordinary category of topological spaces such that F̃ induces
a functor I → H which is naturally isomorphic to F . In general, there are
obstructions to both the existence and the uniqueness of the lifting F̃ , even
up to homotopy. To see this, let us suppose for a moment that F̃ exists, so
that there exist homotopies kφ : F̃ (φ) � F (φ). These homotopies determine
additional data on F : namely, one obtains a canonical homotopy hφ,ψ from
F (φ ◦ ψ) to F (φ) ◦ F (ψ) by composing

F (φ ◦ ψ) � F̃ (φ ◦ ψ) = F̃ (φ) ◦ F̃ (ψ) � F (φ) ◦ F (ψ).

The functor F to the homotopy category H should be viewed as a first
approximation to F̃ ; we obtain a second approximation when we take into
account the homotopies hφ,ψ. These homotopies are not arbitrary: the asso-
ciativity of composition gives a relationship between hφ,ψ, hψ,θ, hφ,ψ◦θ, and
hφ◦ψ,θ, for a composable triple of morphisms (φ, ψ, θ) in I. This relationship
may be formulated in terms of the existence of a certain higher homotopy,
which is once again canonically determined by F̃ (and the homotopies kφ).
To obtain the next approximation to F̃ , we should take these higher ho-
motopies into account and formulate the associativity properties that they
enjoy, and so on. Roughly speaking, a homotopy coherent diagram in C is
a functor F : I → hC together with all of the extra data that would be
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available if we were able to lift F to a functor F̃ : I → C.
The distinction between homotopy commutativity and homotopy coher-

ence is arguably the main difficulty in working with higher categories. The
idea of homotopy coherence is simple enough and can be made precise in
the setting of a general topological category. However, the amount of data
required to specify a homotopy coherent diagram is considerable, so the
concept is quite difficult to employ in practical situations.

Remark 1.2.6.1. Let I be an ordinary category and let C be a topological
category. Any functor F : I → C determines a homotopy coherent diagram
in C (with all of the homotopies involved being constant). For many topolog-
ical categories C, the converse fails: not every homotopy-coherent diagram
in C can be obtained in this way, even up to equivalence. In these cases, it is
the notion of homotopy coherent diagram which is fundamental; a homotopy
coherent diagram should be regarded as “just as good” as a strictly commu-
tative diagram for ∞-categorical purposes. As evidence for this, we remark
that given an equivalence C′ → C, a strictly commutative diagram F : I → C

cannot always be lifted to a strictly commutative diagram in C′; however, it
can always be lifted (up to equivalence) to a homotopy coherent diagram in
C′.

One of the advantages of working with ∞-categories is that the definition
of a homotopy coherent diagram is easy to formulate. We can simply define
a homotopy coherent diagram in an ∞-category C to be a map of simplicial
sets f : N(I) → C. The restriction of f to simplices of low dimension encodes
the induced map on homotopy categories. Specifying f on higher-dimensional
simplices gives precisely the “coherence data” that the above discussion calls
for.

Remark 1.2.6.2. Another possible approach to the problem of homotopy
coherence is to restrict our attention to simplicial (or topological) categories
C in which every homotopy coherent diagram is equivalent to a strictly com-
mutative diagram. For example, this is always true when C arises from a
simplicial model category (Proposition 4.2.4.4). Consequently, in the frame-
work of model categories, it is possible to ignore the theory of homotopy
coherent diagrams and work with strictly commutative diagrams instead.
This approach is quite powerful, particularly when combined with the ob-
servation that every simplicial category C admits a fully faithful embedding
into a simplicial model category (for example, one can use a simplicially en-
riched version of the Yoneda embedding). This idea can be used to show that
every homotopy coherent diagram in C can be “straightened” to a commuta-
tive diagram, possibly after replacing C by an equivalent simplicial category
(for a more precise version of this statement, we refer the reader to Corollary
4.2.4.7).
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1.2.7 Functors Between Higher Categories

The notion of a homotopy coherent diagram in an higher category C is a
special case of the more general notion of a functor F : I → C between
higher categories (specifically, it is the special case in which I is assumed
to be an ordinary category). Just as the collection of all ordinary categories
forms a bicategory (with functors as morphisms and natural transformations
as 2-morphisms), the collection of all ∞-categories can be organized into an
∞-bicategory. In particular, for any ∞-categories C and C′, we expect to be
able to construct an ∞-category Fun(C,C′) of functors from C to C′.

In the setting of topological categories, the construction of an appropriate
mapping object Fun(C,C′) is quite difficult. The naive guess is that Fun(C,C′)
should be a category of topological functors from C to C′: that is, functors
which induce continuous maps between morphism spaces. However, we saw
in §1.2.6 that this notion is generally too rigid, even in the special case where
C is an ordinary category.

Remark 1.2.7.1. Using the language of model categories, one might say
that the problem is that not every topological category is cofibrant. If C

is a cofibrant topological category (for example, if C = |C[S]|, where S is
a simplicial set), then the collection of topological functors from C to C′

is large enough to contain representatives for every ∞-categorical functor
from C to C′. Most ordinary categories are not cofibrant when viewed as
topological categories. More importantly, the property of being cofibrant is
not stable under products, so that naive attempts to construct a mapping
object Fun(C,C′) need not give the correct answer even when C itself is
assumed cofibrant (if C is cofibrant, then we are guaranteed to have “enough”
topological functors C → C′ to represent all functors between the underlying
∞-categories but not necessarily enough natural transformations between
them; note that the product C×[1] is usually not cofibrant, even in the
simplest nontrivial case where C = [1].) This is arguably the most important
technical disadvantage of the theory of topological (or simplicial) categories
as an approach to higher category theory.

The construction of functor categories is much easier to describe in the
framework of ∞-categories. If C and D are ∞-categories, then we can simply
define a functor from C to D to be a map p : C → D of simplicial sets.

Notation 1.2.7.2. Let C and D be simplicial sets. We let Fun(C,D) denote
the simplicial set MapSet∆(C,D) parametrizing maps from C to D. We will
use this notation only when D is an ∞-category (the simplicial set C will of-
ten, but not always, be an ∞-category as well). We will refer to Fun(C,D) as
the ∞-category of functors from C to D (see Proposition 1.2.7.3 below). We
will refer to morphisms in Fun(C,D) as natural transformations of functors,
and equivalences in Fun(C,D) as natural equivalences.

Proposition 1.2.7.3. Let K be an arbitrary simplicial set.

(1) For every ∞-category C, the simplicial set Fun(K,C) is an ∞-category.
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(2) Let C → D be a categorical equivalence of ∞-categories. Then the
induced map Fun(K,C) → Fun(K,D) is a categorical equivalence.

(3) Let C be an ∞-category and K → K ′ a categorical equivalence of sim-
plicial sets. Then the induced map Fun(K ′,C) → Fun(K,C) is a cate-
gorical equivalence.

The proof makes use of the Joyal model structure on Set∆ and will be
given in §2.2.5.

1.2.8 Joins of ∞-Categories

Let C and C′ be ordinary categories. We will define a new category C C′,
called the join of C and C′. An object of C C′ is either an object of C or an
object of C′. The morphism sets are given as follows:

HomC �C′(X,Y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HomC(X,Y ) if X,Y ∈ C

HomC′(X,Y ) if X,Y ∈ C′

∅ if X ∈ C′, Y ∈ C

∗ if X ∈ C, Y ∈ C′ .

Composition of morphisms in C C′ is defined in the obvious way.
The join construction described above is often useful when discussing di-

agram categories, limits, and colimits. In this section, we will introduce a
generalization of this construction to the ∞-categorical setting.

Definition 1.2.8.1. If S and S′ are simplicial sets, then the simplicial set
S  S′ is defined as follows: for each nonempty finite linearly ordered set J ,
we set

(S  S′)(J) =
∐

J=I∪I′
S(I) × S′(I ′),

where the union is taken over all decompositions of J into disjoint subsets
I and I ′, satisfying i < i′ for all i ∈ I, i′ ∈ I ′. Here we allow the possibility
that either I or I ′ is empty, in which case we agree to the convention that
S(∅) = S′(∅) = ∗.

More concretely, we have

(S  S′)n = Sn ∪ S′
n ∪

⋃
i+j=n−1

Si × S′
j .

The join operation endows Set∆ with the structure of a monoidal category
(see §A.1.3). The identity for the join operation is the empty simplicial set
∅ = ∆−1. More generally, we have natural isomorphisms φij : ∆i−1 ∆j−1 �
∆(i+j)−1 for all i, j ≥ 0.

Remark 1.2.8.2. The operation  is essentially determined by the isomor-
phisms φij , together with its behavior under the formation of colimits: for
any fixed simplicial set S, the functors

T �→ T  S
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T �→ S  T

commute with colimits when regarded as functors from Set∆ to the under-
category (Set∆)S/ of simplicial sets under S.

Passage to the nerve carries joins of categories into joins of simplicial sets.
More precisely, for every pair of categories C and C′, there is a canonical
isomorphism

N(C C′) � N(C) N(C′).

(The existence of this isomorphism persists when we allow C and C′ to be
simplicial or topological categories and apply the appropriate generalization
of the nerve functor.) This suggests that the join operation on simplicial sets
is the appropriate ∞-categorical analogue of the join operation on categories.

We remark that the formation of joins does not commute with the functor
C[•]. However, the simplicial category C[S  S′] contains C[S] and C[S′] as
full (topological) subcategories and contains no morphisms from objects of
C[S′] to objects of C[S]. Consequently, there is unique map φ : C[S  S′] →
C[S]  C[S′] which reduces to the identity on C[S] and C[S′]. We will later
show that φ is an equivalence of simplicial categories (Corollary 4.2.1.4).

We conclude by recording a pleasant property of the join operation:

Proposition 1.2.8.3 (Joyal [44]). If S and S′ are ∞-categories, then S S′

is an ∞-category.

Proof. Let p : Λni → S S′ be a map, with 0 < i < n. If p carries Λni entirely
into S ⊆ S  S′ or into S′ ⊆ S  S′, then we deduce the existence of an
extension of p to ∆n using the assumption that S and S′ are ∞-categories.
Otherwise, we may suppose that p carries the vertices {0, . . . , j} into S, and
the vertices {j + 1, . . . , n} into S′. We may now restrict p to obtain maps

∆{0,...,j} → S

∆{j+1,...,n} → S′,

which together determine a map ∆n → S  S′ extending p.

Notation 1.2.8.4. Let K be a simplicial set. The left cone K	 is defined
to be the join ∆0  K. Dually, the right cone K
 is defined to be the join
K∆0. Either cone contains a distinguished vertex (belonging to ∆0), which
we will refer to as the cone point.

1.2.9 Overcategories and Undercategories

Let C be an ordinary category and X ∈ C an object. The overcategory C/X
is defined as follows: the objects of C/X are morphisms Y → X in C having
target X. Morphisms are given by commutative triangles

Y

���
��

��
��

�� Z

����
��
��
�

X
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and composition is defined in the obvious way.
One can rephrase the definition of the overcategory as follows. Let [0]

denote the category with a single object possessing only an identity mor-
phism. Then specifying an object X ∈ C is equivalent to specifying a functor
x : [0] → C. The overcategory C/X may then be described by the following
universal property: for any category C′, we have a bijection

Hom(C′,C/X) � Homx(C′ [0],C),

where the subscript on the right hand side indicates that we consider only
those functors C′ [0] → C whose restriction to [0] coincides with x.

Our goal in this section is to generalize the construction of overcategories
to the ∞-categorical setting. Let us begin by working in the framework of
topological categories. In this case, there is a natural candidate for the rele-
vant overcategory. Namely, if C is a topological category containing an object
X, then the overcategory C/X (defined as above) has the structure of a topo-
logical category where each morphism space MapC/X

(Y,Z) is topologized as
a subspace of MapC(Y, Z) (here we are identifying an object of C/X with its
image in C). This topological category is usually not a model for the correct
∞-categorical slice construction. The problem is that a morphism in C/X
consists of a commutative triangle

Y

���
��

��
��

�� Z

����
��
��
�

X

of objects overX. To obtain the correct notion, we should also allow triangles
which commute only up to homotopy.

Remark 1.2.9.1. In some cases, the naive overcategory C/X is a good
approximation to the correct construction: see Lemma 6.1.3.13.

In the setting of ∞-categories, Joyal has given a much simpler description
of the desired construction (see [43]). This description will play a vitally
important role throughout this book. We begin by noting the following:

Proposition 1.2.9.2 ([43]). Let S and K be simplicial sets, and p : K →
S an arbitrary map. There exists a simplicial set S/p with the following
universal property:

HomSet∆(Y, S/p) = Homp(Y  K, S),

where the subscript on the right hand side indicates that we consider only
those morphisms f : Y  K → S such that f |K = p.

Proof. One defines (S/p)n to be Homp(∆n  K, S). The universal property
holds by definition when Y is a simplex. It holds in general because both
sides are compatible with the formation of colimits in Y .
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Let p : K → S be as in Proposition 1.2.9.2. If S is an ∞-category, we
will refer to S/p as an overcategory of S or as the ∞-category of objects of
S over p. The following result guarantees that the operation of passing to
overcategories is well-behaved:

Proposition 1.2.9.3. Let p : K → C be a map of simplicial sets and suppose
that C is an ∞-category. Then C/p is an ∞-category. Moreover, if q : C → C′

is a categorical equivalence of ∞-categories, then the induced map C/p →
C′
/qp is a categorical equivalence as well.

The proof requires a number of ideas which we have not yet introduced
and will be postponed (see Proposition 2.1.2.2 for the first assertion, and
§2.4.5 for the second).

Remark 1.2.9.4. Let C be an ∞-category. In the particular case where
p : ∆n → C classifies an n-simplex σ ∈ Cn, we will often write C/σ in place of
C/p. In particular, if X is an object of C, we let C/X denote the overcategory
C/p, where p : ∆0 → C has image X.

Remark 1.2.9.5. Let p : K → C be a map of simplicial sets. The preceding
discussion can be dualized, replacing Y K by K Y ; in this case we denote
the corresponding simplicial set by Cp/, which (if C is an ∞-category) we
will refer to as an undercategory of C. In the special case where K = ∆n and
p classifies a simplex σ ∈ Cn, we will also write Cσ/ for Cp/; in particular, we
will write CX/ when X is an object of C.

Remark 1.2.9.6. If C is an ordinary category and X ∈ C, then there is a
canonical isomorphism N(C)/X � N(C/X). In other words, the overcategory
construction for ∞-categories can be regarded as a generalization of the
relevant construction from classical category theory.

1.2.10 Fully Faithful and Essentially Surjective Functors

Definition 1.2.10.1. Let F : C → D be a functor between topological cate-
gories (simplicial categories, simplicial sets). We will say that F is essentially
surjective if the induced functor hF : hC → hD is essentially surjective (that
is, if every object of D is equivalent to F (X) for some X ∈ C).

We will say that F is fully faithful if hF is a fully faithful functor of
H-enriched categories. In other words, F is fully faithful if and only if,
for every pair of objects X,Y ∈ C, the induced map MaphC(X,Y ) →
MaphD(F (X), F (Y )) is an isomorphism in the homotopy category H.

Remark 1.2.10.2. Because Definition 1.2.10.1 makes reference only to the
homotopy categories of C and D, it is invariant under equivalence and under
operations which pass between the various models for higher category theory
that we have introduced.

Just as in ordinary category theory, a functor F is an equivalence if and
only if it is fully faithful and essentially surjective.
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1.2.11 Subcategories of ∞-Categories

Let C be an ∞-category and let (hC)′ ⊆ hC be a subcategory of its homotopy
category. We can then form a pullback diagram of simplicial sets:

C′ ��

��

C

��
N(hC)′ �� N(hC).

We will refer to C′ as the subcategory of C spanned by (hC)′. In general, we
will say that a simplicial subset C′ ⊆ C is a subcategory of C if it arises via
this construction.

Remark 1.2.11.1. We use the term “subcategory,” rather than “sub-∞-
category,” in order to avoid awkward language. The terminology is not meant
to suggest that C′ is itself a category or is isomorphic to the nerve of a
category.

In the case where (hC)′ is a full subcategory of hC, we will say that C′

is a full subcategory of C. In this case, C′ is determined by the set C′
0 of

those objects X ∈ C which belong to C′. We will then say that C′ is the full
subcategory of C spanned by C′

0.
It follows from Remark 1.2.2.4 that the inclusion C′ ⊆ C is fully faithful.

In general, any fully faithful functor f : C′′ → C factors as a composition

C′′ f ′
→ C′ f ′′

→ C,

where f ′ is an equivalence of ∞-categories and f ′′ is the inclusion of the full
subcategory C′ ⊆ C spanned by the set of objects f(C′′

0) ⊆ C0.

1.2.12 Initial and Final Objects

If C is an ordinary category, then an object X ∈ C is said to be final if
HomC(Y,X) consists of a single element for every Y ∈ C. Dually, an object
X ∈ C is initial if it is final when viewed as an object of Cop. The goal of
this section is to generalize these definitions to the ∞-categorical setting.

If C is a topological category, then a candidate definition immediately
presents itself: we could ignore the topology on the morphism spaces and
consider those objects of C which are final when C is regarded as an ordinary
category. This requirement is unnaturally strong. For example, the category
CG of compactly generated Hausdorff spaces has a final object: the topolog-
ical space ∗, consisting of a single point. However, there are objects of CG

which are equivalent to ∗ (any contractible space) but not isomorphic to ∗
(and therefore not final objects of CG, at least in the classical sense). Since
any reasonable ∞-categorical notion is stable under equivalence, we need to
find a weaker condition.

Definition 1.2.12.1. Let C be a topological category (simplicial category,
simplicial set). An object X ∈ C is final if it is final in the homotopy category
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hC, regarded as a category enriched over H. In other words, X is final if and
only if for each Y ∈ C, the mapping space MaphC(Y,X) is weakly contractible
(that is, a final object of H).

Remark 1.2.12.2. Since Definition 1.2.12.1 makes reference only to the
homotopy category hC, it is invariant under equivalence and under passing
between the various models for higher category theory.

In the setting of ∞-categories, it is convenient to employ a slightly more
sophisticated definition, which we borrow from [43].

Definition 1.2.12.3. Let C be a simplicial set. A vertex X of C is strongly
final if the projection C/X → C is a trivial fibration of simplicial sets.

In other words, a vertex X of C is strongly final if and only if any map
f0 : ∂∆n → C such that f0(n) = X can be extended to a map f : ∆n → S.

Proposition 1.2.12.4. Let C be an ∞-category containing an object Y.
The object Y is strongly final if and only if, for every object X ∈ C, the Kan
complex HomR

C(X,Y ) is contractible.

Proof. The “only if” direction is clear: the space HomR
C(X,Y ) is the fiber

of the projection p : C/Y → C over the vertex X. If p is a trivial fibration,
then the fiber is a contractible Kan complex. Since p is a right fibration
(Proposition 2.1.2.1), the converse holds as well (Lemma 2.1.3.4).

Corollary 1.2.12.5. Let C be a simplicial set. Every strongly final object of
C is a final object of C. The converse holds if C is an ∞-category.

Proof. Let [0] denote the category with a single object and a single mor-
phism. Suppose that Y is a strongly final vertex of C. Then there exists a
retraction of C
 onto C carrying the cone point to Y . Consequently, we ob-
tain a retraction of (H-enriched) homotopy categories from hC  [0] to hC

carrying the unique object of [0] to Y . This implies that Y is final in hC, so
that Y is a final object of C.

To prove the converse, we note that if C is an ∞-category, then the Kan
complex HomR

C(X,Y ) represents the homotopy type MapC(X,Y ) ∈ H; by
Proposition 1.2.12.4 this space is contractible for all X if and only if Y is
strongly final.

Remark 1.2.12.6. The above discussion dualizes in an evident way, so that
we have a notion of initial objects of an ∞-category C.

Example 1.2.12.7. Let C be an ordinary category containing an object X.
Then X is a final (initial) object of the ∞-category N(C) if and only if it is
a final (initial) object of C in the usual sense.

Remark 1.2.12.8. Definition 1.2.12.3 is only natural in the case where C is
an ∞-category. For example, if C is not an ∞-category, then the collection
of strongly final vertices of C need not be stable under equivalence.
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An ordinary category C may have more than one final object, but any
two final objects are uniquely isomorphic to one another. In the setting of
∞-categories, an analogous statement holds but is slightly more complicated
because the word “unique” needs to be interpreted in a homotopy-theoretic
sense:

Proposition 1.2.12.9 (Joyal). Let C be a ∞-category and let C′ be the full
subcategory of C spanned by the final vertices of C. Then C′ either is empty
or is a contractible Kan complex.

Proof. We wish to prove that every map p : ∂∆n → C′ can be extended to
an n-simplex of C′. If n = 0, this is possible unless C′ is empty. For n > 0,
the desired extension exists because p carries the nth vertex of ∂∆n to a
final object of C.

1.2.13 Limits and Colimits

An important consequence of the distinction between homotopy commuta-
tivity and homotopy coherence is that the appropriate notions of limit and
colimit in a higher category C do not coincide with the notions of limit and
colimit in the homotopy category hC (where limits and colimits often do not
exist). Limits and colimits in C are often referred to as homotopy limits and
homotopy colimits to avoid confusing them with ordinary limits and colimits.

Homotopy limits and colimits can be defined in a topological category, but
the definition is rather complicated. We will review a few special cases here
and discuss the general definition in the Appendix (§A.2.8).

Example 1.2.13.1. Let {Xα} be a family of objects in a topological cat-
egory C. A homotopy product X =

∏
αXα is an object of C equipped with

morphisms fα : X → Xα which induce a weak homotopy equivalence

MapC(Y,X) →
∏
α

MapC(Y,Xα)

for every object Y ∈ C.
Passing to path components and using the fact that π0 commutes with

products, we deduce that

HomhC(Y,X) �
∏
α

HomhC(Y,Xα),

so that any product in C is also a product in hC. In particular, the object X
is determined up to canonical isomorphism in hC.

In the special case where the index set is empty, we recover the notion
of a final object of C: an object X for which each of the mapping spaces
MapC(Y,X) is weakly contractible.

Example 1.2.13.2. Given two morphisms π : X → Z and ψ : Y → Z
in a topological category C, let us define MapC(W,X ×h

Z Y ) to be the
space consisting of points p ∈ MapC(W,X) and q ∈ MapC(W,Y ) together
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with a path r : [0, 1] → MapC(W,Z) joining π ◦ p to ψ ◦ q. We endow
MapC(W,X×h

Z Y ) with the obvious topology, so that X×h
Z Y can be viewed

as a presheaf of topological spaces on C. A homotopy fiber product for X
and Y over Z is an object of C which represents this presheaf up to weak
homotopy equivalence. In other words, it is an object P ∈ C equipped with
a point p ∈ MapC(P,X ×h

Z Y ) which induces weak homotopy equivalences
MapC(W,P ) → MapC(W,X ×h

Z Y ) for every W ∈ C.
We note that if there exists a fiber product (in the ordinary sense) X×Z Y

in the category C, then this ordinary fiber product admits a (canonically de-
termined) map to the homotopy fiber product (if the homotopy fiber product
exists). This map need not be an equivalence, but it is an equivalence in many
good cases. We also note that a homotopy fiber product P comes equipped
with a map to the fiber product X ×Z Y taken in the category hC (if this
fiber product exists); this map is usually not an isomorphism.

Remark 1.2.13.3. Homotopy limits and colimits in general may be de-
scribed in relation to homotopy limits of topological spaces. The homotopy
limit X of a diagram of objects {Xα} in an arbitrary topological category
C is determined, up to equivalence, by the requirement that there exists a
natural weak homotopy equivalence

MapC(Y,X) � holim{MapC(Y,Xα)}.
Similarly, the homotopy colimit of the diagram is characterized by the exis-
tence of a natural weak homotopy equivalence

MapC(X,Y ) � holim{MapC(Xα, Y )}.
For a more precise discussion, we refer the reader to Remark A.3.3.13.

In the setting of ∞-categories, limits and colimits are quite easy to define:

Definition 1.2.13.4 (Joyal [43]). Let C be an ∞-category and let p : K → C

be an arbitrary map of simplicial sets. A colimit for p is an initial object of
Cp/, and a limit for p is a final object of C/p.

Remark 1.2.13.5. According to Definition 1.2.13.4, a colimit of a diagram
p : K → C is an object of Cp/. We may identify this object with a map
p : K
 → C extending p. In general, we will say that a map p : K
 → C is a
colimit diagram if it is a colimit of p = p|K. In this case, we will also abuse
terminology by referring to p(∞) ∈ C as a colimit of p, where ∞ denotes the
cone point of K
.

If p : K → C is a diagram, we will sometimes write lim−→(p) to denote
a colimit of p (considered either as an object of Cp/ or of C), and lim←−(p)
to denote a limit of p (as either an object of C/p or an object of C). This
notation is slightly abusive since lim−→(p) is not uniquely determined by p.
This phenomenon is familiar in classical category theory: the colimit of a
diagram is not unique but is determined up to canonical isomorphism. In
the ∞-categorical setting, we have a similar uniqueness result: Proposition
1.2.12.9 implies that the collection of candidates for lim−→(p), if nonempty, is
parametrized by a contractible Kan complex.
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Remark 1.2.13.6. In §4.2.4, we will show that Definition 1.2.13.4 agrees
with the classical theory of homotopy (co)limits when we specialize to the
case where C is the nerve of a topological category.

Remark 1.2.13.7. Let C be an ∞-category, C′ ⊆ C a full subcategory, and
p : K → C′ a diagram. Then C′

p/ = C′ ×C Cp/. In particular, if p has a colimit
in C and that colimit belongs to C′, then the same object may be regarded
as a colimit for p in C′.

Let f : C → C′ be a map between ∞-categories. Let p : K → C be a
diagram in C having a colimit x ∈ Cp/. The image f(x) ∈ C′

fp/ may or may
not be a colimit for the composite map f ◦ p. If it is, we will say that f
preserves the colimit of the diagram p. Often we will apply this terminology
not to a particular diagram p but to some class of diagrams: for example,
we may speak of maps f which preserve coproducts, pushouts, or filtered
colimits (see §4.4 for a discussion of special classes of colimits). Similarly, we
may ask whether or not a map f preserves the limit of a particular diagram
or various families of diagrams.

We conclude this section by giving a simple example of a colimit-preserving
functor.

Proposition 1.2.13.8. Let C be an ∞-category and let q : T → C and
p : K → C/q be two diagrams. Let p0 denote the composition of p with the
projection C/q → C. Suppose that p0 has a colimit in C. Then

(1) The diagram p has a colimit in C/q, and that colimit is preserved by
the projection C/q → C.

(2) An extension p̃ : K
 → C/q is a colimit of p if and only if the compo-
sition

K
 → C/q → C

is a colimit of p0.

Proof. We first prove the “if” direction of (2). Let p̃ : K
 → C/q be such
that the composite map p̃0 : K
 → C is a colimit of p0. We wish to show
that p̃ is a colimit of p. We may identify p̃ with a map K ∆0  T → C. For
this, it suffices to show that for any inclusion A ⊆ B of simplicial sets, it is
possible to solve the lifting problem depicted in the following diagram:

(K  B  T )
∐
K�A�T (K ∆0  A  T )� �

��

�� C

K ∆0  B  T.



����������

Because p̃0 is a colimit of p0, the projection

Cfp0/ → Cp0/

is a trivial fibration of simplicial sets and therefore has the right lifting
property with respect to the inclusion A  T ⊆ B  T .
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We now prove (1). Let p̃0 : K
 → C be a colimit of p0. Since the projection
Cfp0/ → Cp0/ is a trivial fibration, it has the right lifting property with respect
to T : this guarantees the existence of an extension p̃ : K
 → C lifting p̃0.
The preceding analysis proves that p̃ is a colimit of p.

Finally, the “only if” direction of (2) follows from (1) since any two colimits
of p are equivalent.

1.2.14 Presentations of ∞-Categories

Like many other types of mathematical structures, ∞-categories can be de-
scribed by generators and relations. In particular, it makes sense to speak of
a finitely presented ∞-category C. Roughly speaking, C is finitely presented
if it has finitely many objects and its morphism spaces are determined by
specifying a finite number of generating morphisms, a finite number of rela-
tions among these generating morphisms, a finite number of relations among
the relations, and so forth (a finite number of relations in all).

Example 1.2.14.1. Let C be the free higher category generated by a single
object X and a single morphism f : X → X. Then C is a finitely presented
∞-category with a single object and HomC(X,X) = {1, f, f2, . . .} is infinite
and discrete. In particular, we note that the finite presentation of C does not
guarantee finiteness properties of the morphism spaces.

Example 1.2.14.2. If we identify ∞-groupoids with spaces, then giving a
presentation for an ∞-groupoid corresponds to giving a cell decomposition
of the associated space. Consequently, the finitely presented ∞-groupoids
correspond precisely to the finite cell complexes.

Example 1.2.14.3. Suppose that C is a higher category with only two
objects X and Y , that X and Y have contractible endomorphism spaces,
and that HomC(X,Y ) is empty. Then C is completely determined by the
morphism space HomC(Y,X), which may be arbitrary. In this case, C is
finitely presented if and only if HomC(Y,X) is a finite cell complex (up to
homotopy equivalence).

The idea of giving a presentation for an ∞-category is very naturally
encoded in Joyal’s model structure on the category of simplicial sets, which
we will discuss in §2.2.4). This model structure can be described as follows:

• The fibrant objects of Set∆ are precisely the ∞-categories.

• The weak equivalences in Set∆ are precisely those maps p : S → S′

which induce equivalences C[S] → C[S′] of simplicial categories.

If S is an arbitrary simplicial set, we can choose a “fibrant replacement”
for S: that is, a categorical equivalence S → C, where C is an ∞-category. For
example, we can take C to be the nerve of the topological category |C[S]|.
The ∞-category C is well-defined up to equivalence, and we may regard it as
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an ∞-category “generated by” S. The simplicial set S itself can be thought
of as a “blueprint” for building C. We may view S as generated from the
empty (simplicial) set by adjoining nondegenerate simplices. Adjoining a 0-
simplex to S has the effect of adding an object to the ∞-category C, and
adjoining a 1-simplex to S has the effect of adjoining a morphism to C.
Higher-dimensional simplices can be thought of as encoding relations among
the morphisms.

1.2.15 Set-Theoretic Technicalities

In ordinary category theory, one frequently encounters categories in which
the collection of objects is too large to form a set. Generally speaking, this
does not create any difficulties so long as we avoid doing anything which is
obviously illegal (such as considering the “category of all categories” as an
object of itself).

The same issues arise in the setting of higher category theory and are
in some sense even more of a nuisance. In ordinary category theory, one
generally allows a category C to have a proper class of objects but still
requires HomC(X,Y ) to be a set for fixed objects X,Y ∈ C. The formalism
of ∞-categories treats objects and morphisms on the same footing (they are
both simplices of a simplicial set), and it is somewhat unnatural (though
certainly possible) to directly impose the analogous condition; see §5.4.1 for
a discussion.

There are several means of handling the technical difficulties inherent in
working with large objects (in either classical or higher category theory):

(1) One can employ some set-theoretic device that enables one to distin-
guish between “large” and “small”. Examples include:

– Assuming the existence of a sufficient supply of (Grothendieck)
universes.

– Working in an axiomatic framework which allows both sets and
classes (collections of sets which are possibly too large for them-
selves to be considered sets).

– Working in a standard set-theoretic framework (such as Zermelo-
Frankel) but incorporating a theory of classes through some ad
hoc device. For example, one can define a class to be a collection
of sets which is defined by some formula in the language of set
theory.

(2) One can work exclusively with small categories, and mirror the dis-
tinction between large and small by keeping careful track of relative
sizes.

(3) One can simply ignore the set-theoretic difficulties inherent in dis-
cussing large categories.
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Needless to say, approach (2) yields the most refined information. How-
ever, it has the disadvantage of burdening our exposition with an additional
layer of technicalities. On the other hand, approach (3) will sometimes be
inadequate because we will need to make arguments which play off the dis-
tinction between a large category and a small subcategory which determines
it. Consequently, we shall officially adopt approach (1) for the remainder
of this book. More specifically, we assume that for every cardinal κ0, there
exists a strongly inaccessible cardinal κ ≥ κ0. We then let U(κ) denote the
collection of all sets having rank < κ, so that U(κ) is a Grothendieck uni-
verse: in other words, U(κ) satisfies all of the usual axioms of set theory.
We will refer to a mathematical object as small if it belongs to U(κ) (or is
isomorphic to such an object), and essentially small if it is equivalent (in
whatever relevant sense) to a small object. Whenever it is convenient to do
so, we will choose another strongly inaccessible cardinal κ′ > κ to obtain a
larger Grothendieck universe U(κ′) in which U(κ) becomes small.

For example, an ∞-category C is essentially small if and only if it satisfies
the following conditions:

• The set of isomorphism classes of objects in the homotopy category hC

has cardinality < κ.

• For every morphism f : X → Y in C and every i ≥ 0, the homotopy
set πi(HomR

C(X,Y ), f) has cardinality < κ.

For a proof and further discussion, we refer the reader to §5.4.1.

Remark 1.2.15.1. The existence of the strongly inaccessible cardinal κ
cannot be proven from the standard axioms of set theory, and the assumption
that κ exists cannot be proven consistent with the standard axioms for set
theory. However, it should be clear that assuming the existence of κ is merely
the most convenient of the devices mentioned above; none of the results
proven in this book will depend on this assumption in an essential way.

1.2.16 The ∞-Category of Spaces

The category of sets plays a central role in classical category theory. The
main reason is that every category C is enriched over sets: given a pair of
objects X,Y ∈ C, we may regard HomC(X,Y ) as an object of Set. In the
higher-categorical setting, the proper analogue of Set is the ∞-category S of
spaces, which we will now introduce.

Definition 1.2.16.1. Let Kan denote the full subcategory of Set∆ spanned
by the collection of Kan complexes. We will regard Kan as a simplicial
category. Let S = N(Kan) denote the (simplicial) nerve of Kan. We will
refer to S as the ∞-category of spaces.

Remark 1.2.16.2. For every pair of objects X,Y ∈ Kan, the simplicial set
MapKan(X,Y ) = Y X is a Kan complex. It follows that S is an ∞-category
(Proposition 1.1.5.10).
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Remark 1.2.16.3. There are many other ways to construction a suitable
“∞-category of spaces.” For example, we could instead define S to be the
(topological) nerve of the category of CW complexes and continuous maps.
All that really matters is that we have a ∞-category which is equivalent to
S = N(Kan). We have selected Definition 1.2.16.1 for definiteness and to
simplify our discussion of the Yoneda embedding in §5.1.3.

Remark 1.2.16.4. We will occasionally need to distinguish between large
and small spaces. In these contexts, we will let S denote the ∞-category of
small spaces (defined by taking the simplicial nerve of the category of small
Kan complexes), and Ŝ the ∞-category of large spaces (defined by taking
the simplicial nerve of the category of all Kan complexes). We observe that
S is a large ∞-category and that Ŝ is even bigger.



Chapter Two

Fibrations of Simplicial Sets

Many classes of morphisms which play an important role in the homotopy
theory of simplicial sets can be defined by their lifting properties (we refer
the reader to §A.1.2 for a brief discussion and a summary of the terminology
employed below).

Example 2.0.0.1. A morphism p : X → S of simplicial sets which has the
right lifting property with respect to every horn inclusion Λni ⊆ ∆n is called
a Kan fibration. A morphism i : A → B which has the left lifting property
with respect to every Kan fibration is said to be anodyne.

Example 2.0.0.2. A morphism p : X → S of simplicial sets which has the
right lifting property with respect to every inclusion ∂∆n ⊆ ∆n is called a
trivial fibration. A morphism i : A → B has the left lifting property with
respect to every trivial Kan fibration if and only if it is a cofibration: that
is, if and only if i is a monomorphism of simplicial sets.

By definition, a simplicial set S is a ∞-category if it has the extension
property with respect to all horn inclusions Λni ⊆ ∆n with 0 < i < n. As in
classical homotopy theory, it is convenient to introduce a relative version of
this condition.

Definition 2.0.0.3 (Joyal). A morphism f : X → S of simplicial sets is

• a left fibration if f has the right lifting property with respect to all
horn inclusions Λni ⊆ ∆n, 0 ≤ i < n.

• a right fibration if f has the right lifting property with respect to all
horn inclusions Λni ⊆ ∆n, 0 < i ≤ n.

• an inner fibration if f has the right lifting property with respect to all
horn inclusions Λni ⊆ ∆n, 0 < i < n.

A morphism of simplicial sets i : A → B is

• left anodyne if i has the left lifting property with respect to all left
fibrations.

• right anodyne if i has the left lifting property with respect to all right
fibrations.

• inner anodyne if i has the left lifting property with respect to all inner
fibrations.
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Remark 2.0.0.4. Joyal uses the terms “mid-fibration” and “mid-anodyne
morphism” for what we have chosen to call inner fibrations and inner ano-
dyne morphisms.

The purpose of this chapter is to study the notions of fibration defined
above, which are basic tools in the theory of ∞-categories. In §2.1, we study
the theory of right (left) fibrations p : X → S, which can be viewed as
the ∞-categorical analogue of categories (co)fibered in groupoids over S. We
will apply these ideas in §2.2 to show that the theory of ∞-categories is
equivalent to the theory of simplicial categories.

There is also an analogue of the more general theory of (co)fibered cat-
egories whose fibers are not necessarily groupoids: this is the theory of
(co)Cartesian fibrations, which we will introduce in §2.4. Cartesian and co-
Cartesian fibrations are both examples of inner fibrations, which we will
study in §2.3.

Remark 2.0.0.5. To help orient the reader, we summarize the relation-
ship between many of the classes of fibrations which we will study in this
book. If f : X → S is a map of simplicial sets, then we have the following
implications:

f is a trivial
fibration


f is a Kan
fibration

���
���

���
���

�

���
���

���
��

�� ���
���

���
��

���
���

���
��

f is a left
fibration



f is a right
fibration


f is a coCartesian

fibration

���
���

���
���

��

���
���

���
���

f is a Cartesian
fibration

�� 











f is a
categorical
fibration


f is an inner
fibration.

In general, none of these implications is reversible.

Remark 2.0.0.6. The small object argument (Proposition A.1.2.5) shows
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that every map X → Z of simplicial sets admits a factorization

X
p→ Y

q→ Z,

where p is anodyne (left anodyne, right anodyne, inner anodyne, a cofibra-
tion) and q is a Kan fibration (left fibration, right fibration, inner fibration,
trivial fibration).

Remark 2.0.0.7. The theory of left fibrations (left anodyne maps) is dual
to the theory of right fibrations (right anodyne maps): a map S → T is a left
fibration (left anodyne map) if and only if the induced map Sop → T op is a
right fibration (right anodyne map). Consequently, we will generally confine
our remarks in §2.1 to the case of left fibrations; the analogous statements
for right fibrations will follow by duality.

2.1 LEFT FIBRATIONS

In this section, we will study the class of left fibrations between simplicial
sets. We begin in §2.1.1 with a review of some classical category theory:
namely, the theory of categories cofibered in groupoids (over another cate-
gory). We will see that the theory of left fibrations is a natural ∞-categorical
generalization of this idea. In §2.1.2, we will show that the class of left fibra-
tions is stable under various important constructions, such as the formation
of slice ∞-categories.

It follows immediately from the definition that every Kan fibration of
simplicial sets is a left fibration. The converse is false in general. However,
it is possible to give a relatively simple criterion for testing whether or not
a left fibration f : X → S is a Kan fibration. We will establish this criterion
in §2.1.3 and deduce some of its consequences.

The classical theory of Kan fibrations has a natural interpretation in the
language of model categories: a map p : X → S is a Kan fibration if and
only if X is a fibrant object of (Set∆)/S , where the category (Set∆)/S is
equipped with its usual model structure. There is a similar characterization
of left fibrations: a map p : X → S is a left fibration if and only if X is a
fibrant object of (Set∆)/S with respect to a certain model structure which
we will refer to as the covariant model structure. We will define the covariant
model structure in §2.1.4 and give an overview of its basic properties.

2.1.1 Left Fibrations in Classical Category Theory

Before beginning our study of left fibrations, let us recall a bit of classical
category theory. Let D be a small category and suppose we are given a
functor

χ : D → Gpd,
where Gpd denotes the category of groupoids (where the morphisms are given
by functors). Using the functor χ, we can extract a new category Cχ via the
classical Grothendieck construction:
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• The objects of Cχ are pairs (D, η), where D ∈ D and η is an object of
the groupoid χ(D).

• Given a pair of objects (D, η), (D′, η′) ∈ Cχ, a morphism from (D, η) to
(D′, η′) in Cχ is given by a pair (f, α), where f : D → D′ is a morphism
in D and α : χ(f)(η) � η′ is an isomorphism in the groupoid χ(D′).

• Composition of morphisms is defined in the obvious way.

There is an evident forgetful functor F : Cχ → D, which carries an object
(D, η) ∈ Cχ to the underlying object D ∈ D. Moreover, it is possible to
reconstruct χ from the category Cχ (together with the forgetful functor F ) at
least up to equivalence; for example, if D is an object of D, then the groupoid
χ(D) is canonically equivalent to the fiber product Cχ×D{D}. Consequently,
the Grothendieck construction sets up a dictionary which relates functors
χ : D → Gpd with categories Cχ admitting a functor F : Cχ → D. However,
this dictionary is not perfect; not every functor F : C → D arises via the
Grothendieck construction described above. To clarify the situation, we recall
the following definition:

Definition 2.1.1.1. Let F : C → D be a functor between categories. We
say that C is cofibered in groupoids over D if the following conditions are
satisfied:

(1) For every object C ∈ C and every morphism η : F (C) → D in D, there
exists a morphism η̃ : C → D̃ such that F (η̃) = η.

(2) For every morphism η : C → C′ in C and every object C′′ ∈ C, the
map

HomC(C ′, C ′′)

��
HomC(C,C ′′) ×HomD(F (C),F (C′′)) HomD(F (C′), F (C ′′))

is bijective.

Example 2.1.1.2. Let χ : D → Gpd be a functor from a category D to the
category of groupoids. Then the forgetful functor Cχ → D exhibits Cχ as
fibered in groupoids over D.

Example 2.1.1.2 admits a converse: suppose we begin with a category C

fibered in groupoids over D. Then, for every every object D ∈ D, the fiber
CD = C×D{D} is a groupoid. Moreover, for every morphism f : D → D′

in D, it is possible to construct a functor f! : CD → CD′ as follows: for each
C ∈ CD, choose a morphism f : C → C ′ covering the map D → D′ and set
f!(C) = C ′. The map f may not be uniquely determined, but it is unique
up to isomorphism and depends functorially on C. Consequently, we obtain
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a functor f!, which is well-defined up to isomorphism. We can then try to
define a functor χ : D → Gpd by the formulas

D �→ CD

f �→ f!.

Unfortunately, this does not quite work: since the functor f! is determined
only up to canonical isomorphism by f , the identity (f ◦ g)! = f! ◦ g! holds
only up to canonical isomorphism rather than up to equality. This is merely
a technical inconvenience; it can be addressed in (at least) two ways:

• The groupoid χ(D) = C×D{D} can be described as the category of
functors G fitting into a commutative diagram

C

F

��
{D}

G

���
�

�
�

�� D .

If we replace the one-point category {D} with the overcategory DD/

in this definition, then we obtain a groupoid equivalent to χ(D) which
depends on D in a strictly functorial fashion.

• Without modifying the definition of χ(D), we can realize χ as a functor
from D to an appropriate bicategory of groupoids.

We may summarize the above discussion informally by saying that the
Grothendieck construction establishes an equivalence between functors χ :
D → Gpd and categories fibered in groupoids over D.

The theory of left fibrations should be regarded as an ∞-categorical gen-
eralization of Definition 2.1.1.1. As a preliminary piece of evidence for this
assertion, we offer the following:

Proposition 2.1.1.3. Let F : C → D be a functor between categories.
Then C is cofibered in groupoids over D if and only if the induced map
N(F ) : N(C) → N(D) is a left fibration of simplicial sets.

Proof. Proposition 1.1.2.2 implies that N(F ) is an inner fibration. It follows
that N(F ) is a left fibration if and only if it has the right lifting property
with respect to Λn0 ⊆ ∆n for all n > 0. When n = 1, the relevant lifting
property is equivalent to (1) of Definition 2.1.1.1. When n = 2 (n = 3), the
relevant lifting property is equivalent to the surjectivity (injectivity) of the
map described in (2). For n > 3, the relevant lifting property is automatic
(since a map Λn0 → S extends uniquely to ∆n when S is isomorphic to the
nerve of a category).

Let us now consider the structure of a general left fibration p : X → S.
In the case where S consists of a single vertex, Proposition 1.2.5.1 asserts
that p is a left fibration if and only if X is a Kan complex. Since the class of
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left fibrations is stable under pullback, we deduce that for any left fibration
p : X → S and any vertex s of S, the fiber Xs = X ×S {s} is a Kan
complex (which we can think of as the ∞-categorical analogue of a groupoid).
Moreover, these Kan complexes are related to one another. More precisely,
suppose that f : s → s′ is an edge of the simplicial set S and consider the
inclusion i : Xs � Xs ×{0} ⊆ Xs × ∆1. In §2.1.2, we will prove that i is left
anodyne (Corollary 2.1.2.7). It follows that we can solve the lifting problem

{0} ×Xs� �

��

� � �� X

p

��
∆1 ×Xs

����������
�� ∆1

f �� S.

Restricting the dotted arrow to {1} ×Xs, we obtain a map f! : Xs → Xs′ .
Of course, f! is not unique, but it is uniquely determined up to homotopy.

Lemma 2.1.1.4. Let q : X → S be a left fibration of simplicial sets. The
assignment

s ∈ S0 �→ Xs

f ∈ S1 �→ f!

determines a (covariant) functor from the homotopy category hS into the
homotopy category H of spaces.

Proof. Let f : s → s′ be an edge of S. We note the following characterization
of the morphism f! in H. Let K be any simplicial set and suppose we are
given homotopy classes of maps η ∈ HomH(K,Xs), η′ ∈ HomH(K,Xs′).
Then η′ = f! ◦ η if and only if there exists a map p : K × ∆1 → X such that
q ◦ p is given by the composition

K × ∆1 → ∆1 f→ S,

η is the homotopy class of p|K ×{0}, and η′ is the homotopy class of p|K ×
{1}.

Now consider any 2-simplex σ : ∆2 → S, which we will depict as

v
g

���
��

��
��

�

u

f
��������� h �� w.

We note that the inclusion Xu × {0} ⊆ Xu × ∆2 is left anodyne (Corollary
2.1.2.7). Consequently there exists a map p : Xu × ∆2 → X such that
p|Xu×{0} is the inclusion Xu ⊆ X and q ◦ p is the composition Xu×∆2 →
∆2 σ→ S. Then f! � p|Xu×{1}, h! = p|Xu×{2}, and the map p|Xu×∆{1,2}

verifies the equation

h! = g! ◦ f!
in HomH(Xu, Xw).
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We can summarize the situation informally as follows. Fix a simplicial set
S. To give a left fibration q : X → S, one must specify a Kan complex Xs

for each “object” of S, a map f! : Xs → Xs′ for each “morphism” f : s → s′

of S, and “coherence data” for these morphisms for each higher-dimensional
simplex of S. In other words, giving a left fibration ought to be more or less
equivalent to giving a functor from S to the ∞-category S of spaces. Lemma
2.1.1.4 can be regarded as a weak version of this assertion; we will prove
something considerably more precise in §2.1.4 (see Theorem 2.2.1.2).

We close this section by establishing two simple properties of left fibra-
tions, which will be needed in the proof of Proposition 1.2.4.3:

Proposition 2.1.1.5. Let p : C → D be a left fibration of ∞-categories and
let f : X → Y be a morphism in C such that p(f) is an equivalence in D.
Then f is an equivalence in C.

Proof. Let g be a homotopy inverse to p(f) in D so that there exists a
2-simplex of D depicted as follows:

p(Y )
g

���
��

��
��

�

p(X)

p(f)
���������� idp(X) �� p(X).

Since p is a left fibration, we can lift this to a diagram

Y
g

���
��

��
��

X

f
��������� idX �� X

in C. It follows that g ◦ f � idX , so that f admits a left homotopy inverse.
Since p(g) = g is an equivalence in D, the same argument proves that g has
a left homotopy inverse. This left homotopy inverse must coincide with f
since f is a right homotopy inverse to g. Thus f and g are homotopy inverse
in the ∞-category C, so that f is an equivalence, as desired.

Proposition 2.1.1.6. Let p : C → D be a left fibration of ∞-categories, let
Y be an object of C, and let f : X → p(Y ) be an equivalence in D. Then
there exists a morphism f : X → Y in C such that p(f) = f (automatically
an equivalence in view of Proposition 2.1.1.5).

Proof. Let g : p(Y ) → X be a homotopy inverse to f in C. Since p is a left
fibration, there exists a morphism g : Y → X such that g = p(g). Since f
and g are homotopy inverse to one another, there exists a 2-simplex of D

which we can depict as follows:

p(X)
f

���
��

��
��

�

p(Y )

p(g)
���������� idp(Y ) �� p(Y ).
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Applying the assumption that p is a left fibration once more, we can lift this
to a diagram

X
f

���
��

��
��

Y

g
���������� idY �� Y,

which proves the existence of f .

2.1.2 Stability Properties of Left Fibrations

The purpose of this section is to show that left fibrations of simplicial sets ex-
ist in abundance. Our main results are Proposition 2.1.2.1 (which is our basic
source of examples for left fibrations) and Corollary 2.1.2.9 (which asserts
that left fibrations are stable under the formation of functor categories).

Let C be an ∞-category and let S denote the ∞-category of spaces. One
can think of a functor from C to S as a “cosheaf of spaces” on C. By analogy
with ordinary category theory, one might expect that the basic example of
such a cosheaf would be the cosheaf corepresented by an object C of C;
roughly speaking this should be given by the functor

D �→ MapC(C,D).

As we saw in §2.1.1, it is natural to guess that such a functor can be en-
coded by a left fibration C̃ → C. There is a natural candidate for C̃: the
undercategory CC/. Note that the fiber of the map

f : CC/ → C

over the object D ∈ C is the Kan complex HomL
C(C,D). The assertion that

f is a left fibration is a consequence of the following more general result:

Proposition 2.1.2.1 (Joyal). Suppose we are given a diagram of simplicial
sets

K0 ⊆ K
p→ X

q→ S,

where q is an inner fibration. Let r = q ◦ p : K → S, p0 = p|K0, and
r0 = r|K0. Then the induced map

Xp/ → Xp0/ ×Sr0/
Sr/

is a left fibration. If the map q is already a left fibration, then the induced
map

X/p → X/p0 ×S/r0
S/r

is a left fibration as well.

Proposition 2.1.2.1 immediately implies the following half of Proposition
1.2.9.3, which we asserted earlier without proof:
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Corollary 2.1.2.2 (Joyal). Let C be an ∞-category and p : K → C an arbi-
trary diagram. Then the projection Cp/ → C is a left fibration. In particular,
Cp/ is itself an ∞-category.

Proof. Apply Proposition 2.1.2.1 in the case where X = C, S = ∗, A = ∅,
and B = K.

We can also use Proposition 2.1.2.1 to prove Proposition 1.2.4.3, which
was stated without proof in §1.2.4.

Proposition. Let C be an ∞-category and φ : ∆1 → C a morphism of C.
Then φ is an equivalence if and only if, for every n ≥ 2 and every map
f0 : Λn0 → C such that f0|∆{0,1} = φ, there exists an extension of f0 to ∆n.

Proof. Suppose first that φ is an equivalence and let f0 be as above. To
find the desired extension of f0, we must produce the dotted arrow in the
associated diagram

{0}� �

��

�� C/∆n−2

q

��
∆1

φ′
��

���
�

�
�

�
C/ ∂∆n−2 .

The projection map p : C/ ∂∆n−2 → C is a right fibration (Proposition
2.1.2.1). Since φ′ is a preimage of φ under p, Proposition 2.1.1.5 implies
that φ′ is an equivalence. Because q is a right fibration (Proposition 2.1.2.1
again), the existence of the dotted arrow follows from Proposition 2.1.1.6.

We now prove the converse. Let φ : X → Y be a morphism in C and
consider the map Λ2

0 → C indicated in the following diagram:

Y
ψ

��









X

φ
��������� idX �� X.

The assumed extension property ensures the existence of the dotted mor-
phism ψ : Y → X and a 2-simplex σ which verifies the identity ψ ◦φ � idX .
We now consider the map

τ0 : Λ3
0

(•,s0φ,s1ψ,σ) �� C .

Once again, our assumption allows us to extend τ0 to a 3-simplex τ : ∆3 → C,
and the face d0τ verifies the identity φ ◦ ψ = idY . It follows that ψ is a
homotopy inverse to φ, so that φ is an equivalence in C.

We now turn to the proof of Proposition 2.1.2.1. It is an easy consequence
of the following more basic observation:
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Lemma 2.1.2.3 (Joyal [44]). Let f : A0 ⊆ A and g : B0 ⊆ B be inclusions
of simplicial sets. Suppose either that f is right anodyne or that g is left
anodyne. Then the induced inclusion

h : (A0  B)
∐

A0�B0

(A  B0) ⊆ A  B

is inner anodyne.

Proof. We will prove that h is inner anodyne whenever f is right anodyne;
the other assertion follows by a dual argument.

Consider the class of all morphisms f for which the conclusion of the
lemma holds (for any inclusion g). This class of morphisms is weakly satu-
rated; to prove that it contains all right anodyne morphisms, it suffices to
show that it contains each of the inclusions f : Λnj ⊆ ∆n for 0 < j ≤ n. We
may therefore assume that f is of this form.

Now consider the collection of all inclusions g for which h is inner anodyne
(where f is now fixed). This class of morphisms is also weakly saturated;
to prove that it contains all inclusions, it suffices to show that the lemma
holds when g is of the form ∂∆m ⊆ ∆m. In this case, h can be identified
with the inclusion Λn+m+1

j ⊆ ∆n+m+1, which is inner anodyne because
0 < j ≤ n < n+m+ 1.

The following result can be proven by exactly the same argument:

Lemma 2.1.2.4 (Joyal). Let f : A0 → A and g : B0 → B be inclusions of
simplicial sets. Suppose that f is left anodyne. Then the induced inclusion

(A0  B)
∐

A0�B0

(A  B0) ⊆ A  B

is left anodyne.

Proof of Proposition 2.1.2.1. After unwinding the definitions, the first as-
sertion follows from Lemma 2.1.2.3 and the second from Lemma 2.1.2.4.

For future reference, we record the following counterpart to Proposition
2.1.2.1:

Proposition 2.1.2.5 (Joyal). Let π : S → T be an inner fibration, p :
B → S a map of simplicial sets, i : A ⊆ B an inclusion of simplicial sets,
p0 = p|A, p′ = π ◦ p, and p′0 = π ◦ p0 = p′|A. Suppose either that i is right
anodyne or that π is a left fibration. Then the induced map

φ : Sp/ → Sp0/ ×Tp′
0/
Tp′/

is a trivial Kan fibration.

Proof. Consider the class of all cofibrations i : A → B for which φ is a
trivial fibration for every inner fibration (right fibration) p : S → T . It is
not difficult to see that this is a weakly saturated class of morphisms; thus,
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it suffices to consider the case where A = Λmi and B = ∆m for 0 < i ≤ m
(0 ≤ i ≤ m).

Let q : ∂∆n → Sp/ be a map and suppose we are given an extension of
φ ◦ q to ∆n. We wish to find a compatible extension of q. Unwinding the
definitions, we are given a map

r : (∆m  ∂∆n)
∐

Λm
i �∂∆n

(Λmi ∆n) → S,

which we wish to extend to ∆m ∆n in a manner that is compatible with a
given extension ∆m ∆n → T of the composite map π ◦ r. The existence of
such an extension follows immediately from the assumption that p has the
right lifting property with respect to the horn inclusion Λn+m+1

i ⊆ ∆n+m+1.

The remainder of this section is devoted to the study of the behavior of
left fibrations under exponentiation. Our goal is to prove an assertion of the
following form: if p : X → S is a left fibration of simplicial sets, then so
is the induced map XK → SK , for every simplicial set K (this is a special
case of Corollary 2.1.2.9 below). This is an easy consequence of the following
characterization of left anodyne maps, which is due to Joyal:

Proposition 2.1.2.6 (Joyal [44]). The following collections of morphisms
generate the same weakly saturated class of morphisms of Set∆:

(1) The collection A1 of all horn inclusions Λni ⊆ ∆n, 0 ≤ i < n.

(2) The collection A2 of all inclusions

(∆m × {0})
∐

∂∆m×{0}
(∂∆m × ∆1) ⊆ ∆m × ∆1.

(3) The collection A3 of all inclusions

(S′ × {0})
∐

S×{0}
(S × ∆1) ⊆ S′ × ∆1,

where S ⊆ S′.

Proof. Let S ⊆ S′ be as in (3). Working cell by cell on S′, we deduce that
every morphism in A3 can be obtained as an iterated pushout of morphisms
belonging to A2. Conversely, A2 is contained in A3, which proves that they
generate the same weakly saturated collection of morphisms.

To proceed with the proof, we must first introduce a bit of notation. The
(n+ 1)-simplices of ∆n × ∆1 are indexed by order-preserving maps

[n+ 1] → [0, . . . , n] × [0, 1].

We let σk denote the map

σk(m) =

{
(m, 0) if m ≤ k

(m− 1, 1) if m > k.
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We will also denote by σk the corresponding (n + 1)-simplex of ∆n × ∆1.
We note that {σk}0≤k≤n are precisely the nondegenerate (n + 1)-simplices
of ∆n × ∆1.

We define a collection {X(k)}0≤k≤n+1 of simplicial subsets of ∆n×∆1 by
descending induction on k. We begin by setting

X(n+ 1) = (∆n × {0})
∐

∂∆n×{0}
(∂∆n × ∆1).

Assuming that X(k + 1) has been defined, we let X(k) ⊆ ∆n × ∆1 be the
union of X(k+1) and the simplex σk (together with all the faces of σk). We
note that this description exhibits X(k) as a pushout

X(k + 1)
∐

Λn+1
k

∆n+1

and also that X(0) = ∆n × ∆1. It follows that each step in the chain of
inclusions

X(n+ 1) ⊆ X(n) ⊆ · · · ⊆ X(1) ⊆ X(0)

is contained in the class of morphisms generated by A1, so that the inclusion
X(n+ 1) ⊆ X(0) is generated by A1.

To complete the proof, we show that each inclusion in A1 is a retract of
an inclusion in A3. More specifically, the inclusion Λni ⊆ ∆n is a retract of

(∆n × {0})
∐

Λn
i ×{0}

(Λni × ∆1) ⊆ ∆n × ∆1

so long as 0 ≤ i < n. We will define the relevant maps

∆n j→ ∆n × ∆1 r→ ∆n

and leave it to the reader to verify that they are compatible with the relevant
subobjects. The map j is simply the inclusion ∆n � ∆n × {1} ⊆ ∆n × ∆1.
The map r is induced by a map of partially ordered sets, which we will also
denote by r. It may be described by the formulas

r(m, 0) =

{
m if m �= i+ 1
i if m = i+ 1

r(m, 1) = m.

Corollary 2.1.2.7. Let i : A → A′ be left anodyne and let j : B → B′ be a
cofibration. Then the induced map

(A×B′)
∐
A×B

(A′ ×B) → A′ ×B′

is left anodyne.
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Proof. This follows immediately from Proposition 2.3.2.1, which character-
izes the class of left anodyne maps as the class generated by A3 (which is
stable under smash products with any cofibration).

Remark 2.1.2.8. A basic fact in the homotopy theory of simplicial sets
is that the analogue of Corollary 2.1.2.7 also holds for the class of anodyne
maps of simplicial sets. Since the class of anodyne maps is generated (as a
weakly saturated class of morphisms) by the class of left anodyne maps and
the class of right anodyne maps, this classical fact follows from Corollary
2.1.2.7 (together with the dual assertion concerning right anodyne maps).

Corollary 2.1.2.9. Let p : X → S be a left fibration and let i : A → B be
any cofibration of simplicial sets. Then the induced map q : XB → XA ×SA

SB is a left fibration. If i is left anodyne, then q is a trivial Kan fibration.

Corollary 2.1.2.10 (Homotopy Extension Lifting Property). Let p : X →
S be a map of simplicial sets. Then p is a left fibration if and only if the
induced map

X∆1 → X{0} ×S{0} S∆1

is a trivial Kan fibration of simplicial sets.

For future use, we record the following criterion for establishing that a
morphism is left anodyne:

Proposition 2.1.2.11. Let p : X → S be a map of simplicial sets, let
s : S → X be a section of p, and let h ∈ HomS(X × ∆1, X) be a (fiberwise)
simplicial homotopy from s ◦ p = h|X × {0} to idX = h|X × {1}. Then s is
left anodyne.

Proof. Consider a diagram

S

s

��

g �� Y

q

��
X

g′ ��

f
���

�
�

�
Z

where q is a left fibration. We must show that it is possible to find a map f
rendering the diagram commutative. Define F0 : (S × ∆1)

∐
S×{0}(X ×{0})

to be the composition of g with the projection onto S. Now consider the
diagram

(S × ∆1)
∐
S×{0}(X × {0})

��

F0 �� Y

q

��
X × ∆1

g′◦h ��

F

����������������
Z.

Since q is a left fibration and the left vertical map is left anodyne, it is
possible to supply the dotted arrow F as indicated. Now we observe that
f = F |X × {1} has the desired properties.
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2.1.3 A Characterization of Kan Fibrations

Let p : X → S be a left fibration of simplicial sets. As we saw in §2.1.1,
p determines for each vertex s of S a Kan complex Xs, and for each edge
f : s → s′ a map of Kan complexes f! : Xs → Xs′ (which is well-defined up
to homotopy). If p is a Kan fibration, then the same argument allows us to
construct a map Xs′ → Xs, which is a homotopy inverse to f!. Our goal in
this section is to prove the following converse:

Proposition 2.1.3.1. Let p : S → T be a left fibration of simplicial sets.
The following conditions are equivalent:

(1) The map p is a Kan fibration.

(2) For every edge f : t → t′ in T , the map f! : St → St′ is an isomorphism
in the homotopy category H of spaces.

Lemma 2.1.3.2. Let p : S → T be a left fibration of simplicial sets. Suppose
that S and T are Kan complexes and that p is a homotopy equivalence. Then
p induces a surjection from S0 to T0.

Proof. Fix a vertex t ∈ T0. Since p is a homotopy equivalence, there exists a
vertex s ∈ S0 and an edge e joining p(s) to t. Since p is a left fibration, this
edge lifts to an edge e′ : s → s′ in S. Then p(s′) = t.

Lemma 2.1.3.3. Let p : S → T be a left fibration of simplicial sets. Suppose
that T is a Kan complex. Then p is a Kan fibration.

Proof. We note that the projection S → ∗, being a composition of left fibra-
tions S → T and T → ∗, is a left fibration, so that S is also a Kan complex.
Let A ⊆ B be an anodyne inclusion of simplicial sets. We must show that
the map p : SB → SA ×TA TB is surjective on vertices. Since S and T are
Kan complexes, the maps TB → TA and SB → SA are trivial fibrations. It
follows that p is a homotopy equivalence and a left fibration. Now we simply
apply Lemma 2.1.3.2.

Lemma 2.1.3.4. Let p : S → T be a left fibration of simplicial sets. Suppose
that for every vertex t ∈ T , the fiber St is contractible. Then p is a trivial
Kan fibration.

Proof. It will suffice to prove the analogous result for right fibrations (we do
this in order to keep the notation we use below consistent with that employed
in the proof of Proposition 2.1.2.6).

Since p has nonempty fibers, it has the right lifting property with respect
to the inclusion ∅ = ∂∆0 ⊆ ∆0. Let n > 0, let f : ∂∆n → S be any map,
and let g : ∆n → T be an extension of p ◦ f . We must show that there exists
an extension f̃ : ∆n → S with g = p ◦ f̃ .

Pulling back via the map G, we may suppose that T = ∆n and g is the
identity map, so that S is an ∞-category. Let t denote the initial vertex of
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T . There is a unique map g′ : ∆n × ∆1 → T such that g′|∆n × {1} = g and
g′|∆n × {0} is constant at the vertex t.

Since the inclusion ∂∆n×{1} ⊆ ∂∆n×∆1 is right anodyne, there exists
an extension f ′ of f to ∂∆n × ∆1 which covers g′| ∂∆n × ∆1. To complete
the proof, it suffices to show that we can extend f ′ to a map f̃ ′ : ∆n×∆1 →
S (such an extension is automatically compatible with g′ in view of our
assumptions that T = ∆n and n > 0). Assuming this has been done, we
simply define f̃ = f̃ ′|∆n × {1}.

Recall the notation of the proof of Proposition 2.1.2.6 and filter the sim-
plicial set ∆n × ∆1 by the simplicial subsets

X(n+ 1) ⊆ · · · ⊆ X(0) = ∆n × ∆1.

We extend the definition of f ′ to X(m) by a descending induction on m.
When m = n + 1, we note that X(n + 1) is obtained from ∂∆n × ∆1 by
adjoining the interior of the simplex ∂∆n × {0}. Since the boundary of this
simplex maps entirely into the contractible Kan complex St, it is possible to
extend f ′ to X(n+ 1).

Now suppose the definition of f ′ has been extended to X(i+ 1). We note
that X(i) is obtained from X(i + 1) by pushout along a horn inclusion
Λn+1
i ⊆ ∆n+1. If i > 0, then the assumption that S is an ∞-category

guarantees the existence of an extension of f ′ to X(i). When i = 0, we note
that f ′ carries the initial edge of σ0 into the fiber St. Since St is a Kan
complex, f ′ carries the initial edge of σ0 to an equivalence in S, and the
desired extension of f ′ exists by Proposition 1.2.4.3.

Proof of Proposition 2.1.3.1. Suppose first that (1) is satisfied and let f :
t → t′ be an edge in T . Since p is a right fibration, the edge f induces a
map f∗ : St′ → St which is well-defined up to homotopy. It is not difficult
to check that the maps f∗ and f! are homotopy inverse to one another; in
particular, f! is a homotopy equivalence. This proves that (1) ⇒ (2).

Assume now that (2) is satisfied. A map of simplicial sets is a Kan fibration
if and only if it is both a right fibration and a left fibration; consequently,
it will suffice to prove that p is a right fibration. According to Corollary
2.1.2.10, it will suffice to show that

q : S∆1 → S{1} ×T{1} T∆1

is a trivial Kan fibration. Corollary 2.1.2.9 implies that q is a left fibration.
By Lemma 2.1.3.4, it suffices to show that the fibers of q are contractible.

Fix an edge f : t → t′ in T . Let X denote the simplicial set of sections
of the projection S ×T ∆1 → ∆1, where ∆1 maps into T via the edge f .
Consider the fiber q′ : X → St′ of q over the edge f . Since q and q′ have the
same fibers (over points of S{1} ×T{1} T∆1

whose second projection is the
edge f), it will suffice to show that q′ is a trivial fibration for every choice
of f .

Consider the projection r : X → St. Since p is a left fibration, r is a trivial
fibration. Because St is a Kan complex, so is X. Lemma 2.1.3.3 implies that
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q′ is a Kan fibration. We note that f! is obtained by choosing a section of
r and then composing with q′. Consequently, assumption (2) implies that q′

is a homotopy equivalence and thus a trivial fibration, which completes the
proof.

Remark 2.1.3.5. Lemma 2.1.3.4 is an immediate consequence of Proposi-
tion 2.1.3.1 since any map between contractible Kan complexes is a homotopy
equivalence. Lemma 2.1.3.3 also follows immediately (if T is a Kan complex,
then its homotopy category is a groupoid, so that any functor hT → H

carries edges of T to invertible morphisms in H).

2.1.4 The Covariant Model Structure

In §2.1.2, we saw that a left fibration p : X → S determines a functor χ
from hS to the homotopy category H, carrying each vertex s to the fiber
Xs = X ×S {s}. We would like to formulate a more precise relationship
between left fibrations over S and functors from S into spaces. For this, it is
convenient to employ Quillen’s language of model categories. In this section,
we will show that the category (Set∆)/S can be endowed with the structure
of a simplicial model category whose fibrant objects are precisely the left
fibrations X → S. In §2.2, we will describe an ∞-categorical version of the
Grothendieck construction which is implemented by a right Quillen functor

(Set∆)C[S] → (Set∆)/S ,

which we will eventually prove to be a Quillen equivalence (Theorem 2.2.1.2).

Warning 2.1.4.1. We will assume throughout this section that the reader
is familiar with the theory of model categories as presented in §A.2. We will
also assume familiarity with the model structure on the category Cat∆ of
simplicial categories (see §A.3.2).

Definition 2.1.4.2. Let f : X → S be a map of simplicial sets. The left
cone of f is the simplicial set S

∐
X X

	. We will denote the left cone of
f by C	(f). Dually, we define the right cone of f to be the simplicial set
C
(f) = S

∐
X X


.

Remark 2.1.4.3. Let f : X → S be a map of simplicial sets. There is a
canonical monomorphism of simplicial sets S → C	(f). We will generally
identify S with its image under this monomorphism and thereby regard S as
a simplicial subset of C	(f). We note that there is a unique vertex of C	(f)
which does not belong to S. We will refer to this vertex as the cone point of
C	(f).

Example 2.1.4.4. Let S be a simplicial set and let idS denote the identity
map from S to itself. Then C	(idS) and C
(idS) can be identified with S	

and S
, respectively.

Definition 2.1.4.5. Let S be a simplicial set. We will say that a map
f : X → Y in (Set∆)/S is a
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(C) covariant cofibration if it is a monomorphism of simplicial sets.

(W ) covariant equivalence if the induced map

X	
∐
X

S → Y 	
∐
Y

S

is a categorical equivalence.

(F ) covariant fibration if it has the right lifting property with respect to
every map which is both a covariant cofibration and a covariant equiv-
alence.

Lemma 2.1.4.6. Let S be a simplicial set. Then every left anodyne map in
(Set∆)/S is a covariant equivalence.

Proof. By general nonsense, it suffices to prove the result for a generating
left anodyne inclusion of the form Λni ⊆ ∆n, where 0 ≤ i < n. In other
words, we must show any map

i : (Λni )	
∐
Λn

i

S → (∆n)	
∐
∆n

S

is a categorical equivalence. We now observe that i is a pushout of the inner
anodyne inclusion Λn+1

i+1 ⊆ ∆n+1.

Proposition 2.1.4.7. Let S be a simplicial set. The covariant cofibrations,
covariant equivalences, and covariant fibrations determine a left proper com-
binatorial model structure on (Set∆)/S.

Proof. It suffices to show that conditions (1), (2), and (3) of Proposition
A.2.6.13 are met. We consider each in turn:

(1) The class (W ) of weak equivalences is perfect. This follows from Corol-
lary A.2.6.12 since the functor X �→ X	

∐
X S commutes with filtered

colimits.

(2) It is clear that the class (C) of cofibrations is generated by a set.
We must show that weak equivalences are stable under pushouts by
cofibrations. In other words, suppose we are given a pushout diagram

X
j ��

i

��

Y

��
X ′ j′ �� Y ′

in (Set∆)/S , where i is a covariant cofibration and j is a covariant
equivalence. We must show that j′ is a covariant equivalence. We obtain
a pushout diagram in Cat∆:

C[X	
∐
X S] ��

��

C[Y 	
∐
Y S]

��
C[(X ′)	

∐
X′ S] �� C[(Y ′)	

∐
Y ′ S].
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This diagram is homotopy coCartesian because Cat∆ is a left proper
model category. Since the upper horizontal map is an equivalence, so
is the bottom horizontal map; thus j′ is a covariant equivalence.

(3) We must show that a map p : X → Y in Set∆, which has the right
lifting property with respect to every map in (C), belongs to (W ). We
note in that case that p is a trivial Kan fibration and therefore admits a
section s : Y → X. We will show that p and s induce mutually inverse
isomorphisms between C[X	

∐
X S] and C[Y 	

∐
Y S] in the homotopy

category hCat∆; it will then follow that p is a covariant equivalence.

Let f : X → X denote the composition s ◦ p; we wish to show that the
map C[X	

∐
X S] induced by f is equivalent to the identity in hCat∆.

We observe that f is homotopic to the identity idX via a homotopy
h : ∆1 ×X → X. It will therefore suffice to show that h is a covariant
equivalence. But h admits a left inverse

X � {0} ×X ⊆ ∆1 ×X,

which is left anodyne (Corollary 2.1.2.7) and therefore a covariant
equivalence by Lemma 2.1.4.6.

Proposition 2.1.4.8. The category (Set∆)/S is a simplicial model cate-
gory (with respect to the covariant model structure and the natural simplicial
structure).

Proof. We will deduce this from Proposition A.3.1.7. The only nontrivial
point is to verify that for any X ∈ (Set∆)/S , the projection X × ∆n → X
is a covariant equivalence. But this map has a section X × {0} → X × ∆n,
which is left anodyne and therefore a covariant equivalence (Proposition
2.1.4.9).

We will refer to the model structure of Proposition 2.1.4.7 as the covari-
ant model structure on (Set∆)/S . We will prove later that the covariantly
fibrant objects of (Set∆)/S are precisely the left fibrations X → S (Corol-
lary 2.2.3.12). For the time being, we will be content to make a much weaker
observation:

Proposition 2.1.4.9. Let S be a simplicial set.

(1) Every left anodyne map in (Set∆)/S is a trivial cofibration with respect
to the covariant model structure.

(2) Every covariant fibration in (Set∆)/S is a left fibration of simplicial
sets.

(3) Every fibrant object of (Set∆)/S determines a left fibration X → S.

Proof. Assertion (1) follows from Lemma 2.1.4.6, and the implications (1) ⇒
(2) ⇒ (3) are obvious.



FIBRATIONS OF SIMPLICIAL SETS 71

Our next result expresses the idea that the covariant model structure on
(Set∆)/S depends functorially on S:

Proposition 2.1.4.10. Let j : S → S′ be a map of simplicial sets. Let
j! : (Set∆)/S → (Set∆)/S′ be the forgetful functor (given by composition with
j) and let j∗ : (Set∆)/S′ → (Set∆)/S be its right adjoint, which is given by
the formula

j∗X ′ = X ′ ×S′ S.

Then we have a Quillen adjunction

(Set∆)/S
j! ��(Set∆)/S′
j∗

��

(with the covariant model structures).

Proof. It is clear that j! preserves cofibrations. ForX ∈ (Set∆)S , the pushout
diagram

S ��

��

S′

��
X	

∐
X S

�� X	
∐
X S

′

is a homotopy pushout (with respect to the Joyal model structure). Thus j!
preserves covariant equivalences. It follows that (j!, j∗) is a Quillen adjunc-
tion.

Remark 2.1.4.11. Let j : S → S′ be as in Proposition 2.1.4.10. If j is
a categorical equivalence, then the Quillen adjunction (j!, j∗) is a Quillen
equivalence. This follows from Theorem 2.2.1.2 and Proposition A.3.3.8.

Remark 2.1.4.12. Let S be a simplicial set. The covariant model structure
on (Set∆)/S is usually not self-dual. Consequently, we may define a new
model structure on (Set∆)/S as follows:

(C) A map f in (Set∆)/S is a contravariant cofibration if it is a monomor-
phism of simplicial sets.

(W ) A map f in (Set∆)/S is a contravariant equivalence if fop is a covariant
equivalence in (Set∆)/Sop .

(F ) A map f in (Set∆)/S is a contravariant fibration if fop is a covariant
fibration in (Set∆)/Sop .

We will refer to this model structure on (Set∆)/S as the contravariant model
structure. Propositions 2.1.4.8, 2.1.4.9, and 2.1.4.10 have evident analogues
in the contravariant setting.
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2.2 SIMPLICIAL CATEGORIES AND ∞-CATEGORIES

For every topological category C and every pair of objectsX,Y ∈ C, Theorem
1.1.5.13 asserts that the counit map

u : |MapC[N(C)](X,Y )| → MapC(X,Y )

is a weak homotopy equivalence of topological spaces. This result is the main
ingredient needed to establish the equivalence between the theory of topo-
logical categories and the theory of ∞-categories. The goal of this section is
to give a proof of Theorem 1.1.5.13 and to develop some of its consequences.

We first replace Theorem 1.1.5.13 by a statement about simplicial cate-
gories. Consider the composition

MapC[N(C)](X,Y ) v→ Sing Map|C[N(C)]|(X,Y )
Sing(u)→ Sing MapC(X,Y ).

Classical homotopy theory ensures that v is a weak homotopy equivalence.
Moreover, u is a weak homotopy equivalence of topological spaces if and only
if Sing(u) is a weak homotopy equivalence of simplicial sets. Consequently, u
is a weak homotopy equivalence of topological spaces if and only if Sing(u)◦v
is a weak homotopy equivalence of simplicial sets. It will therefore suffice to
prove the following simplicial analogue of Theorem 1.1.5.13:

Theorem 2.2.0.1. Let C be a fibrant simplicial category (that is, a simplicial
category in which each mapping space MapC(x, y) is a Kan complex) and let
x, y ∈ C be a pair of objects. The counit map

u : MapC[N(C)](x, y) → MapC(x, y)

is a weak homotopy equivalence of simplicial sets.

The proof will be given in §2.2.4 (see Proposition 2.2.4.1). Our strategy is
as follows:

(1) We will show that, for every simplicial set S, there is a close rela-
tionship between right fibrations S′ → S and simplicial presheaves
F : C[S]op → Set∆. This relationship is controlled by the straightening
and unstraightening functors which we introduce in §2.2.1.

(2) Suppose that S is an ∞-category. Then, for each object y ∈ S, the
projection S/y → S is a right fibration, which corresponds to a simpli-
cial presheaf F : C[S]op → Set∆. This simplicial presheaf F is related
to S/y in two different ways:

(i) As a simplicial presheaf, F is weakly equivalent to the functor
x �→ MapC[S](x, y).

(ii) For each object x of S, there is a canonical homotopy equiva-
lence F(x) → S/y ×S {x} � HomR

S (x, y). Here the Kan complex
HomR

S (x, y) is defined as in §1.2.2.
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(3) Combining observations (i) and (ii), we will conclude that the map-
ping spaces HomR

S (x, y) are homotopy equivalent to the corresponding
mapping spaces HomC[S](x, y).

(4) In the special case where S is the nerve of a fibrant simplicial category
C, there is a canonical map HomC(x, y) → HomR

S (x, y), which we will
show to be a homotopy equivalence in §2.2.2.

(5) Combining (3) and (4), we will obtain a canonical isomorphism

MapC(x, y) � MapC[N(C)](x, y)

in the homotopy category of spaces. We will then show that this iso-
morphism is induced by the unit map appearing in the statement of
Theorem 2.2.0.1.

We will conclude this section with §2.2.5, where we apply Theorem 2.2.0.1
to construct the Joyal model structure on Set∆ and to establish a more refined
version of the equivalence between ∞-categories and simplicial categories.

2.2.1 The Straightening and Unstraightening Constructions (Un-
marked Case)

In §2.1.1, we asserted that a left fibration X → S can be viewed as a functor
from S into a suitable ∞-category of Kan complexes. Our goal in this section
is to make this idea precise. For technical reasons, it will be somewhat more
convenient to phrase our results in terms of the dual theory of right fibrations
X → S. Given any functor φ : C[S]op → C between simplicial categories, we
will define an unstraightening functor Unφ : SetC

∆ → (Set∆)/S . If F : C →
Set∆ is a diagram taking values in Kan complexes, then the associated map
Unφ F → S is a right fibration whose fiber at a point s ∈ S is homotopy
equivalent to the Kan complex F(φ(s)).

Fix a simplicial set S, a simplicial category C, and a functor φ : C[S] → Cop.
Given an object X ∈ (Set∆)/S , let v denote the cone point of X
. We can
view the simplicial category

M = C[X
]
∐
C[X]

Cop

as a correspondence from Cop to {v}, which we can identify with a simplicial
functor

StφX : C → Set∆ .

This functor is described by the formula

(StφX)(C) = MapM(C, v).

We may regard Stφ as a functor from (Set∆)/S to (Set∆)C. We refer to
Stφ as the straightening functor associated to φ. In the special case where
C = C[S]op and φ is the identity map, we will write StS instead of Stφ.
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By the adjoint functor theorem (or by direct construction), the straight-
ening functor Stφ associated to φ : C[S] → Cop has a right adjoint, which
we will denote by Unφ and refer to as the unstraightening functor. We now
record the obvious functoriality properties of this construction.

Proposition 2.2.1.1. (1) Let p : S′ → S be a map of simplicial sets,
C a simplicial category, and φ : C[S] → Cop a simplicial functor,
and let φ′ : C[S′] → Cop denote the composition φ ◦ C[p]. Let p! :
(Set∆)/S′ → (Set∆)/S denote the forgetful functor given by composi-
tion with p. There is a natural isomorphism of functors

Stφ ◦ p! � Stφ′

from (Set∆)/S′ to SetC
∆.

(2) Let S be a simplicial set, π : C → C′ a simplicial functor between
simplicial categories, and φ : C[S] → Cop a simplicial functor. Then
there is a natural isomorphism of functors

Stπop◦φ � π! ◦ Stφ
from (Set∆)/S to SetC′

∆ . Here π! : SetC
∆ → SetC′

∆ is the left adjoint to
the functor π∗ : SetC′

∆ → SetC
∆ given by composition with π.

Our main result is the following:

Theorem 2.2.1.2. Let S be a simplicial set, C a simplicial category, and
φ : C[S] → Cop a simplicial functor. The straightening and unstraightening
functors determine a Quillen adjunction

(Set∆)/S
Stφ ��

SetC
∆

Unφ

�� ,

where (Set∆)/S is endowed with the contravariant model structure and SetC
∆

with the projective model structure. If φ is an equivalence of simplicial cate-
gories, then (Stφ,Unφ) is a Quillen equivalence.

Proof. It is easy to see that Stφ preserves cofibrations and weak equiva-
lences, so that the pair (Stφ,Unφ) is a Quillen adjunction. The real content
of Theorem 2.2.1.2 is the final assertion. Suppose that φ is an equivalence
of simplicial categories; then we wish to show that (Stφ,Unφ) is a Quillen
equivalence. We will prove this result in §2.2.3 as a consequence of Proposi-
tion 2.2.3.11.

2.2.2 Straightening Over a Point

In this section, we will study the behavior of the straightening functor StX
in the case where the simplicial set X = {x} consists of a single vertex. In
this case, we can view StX as a colimit-preserving functor from the category
of simplicial sets to itself. We begin with a few general remarks about such
functors.
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Let ∆ denote the category of combinatorial simplices and Set∆ the cat-
egory of simplicial sets, so that Set∆ may be identified with the category
of presheaves of sets on ∆. If C is any category which admits small co-
limits, then any functor f : ∆ → C extends to a colimit-preserving functor
F : Set∆ → C (which is unique up to unique isomorphism). We may regard
f as a cosimplicial object C• of C. In this case, we shall denote the functor
F by

S �→ |S|C• .

Remark 2.2.2.1. Concretely, one constructs |S|C• by taking the disjoint
union of Sn × Cn and making the appropriate identifications along the
“boundaries.” In the language of category theory, the geometric realization
is given by the coend ∫

[n]∈∆

Sn × Cn.

The functor S �→ |S|C• has a right adjoint which we shall denote by
SingC• . It may be described by the formula

SingC•(X)n = HomC(Cn, X).

Example 2.2.2.2. Let C be the category CG of compactly generated Haus-
dorff spaces and let C• be the cosimplicial space defined by

Cn = {(x0, . . . , xn) ∈ [0, 1]n+1 : x0 + · · · + xn = 1}.
Then |S|C• is the usual geometric realization |S| of the simplicial set S, and
SingC• = Sing is the functor which assigns to each topological space X its
singular complex.

Example 2.2.2.3. Let C be the category Set∆ and let C• be the standard
simplex (the cosimplicial object of Set∆ given by the Yoneda embedding):

Cn = ∆n.

Then ||C• and SingC• are both (isomorphic to) the identity functor on Set∆.

Example 2.2.2.4. Let C = Cat and let f : ∆ → Cat be the functor which
associates to each finite nonempty linearly ordered set J the corresponding
category. Then SingC• = N is the functor which associates to each category
its nerve, and ||C• associates to each simplicial set S the homotopy category
hS as defined in §1.2.3.

Example 2.2.2.5. Let C = Cat∆ and let C• be the cosimplicial object of C

given in Definitions 1.1.5.1 and 1.1.5.3. Then SingC• is the simplicial nerve
functor, and ||C• is its left adjoint

S �→ C[S].
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Let us now return to the case of the straightening functor StX , where
X = {x} consists of a single vertex. The above remarks show that we can
identify StX with the geometric realization functor ||Q• : Set∆ → Set∆ for
some cosimplicial object Q• in Set∆. To describe Q• more explicitly, let us
first define a cosimplicial simplicial set J• by the formula

Jn = (∆n  {y})
∐
∆n

{x}.

The cosimplical simplicial set Q• can then be described by the formula Qn =
MapC[Jn](x, y).

In order to proceed with our analysis, we need to understand better the
cosimplicial object Q• of Set∆. It admits the following description:

• For each n ≥ 0, let P[n] denote the partially ordered set of nonempty
subsets of [n], andK[n] the simplicial set N(P ) (which may be identified
with a simplicial subset of the (n + 1)-cube (∆1)n+1). The simplicial
set Qn is obtained by collapsing, for each 0 ≤ i ≤ n, the subset

(∆1){j:0≤j<i} × {1} × (∆1){j:i<j≤n} ⊆ K[n]

to its quotient (∆1){j:i<j≤n}.

• A map f : [n] → [m] determines a map Pf : P[n] → P[m] by setting
Pf (I) = f(I). The map Pf in turn induces a map of simplicial sets
K[n] → K[m], which determines a map of quotients Qn → Qm when f
is order-preserving.

Remark 2.2.2.6. Let Q• = |Q•| denote the cosimplicial space obtained
by applying the (usual) geometric realization functor to Q•. The space Qn

may be described as a quotient of the cube of all functions p : [n] → [0, 1]
satisfying p(0) = 1. This cube is to be divided by the following equiva-
lence relation: p � p′ if there exists a nonnegative integer i ≤ n such that
p|{i, . . . n} = p′|{i, . . . , n} and p(i) = p′(i) = 1.

Each Qn is homeomorphic to an n-simplex, and these homeomorphisms
may be chosen to be compatible with the face maps of the cosimplicial space
Q•. However, Q• is not isomorphic to the standard simplex because it has
very different degeneracies. For example, the product of the degeneracy map-
pings Qn → (Q1)n is not injective for n ≥ 2.

Our goal for the remainder of this section is to study the functors SingQ•

and ||Q• and to prove that they are “close” to the identity functor. More
precisely, there is a map π : Q• → ∆• of cosimplicial objects of Set∆. It is
induced by a map K[n] → ∆n, which is the nerve of the map of partially
ordered sets P[n] → [n] that carries each nonempty subset of [n] to its largest
element.

Proposition 2.2.2.7. Let S be a simplicial set. Then the map pS : |S|Q• →
S induced by π is a weak homotopy equivalence.
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Proof. Consider the collection A of simplicial sets S for which the assertion
of Proposition 2.2.2.7 holds. Since A is stable under filtered colimits, it will
suffice to prove that every simplicial set S having only finitely many nonde-
generate simplices belongs to A. We prove this by induction on the dimension
n of S and the number of nondegenerate simplices of S of dimension n. If
S = ∅, there is nothing to prove; otherwise we may write

S � S′ ∐
∂∆n

∆n

|S|Q• � |S′|Q•
∐

| ∂∆n|Q•

|∆n|Q• .

Since both of these pushouts are homotopy pushouts, it suffices to show that
pS′ , p∂∆n , and p∆n are weak homotopy equivalences. For pS′ and p∂∆n , this
follows from the inductive hypothesis; for p∆n , we need only observe that
both ∆n and |∆n|Q• = Qn are weakly contractible.

Remark 2.2.2.8. The strategy used to prove Proposition 2.2.2.7 will reap-
pear frequently throughout this book: it allows us to prove theorems about
arbitrary simplicial sets by reducing to the case of simplices.

Proposition 2.2.2.9. The adjoint functors Set∆
||Q• �� Set∆

SingQ•
�� determine a

Quillen equivalence from the category Set∆ (endowed with the Kan model
structure) to itself.

Proof. We first show that the functors (||Q• , SingQ•) determine a Quillen
adjunction from Set∆ to itself. For this, it suffices to prove that the func-
tor S �→ |S|Q• preserves cofibrations and weak equivalences. The case of
cofibrations is easy, and the second case follows from Proposition 2.2.2.7.
To complete the proof, it will suffice to show that the left derived functor
L||Q• determines an equivalence from the homotopy category H to itself.
This follows immediately from Proposition 2.2.2.7, which implies that L||Q•

is equivalent to the identity functor.

Corollary 2.2.2.10. Let X be a Kan complex. Then the counit map

v : | SingQ• X|Q• → X

is a weak homotopy equivalence.

Remark 2.2.2.11. Let S be a simplicial set containing a vertex s. Let C be
a simplicial category, φ : C[S]op → C a simplicial functor, and C = φ(s) ∈ C.
For every simplicial functor F : C → Set∆, there is a canonical isomorphism

(Unφ F) ×S {s} � SingQ• F(C).

In particular, we have a canonical map from F(C) to the fiber (Unφ F)s,
which is a homotopy equivalence if F(C) is fibrant.
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Remark 2.2.2.12. Let C and C′ be simplicial categories. Given a pair of
simplicial functors F : C → Set∆, F′ : C′ → Set∆, we let F �F′ : C×C′ →
Set∆ denote the functor described by the formula

(F �F′)(C,C′) = F(C) × F′(C ′).

Given a pair of simplicial functors φ : C[S]op → C, φ′ : C[S′]op → C′, we let
φ� φ′ denote the induced map C[S ×S′] → C×C′. We observe that there is
a canonical isomorphism of functors

Unφ�φ′(F �F′) � Unφ(F) × Unφ′(F′).

Restricting our attention to the case where S′ = ∆0 and φ′ is an isomor-
phism, we obtain an isomorphism

Unφ(F �K) � Unφ(F) × SingQ• K

for every simplicial set K. In particular, for every pair of functors F,G ∈
SetC

∆, we have a chain of maps

HomSet∆(K,MapSetC
∆
(F,G)) � HomSetC

∆
(F �K,G)

→Hom(Set∆)/S
(Unφ(F �K),Unφ G)

� Hom(Set∆)/S
(Unφ(F) × SingQ• K,Unφ G)

→Hom(Set∆)/S
(Unφ(F) ×K,Unφ G)

� HomSet∆(K,Map(Set∆)/S
(Unφ(F),Unφ(G)).

This construction is natural in K and therefore determines a map of simpli-
cial sets

MapSetC
∆
(F,G) → Map(Set∆)/S

(Unφ F,Unφ G).

Together, these maps endow the unstraightening functor Unφ with the struc-
ture of a simplicial functor from SetC

∆ to (Set∆)/S .

The cosimplicial object Q• of Set∆ will play an important role in our proof
of Theorem 1.1.5.13. To explain this, let us suppose that C is a simplicial
category and S = N(C) is its simplicial nerve. For every pair of vertices
x, y ∈ S, we can consider the right mapping space HomR

S (x, y). By definition,
giving an n-simplex of HomR

S (x, y) is equivalent to giving a map of simplicial
sets Jn → S, which carries x to x and y to y. Using the identification
S � N(C), we see that this is equivalent to giving a map C[Jn] into C, which
again carries x to x and y to y. This is simply the data of a map of simplicial
sets Qn → MapC(x, y). Moreover, this identification is natural with respect
to [n]; we therefore have the following result:

Proposition 2.2.2.13. Let C be a simplicial category and let X,Y ∈ C be
two objects. There is a natural isomorphism of simplicial sets

HomR
N(C)(X,Y ) � SingQ• MapC(X,Y ).
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2.2.3 Straightening of Right Fibrations

Our goal in this section is to prove Theorem 2.2.1.2, which asserts that the
Quillen adjunction

(Set∆)/S
Stφ ��

SetC
∆

Unφ

��

is a Quillen equivalence when φ : C[S] → Cop is an equivalence of simplicial
categories. We first treat the case where S is a simplex.

Lemma 2.2.3.1. Let n be a nonnegative integer, let [n] denote the linearly
ordered set {0, . . . , n}, regarded as a (discrete) simplicial category, and let
φ : C[∆n] → [n] be the canonical functor. Then the Quillen adjunction

(Set∆)/∆n

Stφ ��
Set∆[n]

Unφ

��

is a Quillen equivalence.

Proof. It follows from the definition of the contravariant model structure
that the left derived functor LStφ : h(Set∆)/∆n → hSet[n]

∆ is conservative. It
will therefore suffice to show that the counit map LStφ ◦ RUnφ → id is an
isomorphism of functors from hSet[n]

∆ to itself. For this, we must show that
if F : [n] → Set∆ is projectively fibrant, then the counit map

Stφ Unφ F → F

is an equivalence in Set[n]
∆ . In other words, we may assume that F(i) is a Kan

complex for i ∈ [n], and we wish to prove that each of the induced maps

vi : (StφUnφ F)(i) → F(i)

is a weak homotopy equivalence of simplicial sets.
Let ψ : [n] → [1] be defined by the formula

ψ′(j) =

{
0 if 0 ≤ j ≤ i

1 otherwise.

Then, for every object X ∈ (Set∆)/∆n , we have isomorphisms

(StφX)(i) � (Stψ◦φX)(0) � |X ×∆n ∆{n−i,...,n}|Q• ,

where the twisted geometric realization functor ||Q• is as defined in §2.2.2.
Taking X = Unφ F, we see that vi fits into a commutative diagram

|X ×∆n {n− i}|Q•
∼ ��

� �

��

| SingQ• F(i)|Q•

��
|X ×∆n ∆{n−i,...,n}|Q•

vi �� F(i).

Here the upper horizontal map is an isomorphism supplied by Corollary
2.2.2.11, and the right vertical map is a weak homotopy equivalence by
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Proposition 2.2.2.10. Consequently, to prove that the map vi is a weak homo-
topy equivalence, it will suffice to show that the left vertical map is a weak
homotopy equivalence. In view of Proposition 2.2.2.7, it will suffice to show
that the inclusion

X ×∆n {n− i} ⊆ X ×∆n ∆{n−i,...,n}

is a weak homotopy equivalence. In fact, X ×∆n {n − i} is a deformation
retract of X ×∆n ∆{n−i,...,n}: this follows from the observation that the
projection X → ∆n is a right fibration (Proposition 2.1.4.9).

It will be convenient to restate Lemma 2.2.3.1 in a slightly modified form.
First, we need to introduce a bit of terminology.

Definition 2.2.3.2. Suppose we are given a commutative diagram of sim-
plicial sets

X
f ��

p

���
��

��
��

Y

q
����
��
��
�

S,

where p and q are right fibrations. We will say that f is a pointwise equiv-
alence if, for each vertex s ∈ S, the induced map Xs → Ys is a homotopy
equivalence of Kan complexes.

Remark 2.2.3.3. In the situation of Definition 2.2.3.2, the following con-
ditions are equivalent:

(a) The map f is a pointwise equivalence of right fibrations over S.

(b) The map f is a contravariant equivalence in (Set∆)/S .

(c) The map f is a categorical equivalence of simplicial sets.

The equivalence (a) ⇔ (b) follows from Corollary 2.2.3.13 (see below), and
the equivalence (a) ⇔ (c) from Proposition 3.3.1.5.

Lemma 2.2.3.4. Let S′ ⊆ S be simplicial sets. Let p : X → S be any map
and let q : Y → S be a right fibration. Let X ′ = X×SS

′ and let Y ′ = Y ×SS
′.

The restriction map

φ : Map(Set∆)/S
(X,Y ) → Map(Set∆)/S′ (X

′, Y ′)

is a Kan fibration.

Proof. We first show that φ is a right fibration. It will suffice to show that φ
has the right lifting property with respect to every right anodyne inclusion
A ⊆ B. This follows from the fact that q has the right lifting property with
respect to the induced inclusion

i : (B × S′)
∐
A×S′

(A× S) ⊆ B × S
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since i is again right anodyne (Corollary 2.1.2.7).
Applying the preceding argument to the inclusion ∅ ⊆ S′, we deduce that

the projection map

Map(Set∆)/S′ (X
′, Y ′) → ∆0

is a right fibration. Proposition 1.2.5.1 implies that Map(Set∆)/S′ (X
′, Y ′) is

a Kan complex. Lemma 2.1.3.3 now implies that φ is a Kan fibration, as
desired.

Lemma 2.2.3.5. Let U be a collection of simplicial sets. Suppose that the
following conditions are satisfied:

(i) The collection U is stable under isomorphism. That is, if S ∈ U and
S′ � S, then S′ ∈ U.

(ii) The collection U is stable under the formation of disjoint unions.

(iii) Every simplex ∆n belongs to U.

(iv) Suppose we are given a pushout diagram

X ��

f

��

X ′

��
Y �� Y ′

in which X, X ′, and Y belong to U. If the map f is a monomorphism,
then Y ′ belongs to U.

(v) Suppose we are given a sequence of monomorphisms of simplicial sets

X(0) → X(1) → · · ·
If each X(i) belongs to U, then the colimit lim−→X(i) belongs to U.

Then every simplicial set belongs to U.

Proof. Let S be a simplicial set; we wish to show that S ∈ U. In view of
(v), it will suffice to show that each skeleton skn S belongs to U. We may
therefore assume that S is finite dimensional. We now proceed by induction
on the dimension n of S. Let A denote the set of nondegenerate n-simplexes
of S, so that we have a pushout diagram∐

α∈A ∂∆n ��

��

skn−1 S

��∐
α∈A ∆n �� S.

Invoking assumption (iv), we are reduced to proving that the simplicial sets
skn−1 S,

∐
α∈A ∂∆n, and

∐
α∈A ∆n belong to U. For the first two this follows

from the inductive hypothesis, and for the last it follows from assumptions
(ii) and (iii).
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Lemma 2.2.3.6. Suppose we are given a commutative diagram of simplicial
sets

X
f ��

p

���
��

��
��

Y

q
����
��
��
�

S,

where p and q are right fibrations. The following conditions are equivalent:

(a) The map f is a pointwise equivalence.

(b) The map f is an equivalence in the simplicial category (Set∆)/S (that
is, f admits a homotopy inverse).

(c) For every object A ∈ (Set∆)/S , composition with f induces a homotopy
equivalence of Kan complexes

Map(Set∆)/S
(A,X) → Map(Set∆)/S

(A, Y ).

Proof. The implication (b) ⇒ (a) is clear (any homotopy inverse to f deter-
mines homotopy inverses for the maps fs : Xs → Ys for each vertex s ∈ S),
and the implication (c) ⇒ (b) follows from Proposition 1.2.4.1. We will prove
that (a) ⇒ (c). Let U denote the collection of all simplicial sets A such that,
for every map A → S, composition with f induces a homotopy equivalence
of Kan complexes

Map(Set∆)/S
(A,X) → Map(Set∆)/S

(A, Y ).

We will show that U satisfies the hypotheses of Lemma 2.2.3.5 and therefore
contains all simplicial sets. Conditions (i) and (ii) are obvious, and con-
ditions (iv) and (v) follow from Lemma 2.2.3.4. It will therefore suffice to
show that every simplex ∆n belongs to U. For every map ∆n → S, we have
a commutative diagram

Map(Set∆)/S
(∆n, X) ��

��

Map(Set∆)/S
(∆n, Y )

��
Map(Set∆)/S

({n}, X) �� Map(Set∆)/S
({n}, Y ).

Since the inclusion {n} ⊆ ∆n is right anodyne, the vertical maps are trivial
Kan fibrations. It will therefore suffice to show that the bottom horizontal
map is a homotopy equivalence, which follows immediately from (a).

Lemma 2.2.3.7. Let φ : C[∆n] → [n] be as in Lemma 2.2.3.1. Suppose we
are given a right fibration X → ∆n, a projectively fibrant diagram F ∈ Set[n]

∆ ,
and a weak equivalence of diagrams α : StφX → F. Then the adjoint map
X → Unφ F is a pointwise equivalence of left fibrations over ∆n.
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Proof. For 0 ≤ i ≤ n, let X(i) = X ×∆n ∆{n−i,...,n} ⊆ X. We observe
that (StφX)(i) is canonically isomorphic to the twisted geometric realization
|X(i)|Q• , where Q• is defined as in §2.2.2. Since X → ∆n is a right fibration,
the fiber X ×∆n {i} is a deformation retract of X(i). Using Proposition
2.2.2.7, we conclude that the induced inclusion |X×∆n {n−i}|Q• → |X(i)|Q•

is a weak homotopy equivalence. Since α is a weak equivalence, we get weak
equivalences |X×∆n {n−i}|Q• → F(i) for each 0 ≤ i ≤ n. Using Proposition
2.2.2.9, we deduce that the adjoint maps X ×∆n {n− i} → SingQ• F(i) are
again weak homotopy equivalences. The desired result now follows from the
observation that SingQ• F(i) � (Unφ F) ×∆n {n− i} (Remark 2.2.2.11).

Notation 2.2.3.8. For every simplicial set S, we let RFib(S) denote the
full subcategory of (Set∆)/S spanned by those maps X → S which are right
fibrations.

Proposition 2.1.4.9 implies that if p : X → S exhibits X as a fibrant object
of the contravariant model category (Set∆)/S , then p is a right fibration. We
will prove the converse below (Corollary 2.2.3.12). For the moment, we will
be content with the following weaker result:

Lemma 2.2.3.9. For every integer n ≥ 0, the inclusion i : (Set∆)◦/∆n ⊆
RFib(∆n) is an equivalence of simplicial categories.

Proof. It is clear that i is fully faithful. To prove that i is essentially surjec-
tive, consider any left fibration X → ∆n. Let φ : C[∆n] → [n] be defined as in
Lemma 2.2.3.1 and choose a weak equivalence StφX → F, where F ∈ Set[n]

∆

is a projectively fibrant diagram. Lemma 2.2.3.7 implies that the adjoint map
X → Unφ F is a pointwise equivalence of right fibrations in ∆n and there-
fore a homotopy equivalence in RFib(∆n) (Lemma 2.2.3.6). It now suffices
to observe that Unφ F ∈ (Set∆)◦/∆n .

Lemma 2.2.3.10. For each integer n ≥ 0, the unstraightening functor
Un∆n : (SetC[∆n]

∆ )◦ → RFib(∆n) is an equivalence of simplicial categories.

Proof. In view of Lemma 2.2.3.9 and Proposition A.3.1.10, it will suffice
to show that the Quillen adjunction (St∆n ,Un∆n) is a Quillen equivalence.
This follows immediately from Lemma 2.2.3.1 and Proposition A.3.3.8.

Proposition 2.2.3.11. For every simplicial set S, the unstraightening func-
tor UnS induces an equivalence of simplicial categories

(SetC[S]op

∆ )◦ → RFib(S).

Proof. For each simplicial set S, let (SetC[S]op

∆ )f denote the category of pro-
jectively fibrant objects of SetC[S]op

∆ and let WS be the class of weak equiva-
lences in (SetC[S]op

∆ )f . Let W ′
S be the collection of pointwise equivalences in
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RFib(S). We have a commutative diagram of simplicial categories:

(SetC[S]op

∆ )◦
UnS ��

��

RFib(S)

ψS

��
(SetC[S]op

∆ )f [W−1
S ]

φS �� RFib[W ′−1
S ]

(see Notation A.3.5.1). Lemma A.3.6.17 implies that the left vertical map is
an equivalence. Using Lemma 2.2.3.6 and Remark A.3.2.14, we deduce that
the right vertical map is also an equivalence. It will therefore suffice to show
that φS is an equivalence.

Let U denote the collection of simplicial sets S for which φS is an equiv-
alence. We will show that U satisfies the hypotheses of Lemma 2.2.3.5 and
therefore contains every simplicial set S. Conditions (i) and (ii) are obviously
satisfied, and condition (iii) follows from Lemma 2.2.3.10 and Proposition
A.3.1.10. We will verify condition (iv); the proof of (v) is similar.

Applying Corollary A.3.6.18, we deduce:

(∗) The functor S �→ (SetC[S]op

∆ )f [W−1
S ] carries homotopy colimit diagrams

indexed by a partially ordered set to homotopy limit diagrams in Cat∆.

Suppose we are given a pushout diagram

X ��

f

��

X ′

��
Y �� Y ′

in which X,X ′, Y ∈ U, where f is a cofibration. We wish to prove that
Y ′ ∈ U. We have a commutative diagram

(SetC[Y ′]op

∆ )f [W−1
Y ′ ]

φY ′ �� RFib(Y ′)[W ′−1
Y ′ ]

u ��

v

��

w

����
���

���
���

��
RFib(Y )[W ′−1

Y ]

��
RFib(X ′)[W ′−1

X′ ] �� RFib(X)[W ′−1
X ].

Using (∗) and Corollary A.3.2.28, we deduce that φY ′ is an equivalence if
and only if, for every pair of objects x, y ∈ RFib(Y ′)[W ′−1

Y ′ ], the diagram of
simplicial sets

MapRFib(Y ′)[W ′−1
Y ′ ]

(x, y) ��

��

MapRFib(Y )[W ′−1
Y ](u(x), u(y))

��
MapRFib(X′)[W ′−1

X′ ]
(v(x), v(y)) �� MapRFib(X)[W ′−1

X ](w(x), w(y))

is homotopy Cartesian. Since ψY ′ is a weak equivalence of simplicial cate-
gories, we may assume without loss of generality that x = ψY ′(x) and that
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y = ψY ′(y) for some x, y ∈ (Set∆)◦/Y ′ . It will therefore suffice to prove that
the equivalent diagram

MapRFib(Y ′)(x, y) ��

��

MapRFib(Y )(u(x), u(y))

��
MapRFib(X′)(v(x), v(y))

g �� MapRFib(X)(w(x), w(y))

is homotopy Cartesian. But this diagram is a pullback square, and the map
g is a Kan fibration by Lemma 2.2.3.4.

We can now complete the proof of Theorem 2.2.1.2. Suppose that φ :
C[S] → Cop is an equivalence of simplicial categories; we wish to show that
the adjoint functors (Stφ,Unφ) determine a Quillen equivalence between
(Set∆)/S and SetC

∆. Using Proposition A.3.3.8, we can reduce to the case
where φ is an isomorphism. In view of Proposition A.3.1.10, it will suffice to
show that Unφ induces an equivalence of simplicial categories (SetC[S]op

∆ )◦ →
(Set∆)◦/S , which follows immediately from Proposition 2.2.3.11.

Corollary 2.2.3.12. Let p : X → S be a map of simplicial sets. The fol-
lowing conditions are equivalent:

(1) The map p is a right fibration.

(2) The map p exhibits X as a fibrant object of (Set∆)/S (with respect to
the contravariant model structure).

Proof. The implication (2) ⇒ (1) follows from Proposition 2.1.4.9. For the
converse, let us suppose that p is a right fibration. Proposition 2.2.3.11 im-
plies that the unstraightening functor UnS : (SetC[S]op

∆ )◦ → FunR(S) is es-
sentially surjective. Since UnS factors through the inclusion i : (Set∆)◦/S ⊆
FunR(S), we deduce that i is essentially surjective. Consequently, we can
choose a simplicial homotopy equivalence f : X → Y in (Set∆)/S , where Y
is fibrant. Let g be a homotopy inverse to X so that there exists a homotopy
h : X × ∆1 → X from idX to g ◦ f .

To prove that X is fibrant, we must show that every lifting problem

A� �

j

��

e0 �� X

p

��
B

e

���
�

�
�

�� S
has a solution, provided that j is a trivial cofibration in the contravariant
model category (Set∆)/S . Since Y is fibrant, the map f ◦ e0 can be extended
to a map e : B → Y in (Set∆)/S . Let e′ = g◦e. The maps e and h◦(e0×id∆1)
determine another lifting problem

(A× ∆1)
∐
A×{1}(B × {1})

� �

j′

��

�� X

p

��
B × ∆1 ��

E

����������
S.
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Proposition 2.1.2.6 implies that j′ is right anodyne. Since p is a right fibra-
tion, there exists an extension E as indicated in the diagram. The restriction
e = E|B × {0} is then a solution the original problem.

Corollary 2.2.3.13. Suppose we are given a diagram of simplicial sets

X
p

���
��

��
��

f �� Y

q
����
��
��
�

S,

where p and q are right fibrations. Then f is a contravariant equivalence in
(Set∆)/S if and only if f is a pointwise equivalence.

Proof. Since (Set∆)/S is a simplicial model category, this follows immedi-
ately from Corollary 2.2.3.12 and Lemma 2.2.3.6.

Corollary 2.2.3.12 admits the following generalization:

Corollary 2.2.3.14. Suppose we are given a diagram of simplicial sets

X
f ��

p

���
��

��
��

Y

q
����
��
��
�

S,

where p and q are right fibrations. Then f is a contravariant fibration in
(Set∆)/S if and only if f is a right fibration.

Proof. The map f admits a factorization

X
f ′
→ X ′ f ′′

→ Y,

where f ′ is a contravariant equivalence and f ′′ is a contravariant fibration
(in (Set∆)/S). Proposition 2.1.4.9 implies that f ′′ is a right fibration, so the
composition q ◦ f ′′ is a right fibration. Invoking Corollary 2.2.3.13, we con-
clude that for every vertex s ∈ S, the map f ′ induces a homotopy equivalence
of fibers Xs → X ′

s. Consider the diagram

Xs

f ′
s ��

���
��

��
��

� X ′
s

����
��
��
��

Ys.

The vertical maps in this diagram are right fibrations between Kan com-
plexes and therefore Kan fibrations (Lemma 2.1.3.3). Since fs is a homotopy
equivalence, we conclude that the induced map of fibers f ′y : Xy → X ′

y is a
homotopy equivalence for each vertex y ∈ Y . Invoking Lemma 2.2.3.6, we
deduce that f ′ is an equivalence in the simplicial category (Set∆)/Y .
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We can now repeat the proof of Corollary 2.2.3.12. Let g be a homotopy
inverse to f ′ in the simplicial category (Set∆)/Y and let h : X × ∆1 → X
be a homotopy from idX to g ◦ f ′ (which projects to the identity on Y ). To
prove that f is a covariant fibration, we must show that every lifting problem

A� �

j

��

e0 �� X

f

��
B

e

���
�

�
�

�� Y

has a solution provided that j is a trivial cofibration in the contravariant
model category (Set∆)/S . Since f ′′ is a contravariant fibration, the map
f ′ ◦ e0 can be extended to a map e : B → X ′ in (Set∆)/Y . Let e′ = g ◦ e.
The maps e and h ◦ (e0 × id∆1) determine another lifting problem

(A× ∆1)
∐
A×{1}(B × {1})

� �

j′

��

�� X

f

��
B × ∆1 ��

E

����������
Y.

Proposition 2.1.2.6 implies that j′ is right anodyne. Since f is a right fibra-
tion, there exists an extension E as indicated in the diagram. The restriction
e = E|B × {0} is then a solution to the original problem.

We conclude this section with one more result which will be useful in
studying the Joyal model structure on Set∆. Suppose that f : X → S is
any map of simplicial sets and that {s} is a vertex of S. Let Q• denote the
cosimplicial object of Set∆ defined in §2.2.2. Then we have a canonical map

|Xs|Q• � (St{s}Xs)(s) → (StSX)(s).

Proposition 2.2.3.15. Suppose that f : X → S is a right fibration of
simplicial sets. Then for each vertex s of S, the canonical map φ : |Xs|Q• →
(StSX)(s) is a weak homotopy equivalence of simplicial sets.

Proof. Choose a weak equivalence StSX → F, where F : C[S]op → Set∆ is a
projectively fibrant diagram. Theorem 2.2.1.2 implies that the adjoint map
X → UnS(F) is a contravariant equivalence in (Set∆)/S . Applying the “only
if” direction of Corollary 2.2.3.12, we conclude that each of the induced maps

Xs → (UnS F)s � SingQ• F(s)

is a homotopy equivalence of Kan complexes. Using Proposition 2.2.2.9, we
deduce that the adjoint map |Xs|Q• → F(s) is a weak homotopy equivalence.
It follows from the two-out-of-three property that φ is also a weak homotopy
equivalence.
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2.2.4 The Comparison Theorem

Let S be an ∞-category containing a pair of objects x and y and let Q• de-
note the cosimplicial object of Set∆ described in §2.2.2. We have a canonical
map of simplicial sets

f : |HomR
S (x, y)|Q• → MapC[S](x, y).

Moreover, in the special case where S is the nerve of a fibrant simplicial
category C, the composition

|HomR
S (x, y)|Q•

f→ MapC[S](x, y) → MapC(x, y)
can be identified with the counit map

|SingQ• MapC(x, y)|Q• → MapC(X,Y )
and is therefore a weak equivalence (Proposition 2.2.2.10). Consequently, we
may reformulate Theorem 2.2.0.1 in the following way:

Proposition 2.2.4.1. Let S be an ∞-category containing a pair of objects
x and y. Then the natural map

f : |HomR
S (x, y)|Q• → MapC[S](x, y)

is a weak homotopy equivalence of simplicial sets.

Proof. Let C = S
/y
∐
S/y

S and let v denote the image in C of the cone point
of S
/y. There is a canonical projection π : C → S, which induces a map of
simplicial sets

f ′′ : (StSS/y)(x) → MapC[S](x, y).
The map f can be identified with the composition f ′′ ◦ f ′, where f ′ is the
map

|HomR
S (x, y)|Q• � (St{x}S/y ×S {x})(x) → (StSS/y)(x).

Since the projection S/y → S is a right fibration, the map f ′ is a weak homo-
topy equivalence (Proposition 2.2.3.15). It will therefore suffice to show that
f ′′ is a weak homotopy equivalence. To see this, we consider the commutative
diagram

(StSS/y)(x)
f ′′

����
���

���
���

�

(StS{y})(x)

g
��������������

h �� MapC[S](x, y).

The inclusion i : {y} ⊆ S/y is a retract of the inclusion

(S/y × {1})
∐

{y}×{1}
({idy} × ∆1) ⊆ S/y × ∆1,

which is right anodyne by Corollary 2.1.2.7. It follows that i is a contravari-
ant equivalence in (Set∆)/S (Proposition 2.1.4.9), so the map g is a weak
homotopy equivalence of simplicial sets. Since the map h is an isomorphism,
the map f ′′ is also a weak homotopy equivalence by virtue of the two-out-
of-three property.
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2.2.5 The Joyal Model Structure

The category of simplicial sets can be endowed with a model structure for
which the fibrant objects are precisely the ∞-categories. The original con-
struction of this model structure is due to Joyal, who uses purely combinato-
rial arguments ([44]). In this section, we will exploit the relationship between
simplicial categories and ∞-categories to give an alternative description of
this model structure. Our discussion will make use of a model structure on
the category Cat∆ of simplicial categories, which we review in §A.3.2.

Theorem 2.2.5.1. There exists a left proper combinatorial model structure
on the category of simplicial sets with the following properties:

(C) A map p : S → S′ of simplicial sets is a cofibration if and only if it is
a monomorphism.

(W ) A map p : S → S′ is a categorical equivalence if and only if the in-
duced simplicial functor C[S] → C[S′] is an equivalence of simplicial
categories.

Moreover, the adjoint functors (C,N) determine a Quillen equivalence be-
tween Set∆ (with the model structure defined above) and Cat∆.

Our proof will make use of the theory of inner anodyne maps of simplicial
sets, which we will study in detail in §2.3. We first establish a simple lemma.

Lemma 2.2.5.2. Every inner anodyne map f : A → B of simplicial sets is
a categorical equivalence.

Proof. It will suffice to prove that if f is inner anodyne, then the associated
map C[f ] is a trivial cofibration of simplicial categories. The collection of all
morphisms f for which this statement holds is weakly saturated (Definition
A.1.2.2). Consequently, we may assume that f is an inner horn inclusion
Λni ⊆ ∆n, 0 < i < n. We now explicitly describe the map C[f ]:

• The objects of C[∂ Λni ] are the objects of C[∆n]: namely, elements of
the linearly ordered set [n] = {0, . . . , n}.

• For 0 ≤ j ≤ k ≤ n, the simplicial set MapC[Λn
i ](j, k) is equal to

MapC[∆n](j, k) unless j = 0 and k = n. In the latter case,

MapC[Λn
i ](j, k) = K ⊆ (∆1)n−1 � MapC[∆n](j, k),

where K is the simplicial subset of the cube (∆1)n−1 obtained by
removing the interior and a single face.

We observe that C[f ] is a pushout of the inclusion EK ⊆ E(∆1)n−1 (see
§A.3.2 for an explanation of this notation). It now suffices to observe that
the inclusion K ⊆ (∆1)n−1 is a trivial fibration of simplicial sets (with
respect to the usual model structure on Set∆).
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Proof of Theorem 2.2.5.1. We first show that C carries cofibrations of simpli-
cial sets to cofibrations of simplicial categories. Since the class of all cofibra-
tions of simplicial sets is generated by the inclusions ∂∆n ⊆ ∆n, it suffices
to show that each map C[∂∆n] → C[∆n] is a cofibration of simplicial cat-
egories. If n = 0, then the inclusion C[∂∆n] ⊆ C[∆n] is isomorphic to the
inclusion ∅ ⊆ ∗ of simplicial categories, which is a cofibration. In the case
where n > 0, we make use of the following explicit description of C[∂∆n] as
a subcategory of C[∆n]:

• The objects of C[∂∆n] are the objects of C[∆n]: namely, elements of
the linearly ordered set [n] = {0, . . . , n}.

• For 0 ≤ j ≤ k ≤ n, the simplicial set HomC[∂∆n](j, k) is equal to
HomC[∆n](j, k) unless j = 0 and k = n. In the latter case, the simplicial
set HomC[∂∆n](j, k) consists of the boundary of the cube

(∆1)n−1 � HomC[∆n](j, k).

In particular, the inclusion C[∂∆n] ⊆ C[∆n] is a pushout of the inclusion
E∂(∆1)n−1 ⊆ E(∆1)n−1 , which is a cofibration of simplicial categories (see
§A.3.2 for an explanation of our notation).

We now declare that a map p : S → S′ of simplicial sets is a categorical
fibration if it has the right lifting property with respect to all maps which are
cofibrations and categorical equivalences. We now claim that the cofibrations,
categorical equivalences, and categorical fibrations determine a left proper
combinatorial model structure on Set∆. To prove this, it will suffice to show
that the hypotheses of Proposition A.2.6.13 are satisfied:

(1) The class of categorical equivalences in Set∆ is perfect. This follows
from Corollary A.2.6.12 since the functor C preserves filtered colimits
and the class of equivalences between simplicial categories is perfect.

(2) The class of categorical equivalences is stable under pushouts by cofi-
brations. Since C preserves cofibrations, this follows immediately from
the left properness of Cat∆.

(3) A map of simplicial sets which has the right lifting property with re-
spect to all cofibrations is a categorical equivalence. In other words,
we must show that if p : S → S′ is a trivial fibration of simplicial
sets, then the induced functor C[p] : C[S] → C[S′] is an equivalence of
simplicial categories.

Since p is a trivial fibration, it admits a section s : S′ → S. It is clear
that C[p] ◦ C[s] is the identity; it therefore suffices to show that

C[s] ◦ C[p] : C[S] → C[S]

is homotopic to the identity.

Let K denote the simplicial set MapS′(S, S). Then K is a contractible
Kan complex containing vertices x and y which classify s ◦ p and idS .
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We note the existence of a natural “evaluation map” e : K × S → S
such that s ◦ p = e ◦ ({x} × idS), idS = e ◦ ({y} × idS). It therefore
suffices to show that the functor C carries {x}× idS and {y}× idS into
homotopic morphisms. Since both of these maps section the projection
K × S → S, it suffices to show that the projection C[K × S] → C[S] is
an equivalence of simplicial categories. Replacing S by S ×K and S′

by S, we are reduced to the special case where S = S′ ×K and K is
a contractible Kan complex.

By the small object argument, we can find an inner anodyne map S′ →
V , where V is an ∞-category. The corresponding map S′×K → V ×K
is also inner anodyne (Proposition 2.3.2.1), so the maps C[S′] → C[V ]
and C[S′×K] → C[V ×K] are both trivial cofibrations (Lemma 2.2.5.2).
It follows that we are free to replace S′ by V and S by V ×K. In other
words, we may suppose that S′ is an ∞-category (and now we will have
no further need of the assumption that S is isomorphic to the product
S′ ×K).

Since p is surjective on vertices, it is clear that C[p] is essentially
surjective. It therefore suffices to show that for every pair of ver-
tices x, y ∈ S0, the induced map of simplicial sets MapC[S](x, y) →
MapC[S′](p(x), p(y)) is a weak homotopy equivalence. Using Proposi-
tions 2.2.4.1 and 2.2.2.7, it suffices to show that the map HomR

S (x, y) →
HomR

S′(p(x), p(y)) is a weak homotopy equivalence. This map is obvi-
ously a trivial fibration if p is a trivial fibration.

By construction, the functor C preserves weak equivalences. We verified
above that C preserves cofibrations as well. It follows that the adjoint func-
tors (C,N) determine a Quillen adjunction

Set∆
C �� Cat∆
N

�� .

To complete the proof, we wish to show that this Quillen adjunction is a
Quillen equivalence. According to Proposition A.2.5.1, we must show that
for every simplicial set S and every fibrant simplicial category C, a map

u : S → N(C)

is a categorical equivalence if and only if the adjoint map

v : C[S] → C

is an equivalence of simplicial categories. We observe that v factors as a
composition

C[S]
C[u]−→ C[N(C)] w→ C .

By definition, u is a categorical equivalence if and only if C[u] is an equiva-
lence of simplicial categories. We now conclude by observing that the counit
map w is an equivalence of simplicial categories (Theorem 2.2.0.1).
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We now establish a few pleasant properties enjoyed by the Joyal model
structure on Set∆. We first note that every object of Set∆ is cofibrant; in
particular, the Joyal model structure is left proper (Proposition A.2.4.2).

Remark 2.2.5.3. The Joyal model structure is not right proper. To see
this, we note that the inclusion Λ2

1 ⊆ ∆2 is a categorical equivalence, but it
does not remain so after pulling back via the fibration ∆{0,2} ⊆ ∆2.

Corollary 2.2.5.4. Let f : A → B be a categorical equivalence of simplicial
sets and K an arbitrary simplicial set. Then the induced map A×K → B×K
is a categorical equivalence.

Proof. Choose an inner anodyne map B → Q, where Q is an ∞-category.
Then B×K → Q×K is also inner anodyne, hence a categorical equivalence
(Lemma 2.2.5.2). It therefore suffices to prove that A × K → Q × K is a
categorical equivalence. In other words, we may suppose to begin with that
B is an ∞-category.

Now choose a factorization A
f ′
→ R

f ′′
→ B, where f ′ is an inner anodyne map

and f ′′ is an inner fibration. Since B is an ∞-category, R is an ∞-category.
The map A × K → R × K is inner anodyne (since f ′ is) and therefore a
categorical equivalence; consequently, it suffices to show that R×K → B×K
is a categorical equivalence. In other words, we may reduce to the case where
A is also an ∞-category.

Choose an inner anodyne map K → S, where S is an ∞-category. Then
A×K → A× S and B ×K → B × S are both inner anodyne and therefore
categorical equivalences. Thus, to prove that A × K → B × K is a cate-
gorical equivalence, it suffices to show that A× S → B × S is a categorical
equivalence. In other words, we may suppose that K is an ∞-category.

Since A, B, and K are ∞-categories, we have canonical isomorphisms
h(A × K ) � hA × hK h(B × K ) � hB × hK .

It follows that A ×K → B ×K is essentially surjective provided that f is
essentially surjective. Furthermore, for any pair of vertices (a, k), (a′, k′) ∈
(A×K)0, we have

HomR
A×K((a, k), (a′, k′)) � HomR

A(a, a′) × HomR
K(k, k′)

HomR
B×K((f(a), k), (f(a′), k′)) � HomR

B(f(a), f(a′)) × HomR
K(k, k′).

This shows that A × K → B × K is fully faithful provided that f is fully
faithful, which completes the proof.

Remark 2.2.5.5. Since every inner anodyne map is a categorical equiva-
lence, it follows that every categorical fibration p : X → S is a inner fibration
(see Definition 2.0.0.3). The converse is false in general; however, it is true
when S is a point. In other words, the fibrant objects for the Joyal model
structure on Set∆ are precisely the ∞-categories. The proof will be given in
§2.4.6 as Theorem 2.4.6.1. We will assume this result for the remainder of
the section. No circularity will result from this because the proof of Theorem
2.4.6.1 will not use any of the results proven below.



FIBRATIONS OF SIMPLICIAL SETS 93

The functor C[•] does not generally commute with products. However,
Corollary 2.2.5.4 implies that C commutes with products in the following
weak sense:

Corollary 2.2.5.6. Let S and S′ be simplicial sets. The natural map
C[S × S′] → C[S] × C[S′]

is an equivalence of simplicial categories.

Proof. Suppose first that there are fibrant simplicial categories C, C′ with
S = N(C), S′ = N(C′). In this case, we have a diagram

C[S × S′]
f→ C[S] × C[S′]

g→ C×C′ .
By the two-out-of-three property, it suffices to show that g and g ◦ f are
equivalences. Both of these assertions follow immediately from the fact that
the counit map C[N(D)] → D is an equivalence for any fibrant simplicial
category D (Theorem 2.2.5.1).

In the general case, we may choose categorical equivalences S → T , S′ →
T ′, where T and T ′ are nerves of fibrant simplicial categories. Since S×S′ →
T ×T ′ is a categorical equivalence, we reduce to the case treated above.

Let K be a fixed simplicial set and let C be a simplicial set which is
fibrant with respect to the Joyal model structure. Then C has the extension
property with respect to all inner anodyne maps and is therefore an ∞-
category. It follows that Fun(K,C) is also an ∞-category. We might call
two morphisms f, g : K → C homotopic if they are equivalent when viewed
as objects of Fun(K,C). On the other hand, the general theory of model
categories furnishes another notion of homotopy: f and g are left homotopic
if the map

f
∐

g : K
∐

K → C

can be extended over a mapping cylinder I for K.

Proposition 2.2.5.7. Let C be a ∞-category and K an arbitrary simplicial
set. A pair of morphisms f, g : K → C are homotopic if and only if they are
left-homotopic.

Proof. Choose a contractible Kan complex S containing a pair of distinct
vertices, x and y. We note that the inclusion

K
∐

K � K × {x, y} ⊆ K × S

exhibits K × S as a mapping cylinder for K. It follows that f and g are left
homotopic if and only if the map f

∐
g : K

∐
K → C admits an extension

to K × S. In other words, f and g are left homotopic if and only if there
exists a map h : S → CK such that h(x) = f and h(y) = g. We note that
any such map factors through Z, where Z ⊆ Fun(K,C) is the largest Kan
complex contained in CK . Now, by classical homotopy theory, the map h
exists if and only if f and g belong to the same path component of Z. It is
clear that this holds if and only if f and g are equivalent when viewed as
objects of the ∞-category Fun(K,C).
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We are now in a position to prove Proposition 1.2.7.3, which was asserted
without proof in §1.2.7. We first recall the statement.

Proposition. Let K be an arbitrary simplicial set.

(1) For every ∞-category C, the simplicial set Fun(K,C) is an ∞-category.

(2) Let C → D be a categorical equivalence of ∞-categories. Then the
induced map Fun(K,C) → Fun(K,D) is a categorical equivalence.

(3) Let C be an ∞-category and K → K′ a categorical equivalence of sim-
plicial sets. Then the induced map Fun(K ′,C) → Fun(K,C) is a cate-
gorical equivalence.

Proof. We first prove (1). To show that Fun(K,C) is an ∞-category, it suf-
fices to show that it has the extension property with respect to every inner
anodyne inclusion A ⊆ B. This is equivalent to the assertion that C has the
right lifting property with respect to the inclusion A ×K ⊆ B ×K. But C

is an ∞-category and A×K ⊆ B ×K is inner anodyne (Corollary 2.3.2.4).
Let hSet∆ denote the homotopy category of Set∆ taken with respect to

the Joyal model structure. For each simplicial set X, we let [X] denote
the same simplicial set considered as an object of hSet∆. For every pair of
objects X,Y ∈ Set∆, [X×Y ] is a product of [X] and [Y ] in hSet∆. This is a
general fact when X and Y are fibrant; in the general case, we choose fibrant
replacements X → X ′, Y → Y ′ and apply the fact that the canonical map
X × Y → X ′ × Y ′ is a categorical equivalence (Corollary 2.2.5.4).

If C is an ∞-category, then C is a fibrant object of Set∆ (Theorem 2.4.6.1).
Proposition 2.2.5.7 allows us to identify HomhSet∆([X], [C]) with the set of
equivalence classes of objects in the ∞-category Fun(X,C). In particular, we
have canonical bijections

HomhSet∆([X] × [K], [C])�HomhSet∆([X ×K], [C])
�HomhSet∆([X], [Fun(K,C)]).

It follows that [Fun(K,C)] is determined up to canonical isomorphism by [K]
and [C] (more precisely, it is an exponential [C][K] in the homotopy category
hSet∆), which proves (2) and (3).

Our description of the Joyal model structure on Set∆ is different from the
definition given in [44]. Namely, Joyal defines a map f : A → B to be a weak
categorical equivalence if, for every ∞-category C, the induced map

hFun(B ,C) → hFun(A,C)

is an equivalence (of ordinary categories). To prove that our definition agrees
with his, it will suffice to prove the following.

Proposition 2.2.5.8. Let f : A → B be a map of simplicial sets. Then f is
a categorical equivalence if and only if it is a weak categorical equivalence.
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Proof. Suppose first that f is a categorical equivalence. If C is an arbitrary
∞-category, Proposition 1.2.7.3 implies that the induced map Fun(B,C) →
Fun(A,C) is a categorical equivalence, so that hFun(B ,C) → hFun(A,C)
is an equivalence of categories. This proves that f is a weak categorical
equivalence.

Conversely, suppose that f is a weak categorical equivalence. We wish to
show that f induces an isomorphism in the homotopy category of Set∆ with
respect to the Joyal model structure. It will suffice to show that for any
fibrant object C, f induces a bijection [B,C] → [A,C], where [X,C] denotes
the set of homotopy classes of maps from X to C. By Proposition 2.2.5.7,
[X,C] may be identified with the set of isomorphism classes of objects in the
category hFun(X ,C). By assumption, f induces an equivalence of categories
hFun(B ,C) → hFun(A,C) and therefore a bijection on isomorphism classes
of objects.

Remark 2.2.5.9. The proof of Proposition 1.2.7.3 makes use of Theo-
rem 2.4.6.1, which asserts that the (categorically) fibrant objects of Set∆
are precisely the ∞-categories. Joyal proves the analogous assertion for his
model structure in [44]. We remark that one cannot formally deduce Theo-
rem 2.4.6.1 from Joyal’s result since we need Theorem 2.4.6.1 to prove that
Joyal’s model structure coincides with the one we have defined above. On
the other hand, our approach does give a new proof of Joyal’s theorem.

Remark 2.2.5.10. Proposition 2.2.5.8 permits us to define the Joyal model
structure without reference to the theory of simplicial categories (this is
Joyal’s original point of view [44]). Our approach is less elegant but allows
us to easily compare the theory of ∞-categories with other models of higher
category theory, such as simplicial categories. There is another approach to
obtaining comparison results, due to Toën. In [76], he shows that if C is
a model category equipped with a cosimplicial object C• satisfying certain
conditions, then C is (canonically) Quillen equivalent to Rezk’s category of
complete Segal spaces. Toën’s theorem applies in particular when C is the
category of simplicial sets and C• is the “standard simplex” Cn = ∆n. In
fact, Set∆ is in some sense universal with respect to this property because it
is generated by C• under colimits and the class of categorical equivalences
is dictated by Toën’s axioms. We refer the reader to [76] for details.

2.3 INNER FIBRATIONS

In this section, we will study the theory of inner fibrations between simplicial
sets. The meaning of this notion is somewhat difficult to explain because it
has no counterpart in classical category theory: Proposition 1.1.2.2 implies
that every functor between ordinary categories C → D induces an inner
fibration of nerves N(C) → N(D).

In the case where S is a point, a map p : X → S is an inner fibration
if and only if X is an ∞-category. Moreover, the class of inner fibrations is
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stable under base change: if

X ′

p′

��

�� X

p

��
S′ �� S

is a pullback diagram of simplicial sets and p is an inner fibration, then so is
p′. It follows that if p : X → S is an arbitrary inner fibration, then each fiber
Xs = X ×S {s} is an ∞-category. We may therefore think of p as encoding
a family of ∞-categories parametrized by S. However, the fibers Xs depend
functorially on s only in a very weak sense.

Example 2.3.0.1. Let F : C → C′ be a functor between ordinary categories.
Then the map N(C) → N(C′) is an inner fibration. Yet the fibers N(C)C =
N(C×C′{C}) and N(C)D = N(C×C′{D}) over objects C,D ∈ C′ can have
wildly different properties even if C and D are isomorphic objects of C′.

In order to describe how the different fibers of an inner fibration are related
to one another, we will introduce the notion of a correspondence between ∞-
categories. We review the classical theory of correspondences in §2.3.1 and
explain how to generalize this theory to the ∞-categorical setting.

In §2.3.2, we will prove that the class of inner anodyne maps is stable
under smash products with arbitrary cofibrations between simplicial sets.
As a consequence, we will deduce that the class of inner fibrations (and
hence the class of ∞-categories) is stable under the formation of mapping
spaces.

In §2.3.3, we will study the theory of minimal inner fibrations, a general-
ization of Quillen’s theory of minimal Kan fibrations. In particular, we will
define a class of minimal ∞-categories and show that every ∞-category C

is (categorically) equivalent to a minimal ∞-category C′, where C′ is well-
defined up to (noncanonical) isomorphism. We will apply this theory in §2.3.4
to develop a theory of n-categories for n < ∞.

2.3.1 Correspondences

Let C and C′ be categories. A correspondence from C to C′ is a functor
M : Cop×C′ → Set .

If M is a correspondence from C to C′, we can define a new category C M C′

as follows. An object of C M C′ is either an object of C or an object of C′.
For morphisms, we take

HomC �M C′(X,Y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
HomC(X,Y ) if X,Y ∈ C

HomC′(X,Y ) if X,Y ∈ C′

M(X,Y ) if X ∈ C, Y ∈ C′

∅ if X ∈ C′, Y ∈ C .

Composition of morphisms is defined in the obvious way, using the compo-
sition laws in C and C′ and the functoriality of M(X,Y ) in X and Y .
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Remark 2.3.1.1. In the special case where F : Cop×C′ → Set is the con-
stant functor taking the value ∗, the category C F C′ coincides with the
ordinary join C C′.

For any correspondence M : C → C′, there is an obvious functor F :
C M C′ → [1] (here [1] denotes the linearly ordered set {0, 1} regarded as a
category in the obvious way) which is uniquely determined by the condition
that F−1{0} = C and F−1{1} = C′. Conversely, given any category M

equipped with a functor F : M → [1], we can define C = F−1{0}, C′ =
F−1{1}, and a correspondence M : C → C′ by the formula M(X,Y ) =
HomM(X,Y ). We may summarize the situation as follows:

Fact 2.3.1.2. Giving a pair of categories C, C′ and a correspondence between
them is equivalent to giving a category M equipped with a functor M → [1].

Given this reformulation, it is clear how to generalize the notion of a
correspondence to the ∞-categorical setting.

Definition 2.3.1.3. Let C and C′ be ∞-categories. A correspondence from
C to C′ is a ∞-category M equipped with a map F : M → ∆1 and identifi-
cations C � F−1{0}, C′ � F−1{1}.
Remark 2.3.1.4. Let C and C′ be ∞-categories. Fact 2.3.1.2 generalizes to
the ∞-categorical setting in the following way: there is a canonical bijection
between equivalence classes of correspondences from C to C′ and equivalence
classes of functors Cop×C′ → S, where S denotes the ∞-category of spaces.
In fact, it is possible to prove a more precise result (a Quillen equivalence
between certain model categories), but we will not need this.

To understand the relevance of Definition 2.3.1.3, we note the following:

Proposition 2.3.1.5. Let C be an ordinary category and let p : X → N(C)
be a map of simplicial sets. Then p is an inner fibration if and only if X is
an ∞-category.

Proof. This follows from the fact that any map Λni → N(C), 0 < i < n,
admits a unique extension to ∆n.

It follows readily from the definition that an arbitrary map of simplicial
sets p : X → S is an inner fibration if and only if the fiber of p over any
simplex of S is an ∞-category. In particular, an inner fibration p associates
to each vertex s of S an ∞-category Xs and to each edge f : s → s′ in S a
correspondence between the ∞-categories Xs and Xs′ . Higher-dimensional
simplices give rise to what may be thought of as compatible “chains” of
correspondences.

Roughly speaking, we might think of an inner fibration p : X → S as
a functor from S into some kind of ∞-category of ∞-categories where the
morphisms are given by correspondences. However, this description is not
quite accurate because the correspondences are required to “compose” only
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in a weak sense. To understand the issue, let us return to the setting of
ordinary categories. If C and C′ are two categories, then the correspondences
from C to C′ themselves constitute a category, which we may denote by
M(C,C′). There is a natural “composition” defined on correspondences. If we
view an object F ∈ M(C,C′) as a functor Cop×C′ → Set and G ∈ M(C′,C′′),
then we can define (G ◦ F )(C,C ′′) to be the coend∫

C′∈C′
F (C,C ′) ×G(C′, C ′′).

If we view F as determining a category C F C′ and G as determining a
category C′ G C′′, then C G◦F C′′ is obtained by forming the pushout

(C F C′)
∐
C′

(C′ G C′′)

and then discarding the objects of C′.
Now, giving a category equipped with a functor to [2] is equivalent to

giving a triple of categories C, C′, C′′ together with correspondences F ∈
M(C,C′), G ∈ M(C′,C′′), H ∈ M(C,C′′), and a map α : G◦F → H. But the
map α need not be an isomorphism. Consequently, the above data cannot
literally be interpreted as a functor from [2] into a category (or even a higher
category) in which the morphisms are given by correspondences.

If C and C′ are categories, then a correspondence from C to C′ can be
regarded as a kind of generalized functor from C to C′. More specifically,
for any functor f : C → C′, we can define a correspondence Mf by the for-
mula Mf (X,Y ) = HomC′(f(X), Y ). This construction gives a fully faithful
embedding MapCat(C,C

′) → M(C,C′). Similarly, any functor g : C′ → C

determines a correspondence Mg given by the formula

Mg(X,Y ) = HomC(X, g(Y ));

we observe that Mf � Mg if and only if the functors f and g are adjoint to
one another.

If an inner fibration p : X → S corresponds to a “functor” from S to a
higher category of ∞-categories with morphisms given by correspondences,
then some special class of inner fibrations should correspond to functors
from S into an ∞-category of ∞-categories with morphisms given by actual
functors. This is indeed the case, and the appropriate notion is that of a
(co)Cartesian fibration which we will study in §2.4.

2.3.2 Stability Properties of Inner Fibrations

Let C be an ∞-category and K an arbitrary simplicial set. In §1.2.7, we
asserted that Fun(K,C) is an ∞-category (Proposition 1.2.7.3). In the course
of the proof, we invoked certain stability properties of the class of inner
anodyne maps. The goal of this section is to establish the required properties
and deduce some of their consequences. Our main result is the following
analogue of Proposition 2.1.2.6:
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Proposition 2.3.2.1 (Joyal [44]). The following collections all generate the
same class of morphisms of Set∆:

(1) The collection A1 of all horn inclusions Λni ⊆ ∆n, 0 < i < n.

(2) The collection A2 of all inclusions

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m × ∆2) ⊆ ∆m × ∆2.

(3) The collection A3 of all inclusions

(S′ × Λ2
1)

∐
S×Λ2

1

(S × ∆2) ⊆ S′ × ∆2,

where S ⊆ S′.

Proof. We will employ the strategy that we used to prove Proposition 2.1.2.6,
though the details are slightly more complicated. Working cell by cell, we
conclude that every morphism in A3 belongs to the weakly saturated class
of morphisms generated by A2. We next show that every morphism in A1 is
a retract of a morphism belonging to A3. More precisely, we will show that
for 0 < i < n, the inclusion Λni ⊆ ∆n is a retract of the inclusion

(∆n × Λ2
1)

∐
Λn

i ×Λ2
1

(Λni × ∆2) ⊆ ∆n × ∆2.

To prove this, we embed ∆n into ∆n × ∆2 via the map of partially ordered
sets s : [n] → [n] × [2] given by

s(j) =

⎧⎪⎨⎪⎩
(j, 0) if j < i

(j, 1) if j = i

(j, 2) if j > i

and consider the retraction ∆n × ∆2 → ∆n given by the map

r : [n] × [2] → [n]

r(j, k) =

⎧⎪⎨⎪⎩
j if j < i, k = 0
j if j > i, k = 2
i otherwise.

We now show that every morphism in A2 is inner anodyne (that is, it lies
in the weakly saturated class of morphisms generated by A1). Choose m ≥ 0.
For each 0 ≤ i ≤ j < m, we let σij denote the (m+ 1)-simplex of ∆m × ∆2

corresponding to the map

fij : [m+ 1] → [m] × [2]

fij(k) =

⎧⎪⎨⎪⎩
(k, 0) if 0 ≤ k ≤ i

(k − 1, 1) if i+ 1 ≤ k ≤ j + 1
(k − 1, 2) if j + 2 ≤ k ≤ m+ 1.
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For each 0 ≤ i ≤ j ≤ m, we let τij denote the (m+ 2)-simplex of ∆m × ∆2

corresponding to the map

gij : [m+ 2] → [m] × [2]

gij(k) =

⎧⎪⎨⎪⎩
(k, 0) if 0 ≤ k ≤ i

(k − 1, 1) if i+ 1 ≤ k ≤ j + 1
(k − 2, 2) if j + 2 ≤ k ≤ m+ 2.

Let X(0) = (∆m × Λ2
1)

∐
∂∆m×Λ2

1
(∂∆m × ∆2). For 0 ≤ j < m, we let

X(j + 1) = X(j) ∪ σ0j ∪ · · · ∪ σjj .
We have a chain of inclusions

X(j) ⊆ X(j) ∪ σ0j ⊆ · · · ⊂ X(j) ∪ σ0j ∪ · · · ∪ σjj = X(j + 1),

each of which is a pushout of a morphism in A1 and therefore inner anodyne.
It follows that each inclusion X(j) ⊆ X(j+ 1) is inner anodyne. Set Y (0) =
X(m) so that the inclusion X(0) ⊆ Y (0) is inner anodyne. We now set
Y (j + 1) = Y (j) ∪ τ0j ∪ · · · ∪ τjj for 0 ≤ j ≤ m. As before, we have a chain
of inclusions

Y (j) ⊆ Y (j) ∪ τ0j ⊆ · · · ⊆ Yj ∪ τ0j ∪ · · · ∪ τjj = Y (j + 1),

each of which is a pushout of a morphism belonging to A1. It follows that
each inclusion Y (j) ⊆ Y (j+1) is inner anodyne. By transitivity, we conclude
that the inclusion X(0) ⊆ Y (m+2) is inner anodyne. We conclude the proof
by observing that Y (m+ 2) = ∆m × ∆2.

Corollary 2.3.2.2 (Joyal [44]). A simplicial set C is an ∞-category if and
only if the restriction map

Fun(∆2,C) → Fun(Λ2
1,C)

is a trivial fibration.

Proof. By Proposition 2.3.2.1, C → ∗ is an inner fibration if and only if S
has the extension property with respect to each of the inclusions in the class
A2.

Remark 2.3.2.3. In §1.1.2, we asserted that the main function of the weak
Kan condition on a simplicial set C is that it allows us to compose the edges
of C. We can regard Corollary 2.3.2.2 as an affirmation of this philosophy:
the class of ∞-categories C is characterized by the requirement that one
can compose morphisms in C, and the composition is well-defined up to a
contractible space of choices.

Corollary 2.3.2.4 (Joyal [44]). Let i : A → A′ be an inner anodyne map of
simplicial sets and let j : B → B′ be a cofibration. Then the induced map

(A×B′)
∐
A×B

(A′ ×B) → A′ ×B′

is inner anodyne.
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Proof. This follows immediately from Proposition 2.3.2.1, which character-
izes the class of inner anodyne maps as the class generated by A3 (which is
stable under smash products with any cofibration).

Corollary 2.3.2.5 (Joyal [44]). Let p : X → S be an inner fibration and
let i : A → B be any cofibration of simplicial sets. Then the induced map
q : XB → XA ×SA SB is an inner fibration. If i is inner anodyne, then q is
a trivial fibration. In particular, if X is an ∞-category, then so is XB for
any simplicial set B.

2.3.3 Minimal Fibrations

One of the aims of homotopy theory is to understand the classification of
spaces up to homotopy equivalence. In the setting of simplicial sets, this
problem admits an attractive formulation in terms of Quillen’s theory of
minimal Kan complexes. Every Kan complex X is homotopy equivalent to
a minimal Kan complex, and a map X → Y of minimal Kan complexes is a
homotopy equivalence if and only if it is an isomorphism. Consequently, the
classification of Kan complexes up to homotopy equivalence is equivalent to
the classification of minimal Kan complexes up to isomorphism. Of course, in
practical terms, this is not of much use for solving the classification problem.
Nevertheless, the theory of minimal Kan complexes (and, more generally,
minimal Kan fibrations) is a useful tool in the homotopy theory of simplicial
sets. The purpose of this section is to describe a generalization of the theory
of minimal models in which Kan fibrations are replaced by inner fibrations.
An exposition of this theory can also be found in [44].

We begin by introducing a bit of terminology. Suppose we are given a
commutative diagram

A

i

��

u �� X

p

��
B

v ��

���
�

�
�

S

of simplicial sets, where p is an inner fibration, and suppose also that we
have a pair f, f ′ : B → X of candidates for the dotted arrow which render
the diagram commutative. We will say that f and f ′ are homotopic relative
to A over S if they are equivalent when viewed as objects in the ∞-category
given by the fiber of the map

XB → XA ×SA SB.

Equivalently, f and f ′ are homotopic relative to A over S if there exists a
map F : B×∆1 → X such that F |B×{0} = f , F |B×{1} = f ′, p◦F = v◦πB ,
F ◦ (i× id∆1) = u ◦ πA, and F |{b}×∆1 is an equivalence in the ∞-category
Xv(b) for every vertex b of B.

Definition 2.3.3.1. Let p : X → S be an inner fibration of simplicial sets.
We will say that p is minimal if f = f ′ for every pair of maps f, f ′ : ∆n → X
which are homotopic relative to ∂∆n over S.
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We will say that an ∞-category C is minimal if the associated inner fibra-
tion C → ∗ is minimal.

Remark 2.3.3.2. In the case where p is a Kan fibration, Definition 2.3.3.1
recovers the usual notion of a minimal Kan fibration. We refer the reader to
[32] for a discussion of minimal fibrations in this more classical setting.

Remark 2.3.3.3. Let p : X → ∆n be an inner fibration. Then X is an
∞-category. Moreover, p is a minimal inner fibration if and only if X is a
minimal ∞-category. This follows from the observation that for any pair
of maps f, f ′ : ∆m → X, a homotopy between f and f ′ is automatically
compatible with the projection to ∆n.

Remark 2.3.3.4. If p : X → S is a minimal inner fibration and T → S is an
arbitrary map of simplicial sets, then the induced map XT = X ×S T → T
is a minimal inner fibration. Conversely, if p : X → S is an inner fibration
and if X ×S ∆n → ∆n is minimal for every map σ : ∆n → S, then p
is minimal. Consequently, for many purposes the study of minimal inner
fibrations reduces to the study of minimal ∞-categories.

Lemma 2.3.3.5. Let C be a minimal ∞-category and let f : C → C be a
functor which is homotopic to the identity. Then f is a monomorphism of
simplicial sets.

Proof. Choose a homotopy h : ∆1 × C → C from idC to f . We prove by
induction on n that the map f induces an injection from the set of n-simplices
of C to itself. Let σ, σ′ : ∆n → C be such that f ◦σ = f ◦σ′. By the inductive
hypothesis, we deduce that σ| ∂∆n = σ′| ∂∆n = σ0. Consider the diagram

(∆2 × ∂∆n)
∐

Λ2
2×∂∆n(Λ2

2 × ∆n) G0 ��
� �

��

C

∆2 × ∆n,

G

����������������

where G0|Λ2
2×∆n is given by amalgamating h◦(id∆1 ×σ) with h◦(id∆1 ×σ′)

and G0|∆2 × ∂∆n is given by the composition

∆2 × ∂∆n → ∆1 × ∂∆n σ0→ ∆1 × C
h→ C .

Since h|∆1 × {X} is an equivalence for every object X ∈ C, Proposition
2.4.1.8 implies the existence of the map G indicated in the diagram. The
restriction G|∆1 × ∆n is a homotopy between σ and σ′ relative to ∂∆n.
Since C is minimal, we deduce that σ = σ′.

Lemma 2.3.3.6. Let C be a minimal ∞-category and let f : C → C be a
functor which is homotopic to the identity. Then f is an isomorphism of
simplicial sets.
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Proof. Choose a homotopy h : ∆1 × C → C from idC to f . We prove by
induction on n that the map f induces a bijection from the set of n-simplices
of C to itself. The injectivity follows from Lemma 2.3.3.5, so it will suffice to
prove the surjectivity. Choose an n-simplex σ : ∆n → C. By the inductive
hypothesis, we may suppose that σ| ∂∆n = f ◦σ′

0 for some map σ′
0 : ∂∆n →

C. Consider the diagram

(∆1 × ∂∆n)
∐

{1}×∂∆n({1} × ∆n) G0 ��
� �

��

C

∆1 × ∆n,

G

�����������������

where G0|∆1 × ∂∆n = h ◦ (id∆1 ×σ′
0) and G0|{1} × ∆n = σ. If n > 0,

then the existence of the map G as indicated in the diagram follows from
Proposition 2.4.1.8; if n = 0, it is obvious. Now let σ′ = G|{0} × ∆n. To
complete the proof, it will suffice to show that f ◦ σ′ = σ.

Consider now the diagram

(Λ2
0 × ∆n)

∐
Λ2

0×∂∆n(∆2 × ∂∆n) H0 ��

��

C

∆2,

H

������������������

where H0|∆{0,1} ×∆n = h ◦ (id∆1 ×σ′), H0|∆{1,2} ×∆n = G, and H0|(∆2 ×
∂∆n) is given by the composition

∆2 × ∂∆n → ∆1 × ∂∆n σ′
0→ ∆1 × C

h→ C .

The existence of the dotted arrow H follows once again from Proposition
2.4.1.8. The restriction H|∆{1,2}×∆n is a homotopy from f ◦σ′ to σ relative
to ∂∆n. Since C is minimal, we conclude that f ◦ σ′ = σ, as desired.

Proposition 2.3.3.7. Let f : C → D be an equivalence of minimal ∞-
categories. Then f is an isomorphism.

Proof. Since f is a categorical equivalence, it admits a homotopy inverse
g : D → C. Now apply Lemma 2.3.3.6 to the compositions f ◦g and g◦f .

The following result guarantees a good supply of minimal ∞-categories:

Proposition 2.3.3.8. Let p : X → S be an inner fibration of simplicial sets.
Then there exists a retraction r : X → X onto a simplicial subset X ′ ⊆ X
with the following properties:

(1) The restriction p|X ′ : X ′ → S is a minimal inner fibration.

(2) The retraction r is compatible with the projection p in the sense that
p ◦ r = p.
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(3) The map r is homotopic over S to idX relative to X ′.

(4) For every map of simplicial sets T → S, the induced inclusion

X ′ ×S T ⊆ X ×S T

is a categorical equivalence.

Proof. For every n ≥ 0, we define a relation on the set of n-simplices of X:
given two simplices σ, σ′ : ∆n → X, we will write σ ∼ σ′ if σ is homotopic to
σ′ relative to ∂∆n. We note that σ ∼ σ′ if and only if σ| ∂∆n = σ′| ∂∆n and
σ is equivalent to σ′, where both are viewed as objects in the ∞-category
given by a fiber of the map

X∆n → X∂∆n ×S∂ ∆n S∆n

.

Consequently, ∼ is an equivalence relation.
Suppose that σ and σ′ are both degenerate and σ ∼ σ′. From the equality

σ| ∂∆n = σ′| ∂∆n, we deduce that σ = σ′. Consequently, there is at most
one degenerate n-simplex of X in each ∼-class. Let Y (n) ⊆ Xn denote a set
of representatives for the ∼-classes of n-simplices in X, which contains all
degenerate simplices. We now define the simplicial subsetX ′ ⊆ X recursively
as follows: an n-simplex σ : ∆n → X belongs to X ′ if σ ∈ Y (n) and σ| ∂∆n

factors through X ′.
Let us now prove (1). To show that p|X ′ is an inner fibration, it suffices

to prove that every lifting problem of the form

Λni
s ��

� �

��

X ′

��
∆n

σ

���
�

�
�

�� S,

with 0 < i < n has a solution f in X ′. Since p is an inner fibration, this
lifting problem has a solution σ′ : ∆n → X in the original simplicial set X.
Let σ′

0 = diσ : ∆n−1 → X be the induced map. Then σ′
0| ∂∆n−1 factors

through X′. Consequently, σ′
0 is homotopic (over S and relative to ∂∆n−1)

to some map σ0 : ∆n−1 → X ′. Let g0 : ∆1 × ∆n−1 → X be a homotopy
from σ′

0 to σ0 and let g1 : ∆1 × ∂∆n → X be the result of amalgamating g0
with the identity homotopy from s to itself. Let σ1 = g1|{1} × ∂∆n. Using
Proposition 2.4.1.8, we deduce that g1 extends to a homotopy from σ′ to
some other map σ′′ : ∆n → X with σ′′| ∂∆n = σ1. It follows that σ′′ is
homotopic over S relative to ∂∆n to a map σ : ∆n → X with the desired
properties. This proves that p|X ′ is an inner fibration. It is immediate from
the construction that p|X ′ is minimal.

We now verify (2) and (3) by constructing a map h : X × ∆1 → X such
that h|X×{0} is the identity, h|X×{1} is a retraction r : X → X with image
X ′, and h is a homotopy over S and relative to X ′. Choose an exhaustion
of X by a transfinite sequence of simplicial subsets

X ′ = X0 ⊆ X1 ⊆ · · · ,
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where each Xα is obtained from

X<α =
⋃
β<α

Xβ

by adjoining a single nondegenerate simplex, provided that such a simplex
exists. We construct hα = h|Xα×∆1 by induction on α. By the inductive hy-
pothesis, we may suppose that we have already defined h<α = h|X<α×∆1. If
X = X<α, then we are done. Otherwise, we can write Xα = X<α

∐
∂∆n ∆n

corresponding to some nondegenerate simplex τ : ∆n → X, and it suffices
to define hα|∆n × ∆1. If τ factors through X ′, we define hα|∆n × ∆1 to be
the composition

∆n × ∆1 → ∆n σ→ X.

Otherwise, we use Proposition 2.4.1.8 to deduce the existence of the dotted
arrow h′ in the diagram

(∆n × {0}) ∐
∂∆n×{0}(∂∆n × ∆1)

(τ,h<α) ��
� �

��

X

p

��
∆n × ∆1

p◦σ ��

h0

��������������������
S.

Let τ ′ = h′|∆n × {1}. Then τ ′| ∂∆n factors through X ′. It follows that
there is a homotopy h′′ : ∆n × ∆{1,2} → X from τ ′ to τ ′′, which is over S
and relative to ∂∆n and such that τ ′′ factors through X ′. Now consider the
diagram

(∆n × Λ2
1)

∐
∂∆n×Λ2

1
(∂∆n × ∆2) H0 ��

� �

��

X

p

��
∆n × ∆2 ��

H

��������������������
S,

where H0|∆n × ∆{0,1} = h′, H0|∆n × ∆{1,2} = h′′, and H0| ∂∆n × ∆2 is
given by the composition

∂∆n × ∆2 → ∂∆n × ∆1 h<α→ X.

Using the fact that p is an inner fibration, we deduce that there exists a
dotted arrow H rendering the diagram commutative. We may now define
hα|∆n × ∆1 = H|∆n × ∆{0,2}; it is easy to see that this extension has all
the desired properties.

We now prove (4). Using Proposition 3.2.2.8, we can reduce to the case
where T = ∆n. Without loss of generality, we can replace S by T = ∆n,
so that X and X ′ are ∞-categories. The above constructions show that
r : X → X ′ is a homotopy inverse of the inclusion i : X ′ → X, so that i is
an equivalence, as desired.

We conclude by recording a property of minimal ∞-categories which makes
them very useful for certain applications.



106 CHAPTER 2

Proposition 2.3.3.9. Let C be a minimal ∞-category and let σ : ∆n → C

be an n-simplex of C such that σ|∆{i,i+1} = idC : C → C is a degenerate
edge. Then σ = siσ0 for some σ0 : ∆n−1 → C.

Proof. We work by induction on n. Let σ0 = di+1σ and let σ′ = siσ0. We
will prove that σ = σ′. Our first goal is to prove that σ| ∂∆n = σ′| ∂∆n; in
other words, that djσ = djσ

′ for 0 ≤ j ≤ n. If j = i+1, this is obvious; if j /∈
{i, i+ 1}, then it follows from the inductive hypothesis. Let us consider the
case i = j, and set σ1 = diσ. We need to prove that σ0 = σ1. The argument
above establishes that σ0| ∂∆n−1 = σ1| ∂∆n−1. Since C is minimal, it will
suffice to show that σ0 and σ1 are homotopic relative to ∂∆n−1. We now
observe that

(sn−1σ0, sn−2σ0, . . . , si+1σ0, σ, si−1σ1, . . . , s0σ1)

provides the desired homotopy ∆n−1 × ∆1 → C.
Since σ and σ′ coincide on ∂∆n, to prove that σ = σ′ it will suffice to

prove that σ and σ′ are homotopic relative to ∂∆n. We now observe that

(snσ′, . . . , si+2σ
′, siσ′, siσ, si−1σ, . . . , s0σ)

is a homotopy ∆n × ∆1 → C with the desired properties.

We can interpret Proposition 2.3.3.9 as asserting that in a minimal ∞-
category C, composition is “strictly unital.” For example, in the special case
where n = 2 and i = 1, Proposition 2.3.3.9 asserts that if f : X → Y is a
morphism in an ∞-category C, then f is the unique composition idY ◦f .

2.3.4 n-Categories

The theory of ∞-categories can be regarded as a generalization of classi-
cal category theory: if C is an ordinary category, then its nerve N(C) is
an ∞-category which determines C up to canonical isomorphism. Moreover,
Proposition 1.1.2.2 provides a precise characterization of those ∞-categories
which can be obtained from ordinary categories. In this section, we will ex-
plain how to specialize the theory of ∞-categories to obtain a theory of
n-categories for every nonnegative integer n. (However, the ideas described
here are appropriate for describing only those n-categories which have only
invertible k-morphisms for k ≥ 2.)

Before we can give the appropriate definition, we need to introduce a bit
of terminology. Let f, f ′ : K → C be two diagrams in an ∞-category C and
suppose that K′ ⊆ K is a simplicial subset such that f |K ′ = f ′|K′ = f0. We
will say that f and f ′ are homotopic relative to K ′ if they are equivalent when
viewed as objects of the ∞-category Fun(K,C)×Fun(K′,C){f0}. Equivalently,
f and f ′ are homotopic relative to K′ if there exists a homotopy

h : K × ∆1 → C

with the following properties:
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(i) The restriction h|K′ × ∆1 coincides with the composition

K ′ × ∆1 → K ′ f0→ C .

(ii) The restriction h|K × {0} coincides with f .

(iii) The restriction h|K × {1} coincides with f ′.

(iv) For every vertex x of K, the restriction h|{x} × ∆1 is an equivalence
in C.

We observe that if K ′ contains every vertex of K, then condition (iv)
follows from condition (i).

Definition 2.3.4.1. Let C be a simplicial set and let n ≥ −1 be an integer.
We will say that C is an n-category if it is an ∞-category and the following
additional conditions are satisfied:

(1) Given a pair of maps f, f ′ : ∆n → C, if f and f ′ are homotopic relative
to ∂∆n, then f = f ′.

(2) Given m > n and a pair of maps f, f ′ : ∆m → C, if f | ∂∆m = f ′| ∂∆m,
then f = f ′.

It is sometimes convenient to extend Definition 2.3.4.1 to the case where
n = −2: we will say that a simplicial set C is a (−2)-category if it is a final
object of Set∆: in other words, if it is isomorphic to ∆0.

Example 2.3.4.2. Let C be a (−1)-category. Using condition (2) of Defini-
tion 2.3.4.1, one shows by induction on m that C has at most one m-simplex.
Consequently, we see that up to isomorphism there are precisely two (−1)-
categories: ∆−1 � ∅ and ∆0.

Example 2.3.4.3. Let C be a 0-category and let X = C0 denote the set of
objects of C. Let us write x ≤ y if there is a morphism φ from x to y in C.
Since C is an ∞-category, this relation is reflexive and transitive. Moreover,
condition (2) of Definition 2.3.4.1 guarantees that the morphism φ is unique
if it exists. If x ≤ y and y ≤ x, it follows that the morphisms relating x and
y are mutually inverse equivalences. Condition (1) then implies that x = y.
We deduce that (X,≤) is a partially ordered set. It follows from Proposition
2.3.4.5 below that the map C → N(X) is an isomorphism.

Conversely, it is easy to see that the nerve of any partially ordered set
(X,≤) is a 0-category in the sense of Definition 2.3.4.1. Consequently, the
full subcategory of Set∆ spanned by the 0-categories is equivalent to the
category of partially ordered sets.

Remark 2.3.4.4. Let C be an n-category and let m > n + 1. Then the
restriction map

θ : HomSet∆(∆m,C) → HomSet∆(∂∆m,C)
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is bijective. If n = −1, this is clear from Example 2.3.4.2; let us therefore
suppose that n ≥ 0, so that m ≥ 2. The injectivity of θ follows immediately
from part (2) of Definition 2.3.4.1. To prove the surjectivity, we consider an
arbitrary map f0 : ∂∆m → C. Let f : ∆m → C be an extension of f0|Λm1
(which exists since C is an ∞-category and 0 < 1 < m). Using condition (2)
again, we deduce that θ(f) = f0.

The following result shows that, in the case where n = 1, Definition 2.3.4.1
recovers the usual definition of a category:

Proposition 2.3.4.5. Let S be a simplicial set. The following conditions
are equivalent:

(1) The unit map u : S → N(hS ) is an isomorphism of simplicial sets.

(2) There exists a small category C and an isomorphism S � N(C) of
simplicial sets.

(3) The simplicial set S is a 1-category.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear. Let us therefore assume
that (3) holds and show that f : S → N(hS ) is an isomorphism. We will
prove, by induction on n, that the map u is bijective on n-simplices.

For n = 0, this is clear. If n = 1, the surjectivity of u obvious. To prove
the injectivity, we note that if f(φ) = f(ψ), then the edges φ and ψ are
homotopic in S. A simple application of condition (2) of Definition 2.3.4.1
then shows that φ = ψ.

Now suppose n > 1. The injectivity of u on n-simplices follows from
condition (3) of Definition 2.3.4.1 and the injectivity of u on (n−1)-simplices.
To prove the surjectivity, let us suppose we are given a map s : ∆n →
N(hS ). Choose 0 < i < n. Since u is bijective on lower-dimensional simplices,
the map s|Λni factors uniquely through S. Since S is an ∞-category, this
factorization extends to a map s̃ : ∆n → S. Since N(hS ) is the nerve of a
category, a pair of maps from ∆n into N(hS ) which agree on Λni must be
the same. We deduce that u ◦ s̃ = s, and the proof is complete.

Remark 2.3.4.6. The condition that an ∞-category C be an n-category is
not invariant under categorical equivalence. For example, if D is a category
with several objects, all of which are uniquely isomorphic to one another,
then N(D) is categorically equivalent to ∆0 but is not a (−1)-category.
Consequently, there can be no intrinsic characterization of the class of n-
categories itself. Nevertheless, there does exist a convenient description for
the class of ∞-categories which are equivalent to n-categories; see Proposi-
tion 2.3.4.18.

Our next goal is to establish that the class of n-categories is stable under
the formation of functor categories. In order to do so, we need to refor-
mulate Definition 2.3.4.1 in a more invariant manner. Recall that for any
simplicial set X, the n-skeleton sknX is defined to be the simplicial subset
of X generated by all the simplices of X having dimension ≤ n.
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Proposition 2.3.4.7. Let C be an ∞-category and let n ≥ −1. The following
are equivalent:

(1) The ∞-category C is an n-category.

(2) For every simplicial set K and every pair of maps f, f ′ : K → C such
that f | sknK and f ′| sknK are homotopic relative to skn−1K, we have
f = f ′.

Proof. The implication (2) ⇒ (1) is obvious. Suppose that (1) is satisfied
and let f, f ′ : K → C be as in the statement of (2). To prove that f = f ′,
it suffices to show that f and f ′ agree on every nondegenerate simplex of
K. We may therefore reduce to the case where K = ∆m. We now work
by induction on m. If m < n, there is nothing to prove. In the case where
m = n, the assumption that C is an n-category immediately implies that
f = f ′. If m > n, the inductive hypothesis implies that f | ∂∆m = f ′| ∂∆m,
so that (1) implies that f = f ′.

Corollary 2.3.4.8. Let C be an n-category and X a simplicial set. Then
Fun(X,C) is an n-category.

Proof. Proposition 1.2.7.3 asserts that Fun(X,C) is an ∞-category. We will
show that Fun(X,C) satisfies condition (2) of Proposition 2.3.4.7. Suppose
we are given a pair of maps f, f ′ : K → Fun(X,C) such that f | sknK and
f ′| sknK are homotopic relative to f | skn−1K. We wish to show that f = f ′.
We may identify f and f ′ with maps F, F ′ : K ×X → C. Since C is an n-
category, to prove that F = F ′ it suffices to show that F | skn(K ×X) and
F ′| skn(K×X) are homotopic relative to skn−1(K×X). This follows at once
because skp(K ×X) ⊆ (skpK) ×X for every integer p.

When n = 1, Proposition 1.1.2.2 asserts that the class of n-categories can
be characterized by the uniqueness of certain horn fillers. We now prove a
generalization of this result.

Proposition 2.3.4.9. Let n ≥ 1 and let C be an ∞-category. Then C is an
n-category if and only if it satisfies the following condition:

• For every m > n and every diagram

Λmi
f0 ��

� �

��

C

∆m,

f

��	
	

	
	

where 0 < i < m, there exists a unique dotted arrow f as indicated
which renders the diagram commutative.

Proof. Suppose first that C is an n-category. Let f, f ′ : ∆m → C be two
maps with f |Λmi = f ′|Λmi , where 0 < i < m and m > n. We wish to prove
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that f = f ′. Since Λmi contains the (n−1)-skeleton of ∆m, it will suffice (by
Proposition 2.3.4.7) to show that f and f ′ are homotopic relative to Λmi .
This follows immediately from the fact that the inclusion Λmi ⊆ ∆m is a
categorical equivalence.

Now suppose that every map f0 : Λmi → C, where 0 < i < m and n <
m, extends uniquely to an m-simplex of C. We will show that C satisfies
conditions (1) and (2) of Definition 2.3.4.1. Condition (2) is obvious: if f, f ′ :
∆m → C are two maps which coincide on ∂∆m, then they coincide on Λm1
and are therefore equal to one another (here we use the fact that m > 1
because of our assumption that n ≥ 1). Condition (1) is a bit more subtle.
Suppose that f, f ′ : ∆n → C are homotopic via a homotopy h : ∆n×∆1 → C

which is constant on ∂∆n × ∆1. For 0 ≤ i ≤ n, let σi denote the (n + 1)-
simplex of C obtained by composing h with the map

[n+ 1] → [n] × [1]

j �→
{

(j, 0) if j ≤ i

(j − 1, 1) if j > i.

If i < n, then we observe that σi|Λn+1
i+1 is equivalent to the restriction

(sidiσi)|Λn+1
i+1 . Applying our hypothesis, we conclude that σi = sidiσi, so

that diσi = di+1σi. A dual argument establishes the same equality for 0 < i.
Since n > 0, we conclude that diσi = di+1σi for all i. Consequently, we have
a chain of equalities

f ′ = d0σ0 = d1σ0 = d1σ1 = d2σ1 = · · · = dnσn = dn+1σn = f,

so that f ′ = f , as desired.

Corollary 2.3.4.10. Let C be an n-category and let p : K → C be a diagram.
Then C/p is an n-category.

Proof. If n ≤ 0, this follows easily from Examples 2.3.4.2 and 2.3.4.3. We
may therefore suppose that n ≥ 1. Proposition 1.2.9.3 implies that C/p is
an ∞-category. According to Proposition 2.3.4.9, it suffices to show that for
every m > n, 0 < i < m, and every map f0 : Λmi → C/p, there exists a
unique map f : ∆m → C/p extending f . Equivalently, we must show that
there is a unique map g rendering the diagram

Λmi  K� �

��

g0 �� C

∆m  K

g

���
�

�
�

�

commutative. The existence of g follows from the fact that C/p is an ∞-
category. Suppose that g′ : ∆m  K → C is another map which extends g0.
Proposition 1.1.2.2 implies that g′|∆m = g|∆m. We conclude that g and g′

coincide on the n-skeleton of ∆m  K. Since C is an n-category, we deduce
that g = g′, as desired.
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We conclude this section by introducing a construction which allows us
to pass from an arbitrary ∞-category C to its “underlying” n-category by
discarding information about k-morphisms for k > n. In the case where
n = 1, we have already introduced the relevant construction: we simply
replace C by (the nerve of) its homotopy category.

Notation 2.3.4.11. Let C be an ∞-category and let n ≥ 1. For every
simplicial set K, let [K,C]n ⊆ Fun(sknK,C) be the subset consisting of those
diagrams sknK → C which extend to the (n + 1)-skeleton of K (in other
words, the image of the restriction map Fun(skn+1K,C) → Fun(sknK,C)).
We define an equivalence relation ∼ on [K,C]n as follows: given two maps
f, g : sknK → C, we write f ∼ g if f and g are homotopic relative to
skn−1K.

Proposition 2.3.4.12. Let C be an ∞-category and n ≥ 1.

(1) There exists a simplicial set hnC with the following universal mapping
property: Fun(K, hnC) = [K,C]n/ ∼.

(2) The simplicial set hnC is an n-category.

(3) If C is an n-category, then the natural map θ : C → hnC is an isomor-
phism.

(4) For every n-category D, composition with θ induces an isomorphism
of simplicial sets

ψ : Fun(hnC,D) → Fun(C,D).

Proof. To prove (1), we begin by defining hnC([m]) = [∆m,C]n/ ∼, so that
the desired universal property holds by definition whenever K is a simplex.
Unwinding the definitions, to check the universal property for a general
simplicial set K we must verify the following fact:

(∗) Given two maps f, g : ∂∆n+1 → C which are homotopic relative to
skn−1 ∆n+1, if f extends to an (n+ 1)-simplex of C, then g extends to
an (n+ 1)-simplex of C.

This follows easily from Proposition A.2.3.1.
We next show that hnC is an ∞-category. Let η0 : Λmi → hnC be a mor-

phism, where 0 < i < m. We wish to show that η0 extends to an m-simplex
η : ∆m → C. If m ≤ n+ 2, then Λmi = skn+1 Λmi , so that η0 can be written
as a composition

Λmi → C
θ→ hnC .

The existence of η now follows from our assumption that C is an ∞-category.
If m > n+2, then HomSet∆(Λmi , hnC) � HomSet∆(∆m,hnC) by construction,
so there is nothing to prove.

We next prove that hnC is an n-category. It is clear from the construction
that for m > n, any two m-simplices of hnC with the same boundary must
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coincide. Suppose next that we are given two maps f, f ′ : ∆n → hnC which
are homotopic relative to ∂∆n. Let F : ∆n × ∆1 → hnC be a homotopy
from f to f ′. Using (∗), we deduce that F is the image under θ of a map
F̃ : ∆n × ∆1 → hnC, where F̃ | ∂∆n × ∆1 factors through the projection
∂∆n × ∆1 → ∂∆n. Since n > 0, we conclude that F̃ is a homotopy from
F̃ |∆n × {0} to F̃ |∆n × {1}, so that f = f ′. This completes the proof of (2).

To prove (3), let us suppose that C is an n-category; we prove by induction
on m that the map C → hnC is bijective on m-simplices. For m < n, this
is clear. When m = n, it follows from part (1) of Definition 2.3.4.1. When
m = n+ 1, surjectivity follows from the construction of hn C and injectivity
from part (2) of Definition 2.3.4.1. For m > n + 1, we have a commutative
diagram

HomSet∆(∆m,C) ��

��

HomSet∆(∆m, hnC)

��
HomSet∆(∂∆m,C) �� HomSet∆(∂∆m, hnC),

where the bottom horizontal map is an isomorphism by the inductive hy-
pothesis, the left vertical map is an isomorphism by construction, and the
right vertical map is an isomorphism by Remark 2.3.4.4; it follows that the
upper horizontal map is an isomorphism as well.

To prove (4), we observe that if D is an n-category, then the composition

Fun(C,D) → Fun(hnC,hnD) � Fun(hnC,D)

is an inverse to φ, where the second isomorphism is given by (3).

Remark 2.3.4.13. The construction of Proposition 2.3.4.12 does not quite
work if n ≤ 0 because there may exist equivalences in hn C which do not arise
from equivalences in C. However, it is a simple matter to give an alternative
construction in these cases which satisfies conditions (2), (3), and (4); we
leave the details to the reader.

Remark 2.3.4.14. In the case n = 1, the ∞-category h1C constructed in
Proposition 2.3.4.12 is isomorphic to the nerve of the homotopy category hC.

We now apply the theory of minimal ∞-categories (§2.3.3) to obtain
a characterization of the class of ∞-categories which are equivalent to n-
categories. First, we need a definition from classical homotopy theory.

Definition 2.3.4.15. Let k ≥ −1 be an integer. A Kan complex X is k-
truncated if, for every i > k and every point x ∈ X, we have

πi(X,x) � ∗.
By convention, we will also say that X is (−2)-truncated if X is contractible.

Remark 2.3.4.16. If X and Y are homotopy equivalent Kan complexes,
then X is k-truncated if and only if Y is k-truncated. In other words, we may
view k-truncatedness as a condition on objects in the homotopy category H

of spaces.
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Example 2.3.4.17. A Kan complexX is (−1)-truncated if it is either empty
or contractible. It is 0-truncated if the natural map X → π0X is a homotopy
equivalence (equivalently, X is 0-truncated if it is homotopy equivalent to a
discrete space).

Proposition 2.3.4.18. Let C be an ∞-category and let n ≥ −1. The fol-
lowing conditions are equivalent:

(1) There exists a minimal model C′ ⊆ C such that C′ is an n-category.

(2) There exists a categorical equivalence D � C, where D is an n-category.

(3) For every pair of objects X,Y ∈ C, the mapping space MapC(X,Y ) ∈
H is (n− 1)-truncated.

Proof. It is clear that (1) implies (2). Suppose next that (2) is satisfied;
we will prove (3). Without loss of generality, we may replace C by D and
thereby assume that C is an n-category. If n = −1, the desired result fol-
lows immediately from Example 2.3.4.2. Choose m ≥ n and an element
η ∈ πm(MapC(X,Y ), f). We can represent η by a commutative diagram of
simplicial sets

∂∆m
� �

��

�� {f}

��
∆m s �� HomR

C(X,Y ).

We can identify s with a map ∆m+1 → C whose restriction to ∂∆m+1 is
specified. Since C is an n-category, the inequality m+ 1 > n shows that s is
uniquely determined. This proves that πm(MapC(X,Y ), f) � ∗, so that (3)
is satisfied.

To prove that (3) implies (1), it suffices to show that if C is a minimal
∞-category which satisfies (3), then C is an n-category. We must show that
the conditions of Definition 2.3.4.1 are satisfied. The first of these conditions
follows immediately from the assumption that C is minimal. For the second,
we must show that if m > n and f, f ′ : ∂∆m → C are such that f | ∂∆m =
f ′| ∂∆m, then f = f ′. Since C is minimal, it suffices to show that f and f ′ are
homotopic relative to ∂∆m. We will prove that there is a map g : ∆m+1 → C

such that dm+1g = f , dmg = f ′, and dig = dismf = dismf
′ for 0 ≤ i < m.

Then the sequence (s0f, s1f, . . . , sm−1f, g) determines a map ∆m×∆1 → C

which gives the desired homotopy between f and f ′ (relative to ∂∆m).
To produce the map g, it suffices to solve the lifting problem depicted in

the diagram

∂∆m+1
g ��

� �

��

C

∆m+1.

���
�

�
�

�
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Choose a fibrant simplicial category D and an equivalence of ∞-categories
C → N(D). According to Proposition A.2.3.1, it will suffice to prove that we
can solve the associated lifting problem

C[∂∆m+1]
G0 ��

� �

��

D

C[∆m+1].

G

���
�

�
�

�

Let X and Y denote the initial and final vertices of ∆m+1, regarded as
objects of C[∂∆m+1]. Note that G0 determines a map

e0 : ∂(∆1)m � MapC[∂∆m+1](X,Y ) → MapD(G0(X), G0(Y ))

and that giving the desired extension G is equivalent to extending e0 to a
map

e : (∆1)m � MapC[∆m+1](X,Y ) → MapD(G0(X), G0(Y )).

The obstruction to constructing e lies in πm−1(MapD(G0(X), G0(Y )), p) for
an appropriately chosen base point p. Since (m− 1) > (n− 1), condition (3)
implies that this homotopy set is trivial, so that the desired extension can
be found.

Corollary 2.3.4.19. Let X be a Kan complex. Then X is (categorically)
equivalent to an n-category if and only if it is n-truncated.

Proof. For n = −2 this is obvious. If n ≥ −1, this follows from characteriza-
tion (3) of Proposition 2.3.4.18 and the following observation: a Kan complex
X is n-truncated if and only if, for every pair of vertices x, y ∈ X0, the Kan
complex

{x} ×X X∆1 ×X {y}
of paths from x to y is (n− 1)-truncated.

Corollary 2.3.4.20. Let C be an ∞-category and K a simplicial set. Sup-
pose that, for every pair of objects C,D ∈ C, the space MapC(C,D) is n-
truncated. Then the ∞-category Fun(K,C) has the same property.

Proof. This follows immediately from Proposition 2.3.4.18 and Corollary
2.3.4.8 because the functor

C �→ Fun(K,C)

preserves categorical equivalences between ∞-categories.

2.4 CARTESIAN FIBRATIONS

Let p : X → S be an inner fibration of simplicial sets. Each fiber of p is an ∞-
category, and each edge f : s → s′ of S determines a correspondence between
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the fibers Xs and Xs′ . In this section, we would like to study the case in
which each of these correspondences is associated to a functor f∗ : Xs′ → Xs.
Roughly speaking, we can attempt to construct f∗ as follows: for each vertex
y ∈ Xs′ , we choose an edge f̃ : x → y lifting f , and set f∗y = x. However,
this recipe does not uniquely determine x, even up to equivalence, since there
might be many different choices for f̃ . To get a good theory, we need to make
a good choice of f̃ . More precisely, we should require that f̃ be a p-Cartesian
edge of X. In §2.4.1, we will introduce the definition of p-Cartesian edges
and study their basic properties. In particular, we will see that a p-Cartesian
edge f̃ is determined up to equivalence by its target y and its image in S.
Consequently, if there is a sufficient supply of p-Cartesian edges of X, then
we can use the above prescription to define the functor f∗ : Xs′ → Xs. This
leads us to the notion of a Cartesian fibration, which we will study in §2.4.2.

In §2.4.3, we will establish a few basic stability properties of the class of
Cartesian fibrations (we will discuss other results of this type in Chapter 3
after we have developed the language of marked simplicial sets). In §2.4.4,
we will show that if p : C → D is a Cartesian fibration of ∞-categories, then
we can reduce many questions about C to similar questions about the base
D and about the fibers of p. This technique has many applications, which we
will discuss in §2.4.5 and §2.4.6. Finally, in §2.4.7, we will study the theory of
bifibrations, which is useful for constructing examples of Cartesian fibrations.

2.4.1 Cartesian Morphisms

Let C and C′ be ordinary categories and let M : Cop×C′ → Set be a corre-
spondence between them. Suppose that we wish to know whether or not M
arises as the correspondence associated to some functor g : C′ → C. This is
the case if and only if, for each object C ′ ∈ C′, we can find an object C ∈ C

and a point η ∈ M(C,C ′) having the property that the “composition with
η” map

ψ : HomC(D,C) → M(D,C ′)

is bijective for all D ∈ C. Note that η may be regarded as a morphism in the
category C M C′. We will say that η is a Cartesian morphism in C M C′ if ψ
is bijective for each D ∈ C. The purpose of this section is to generalize this
notion to the ∞-categorical setting and to establish its basic properties.

Definition 2.4.1.1. Let p : X → S be an inner fibration of simplicial sets.
Let f : x → y be an edge in X. We shall say that f is p-Cartesian if the
induced map

X/f → X/y ×S/p(y) S/p(f)

is a trivial Kan fibration.

Remark 2.4.1.2. Let M be an ordinary category, let p : N(M) → ∆1 be
a map (automatically an inner fibration), and let f : x → y be a morphism
in M which projects isomorphically onto ∆1. Then f is p-Cartesian in the
sense of Definition 2.4.1.1 if and only if it is Cartesian in the classical sense.
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We now summarize a few of the formal properties of Definition 2.4.1.1:

Proposition 2.4.1.3. (1) Let p : X → S be an isomorphism of simplicial
sets. Then every edge of X is p-Cartesian.

(2) Suppose we are given a pullback diagram

X ′

p′

��

q �� X

p

��
S′ �� S

of simplicial sets, where p (and therefore also p′) is an inner fibration.
Let f be an edge of X ′. If q(f) is p-Cartesian, then f is p′-Cartesian.

(3) Let p : X → Y and q : Y → Z be inner fibrations and let f : x′ → x
be an edge of X such that p(f) is q-Cartesian. Then f is p-Cartesian
if and only if f is (q ◦ p)-Cartesian.

Proof. Assertions (1) and (2) follow immediately from the definition. To
prove (3), we consider the commutative diagram

X/f
ψ ��

ψ′

����
���

���
���

� X/x ×Z/(q◦p)(x) Z/(q◦p)(f)

X/x ×Y/p(x) Y/p(f).

ψ′′
������������������

The map ψ′′ is a pullback of

Y/p(f) → Y/p(x) ×Z/(q◦p)(x) Z/(q◦p)(f)

and therefore a trivial fibration in view of our assumption that p(f) is q-
Cartesian. If ψ′ is a trivial fibration, it follows that ψ is a trivial fibration as
well, which proves the “only if” direction of (3).

For the converse, suppose that ψ is a trivial fibration. Proposition 2.1.2.1
implies that ψ′ is a right fibration. According to Lemma 2.1.3.4, it will
suffice to prove that the fibers of ψ′ are contractible. Let t be a vertex of
X/x×Y/p(x) Y/p(f) and let K = (ψ′′)−1{ψ′′(t)}. Since ψ′′ is a trivial fibration,
K is a contractible Kan complex. Since ψ is a trivial fibration, the simplicial
set (ψ′)−1K = ψ−1{ψ′′(t)} is also a contractible Kan complex. It follows
that the fiber of ψ′ over the point t is weakly contractible, as desired.

Remark 2.4.1.4. Let p : X → S be an inner fibration of simplicial sets.
Unwinding the definition, we see that an edge f : ∆1 → X is p-Cartesian if
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and only if for every n ≥ 2 and every commutative diagram

∆{n−1,n}
f

�� 
  

  
  

  
� �

��
Λnn ��

� �

��

X

p

��
∆n ��

���
�

�
�

�
S,

there exists a dotted arrow as indicated, rendering the diagram commutative.

In particular, we note that Proposition 1.2.4.3 may be restated as follows:

(∗) Let C be a ∞-category and let p : C → ∆0 denote the projection from
C to a point. A morphism φ of C is p-Cartesian if and only if φ is an
equivalence.

In fact, it is possible to strengthen assertion (∗) as follows:

Proposition 2.4.1.5. Let p : C → D be an inner fibration between ∞-
categories and let f : C → C ′ be a morphism in C. The following conditions
are equivalent:

(1) The morphism f is an equivalence in C.

(2) The morphism f is p-Cartesian, and p(f) is an equivalence in D.

Proof. Let q denote the projection from D to a point. We note that both (1)
and (2) imply that p(f) is an equivalence in D and therefore q-Cartesian by
(∗). The equivalence of (1) and (2) now follows from (∗) and the third part
of Proposition 2.4.1.3.

Corollary 2.4.1.6. Let p : C → D be an inner fibration between ∞-
categories. Every identity morphism of C (in other words, every degenerate
edge of C) is p-Cartesian.

We now study the behavior of Cartesian edges under composition.

Proposition 2.4.1.7. Let p : C → D be an inner fibration between simplicial
sets and let σ : ∆2 → C be a 2-simplex of C, which we will depict as a diagram

C1

g

��!
!!

!!
!!

!

C0

f
����������
h �� C2.

Suppose that g is p-Cartesian. Then f is p-Cartesian if and only if h is
p-Cartesian.
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Proof. We wish to show that the map

i0 : C/h → C/C2 ×D/p(C2) D/p(h)

is a trivial fibration if and only if

i1 : C/f → C/C1 ×D/p(C1) D/p(f)

is a trivial fibration. The dual of Proposition 2.1.2.1 implies that both maps
are right fibrations. Consequently, by (the dual of) Lemma 2.1.3.4, it suffices
to show that the fibers of i0 are contractible if and only if the fibers of i1 are
contractible.

For any simplicial subset B ⊆ ∆2, let XB = C/σ|B ×Dσ|B D/σ. We note
thatXB is functorial in B in the sense that an inclusion A ⊆ B induces a map
jA,B : XB → XA (which is a right fibration, again by Proposition 2.1.2.1).
Observe that j∆{2},∆{0,2} is the base change of i0 by the map D/p(σ) → D/p(h)

and that j∆{1},∆{0,1} is the base change of i1 by the map D/σ → D/p(f). The
maps

D/p(f) ← D/p(σ) → D/p(h)

are both surjective on objects (in fact, both maps have sections). Conse-
quently, it suffices to prove that j∆{1},∆{0,1} has contractible fibers if and
only if j∆{2},∆{0,2} has contractible fibers. Now we observe that the compo-
sitions

X∆2 → X∆{0,2} → X∆{2}

X∆2 → XΛ2
1
→ X∆{1,2} → X∆{2}

coincide. By Proposition 2.1.2.5, jA,B is a trivial fibration whenever the
inclusion A ⊆ B is left anodyne. We deduce that j∆{2},∆{0,2} is a trivial
fibration if and only if j∆{1,2},Λ2

1
is a trivial fibration. Consequently, it suffices

to show that j∆{1,2},Λ2
1

is a trivial fibration if and only if j∆{1},∆{0,1} is a
trivial fibration.

Since j∆{1,2},Λ2
1

is a pullback of j∆{1},∆{0,1} , the “if” direction is obvious.
For the converse, it suffices to show that the natural map

C/g ×D/p(g) D/p(σ) → C/C1 ×D/p(C1) D/p(σ)

is surjective on vertices. But this map is a trivial fibration because the in-
clusion {1} ⊆ ∆{1,2} is left anodyne.

Our next goal is to reformulate the notion of a Cartesian morphism in a
form which will be useful later. For convenience of notation, we will prove
this result in a dual form. If p : X → S is an inner fibration and f is an edge
of X, we will say that f is p-coCartesian if it is Cartesian with respect to
the morphism pop : Xop → Sop.
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Proposition 2.4.1.8. Let p : Y → S be an inner fibration of simplicial sets
and let e : ∆1 → Y be an edge. Then e is p-coCartesian if and only if for
each n ≥ 1 and each diagram

{0} × ∆1

e

��"""
""""

""""
""""

""""
""""

� �

��
(∆n × {0}) ∐

∂∆n×{0}(∂∆n × ∆1) f ��
� �

��

Y

p

��
∆n × ∆1

h

�������������� g �� S

there exists a map h as indicated, rendering the diagram commutative.

Proof. Let us first prove the “only if” direction. We recall a bit of the nota-
tion used in the proof of Proposition 2.1.2.6; in particular, the filtration

X(n+ 1) ⊆ · · · ⊆ X(0) = ∆n × ∆1

of ∆n×∆1. We construct h|X(m) by descending induction on m. To begin,
we set h|X(n + 1) = f . Now, for each m the space X(m) is obtained from
X(m + 1) by pushout along a horn inclusion Λn+1

m ⊆ ∆m+1. If m > 0, the
desired extension exists because p is an inner fibration. If m = 0, the desired
extension exists because of the hypothesis that e is a p-coCartesian edge.

We now prove the “if” direction. Suppose that e satisfies the condition in
the statement of Proposition 2.4.1.8. We wish to show that e is p-coCartesian.
In other words, we must show that for every n ≥ 2 and every diagram

∆{0,1}

e

��#
##

##
##

##
� �

��
Λn0 ��

� �

��

X

p

��
∆n ��

		�
�

�
�

�
S,

there exists a dotted arrow as indicated, rendering the diagram commutative.
Replacing S by ∆n and Y by Y ×S∆n, we may reduce to the case where S is
an ∞-category. We again make use of the notation (and argument) employed
in the proof of Proposition 2.1.2.6. Namely, the inclusion Λn0 ⊆ ∆n is a retract
of the inclusion

(Λn0 × ∆1)
∐

Λn
0 ×{0}

(∆n × {0}) ⊆ ∆n × ∆1.

The retraction is implemented by maps

∆n j→ ∆n × ∆1 r→ ∆n,

which were defined in the proof of Proposition 2.1.2.6. We now set F = f ◦r,
G = g ◦ r.
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Let K = ∆{1,2,...,n} ⊆ ∆n. Then

F |(∂ K × ∆1)
∐

∂ K×{0}
(K × ∆1)

carries {1} × ∆1 into e. By assumption, there exists an extension of F to
K×∆1 which is compatible with G. In other words, there exists a compatible
extension F ′ of F to

∂∆n × ∆1
∐

∂∆n×{0}
∆n × {0}.

Moreover, F ′ carries {0} × ∆1 to a degenerate edge; such an edge is auto-
matically coCartesian (this follows from Corollary 2.4.1.6 because S is an
∞-category), and therefore there exists an extension of F ′ to all of ∆n×∆1

by the first part of the proof.

Remark 2.4.1.9. Let p : X → S be an inner fibration of simplicial sets, let
x be a vertex of X, and let f : x′ → p(x) be an edge of S ending at p(x).
There may exist many p-Cartesian edges f : x′ → x of X with p(f) = f .
However, there is a sense in which any two such edges having the same target
x are equivalent to one another. Namely, any p-Cartesian edge f : x′ → x
lifting f can be regarded as a final object of the ∞-category X/x×S/p(x) {f}
and is therefore determined up to equivalence by f and x.

We now spell out the meaning of Definition 2.4.1.1 in the setting of sim-
plicial categories.

Proposition 2.4.1.10. Let F : C → D be a functor between simplicial
categories. Suppose that C and D are fibrant and that for every pair of objects
C,C ′ ∈ C, the associated map

MapC(C,C ′) → MapD(F (C), F (C′))

is a Kan fibration. Then the following assertions hold:

(1) The associated map q : N(C) → N(D) is an inner fibration between
∞-categories.

(2) A morphism f : C ′ → C ′′ in C is q-Cartesian if and only if, for every
object C ∈ C, the diagram of simplicial sets

MapC(C,C ′) ��

��

MapC(C,C ′′)

��
MapD(F (C), F (C ′)) �� MapD(F (C), F (C′′))

is homotopy Cartesian.

Proof. Assertion (1) follows from Remark 1.1.5.11. Let f be a morphism in
C. By definition, f : C ′ → C ′′ is q-Cartesian if and only if

θ : N(C)/f → N(C)/C′′ ×N(D)/F (C′′) N(D)/F (f)
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is a trivial fibration. Since θ is a right fibration between right fibrations over
C, f is q-Cartesian if and only if for every object C ∈ C, the induced map

θC : {C} ×N(C) N(C)/f → {C} ×N(C) N(C)/C′′ ×N(D)/F (C′′) N(D)/F (f)

is a homotopy equivalence of Kan complexes. This is equivalent to the as-
sertion that the diagram

N(C)/f ×C {C} ��

��

N(C)/C′′ ×N(C) {C}

��
N(D)/F (f) ×N(D) {F (C)} �� N(D)/F (C′′) ×N(D) {F (C)}

is homotopy Cartesian. In view of Theorem 1.1.5.13, this diagram is equiv-
alent to the diagram of simplicial sets

MapC(C,C ′) ��

��

MapC(C,C ′′)

��
MapD(F (C), F (C′)) �� MapD(F (C), F (C′′)).

This proves (2).

In some contexts, it will be convenient to consider a slightly larger class
of edges:

Definition 2.4.1.11. Let p : X → S be an inner fibration and let e : ∆1 →
X be an edge. We will say that e is locally p-Cartesian if it is a p′-Cartesian
edge of the fiber product X ×S ∆1, where p′ : X ×S ∆1 → ∆1 denotes the
projection.

Remark 2.4.1.12. Suppose we are given a pullback diagram

X ′ f ��

p′

��

X

p

��
S′ �� S

of simplicial sets, where p (and therefore also p′) is an inner fibration. An
edge e of X ′ is locally p′-Cartesian if and only if its image f(e) is locally
p-Cartesian.

We conclude with a somewhat technical result which will be needed in
§3.1.1:

Proposition 2.4.1.13. Let p : X → S be an inner fibration of simplicial
sets and let f : x → y be an edge of X. Suppose that there is a 3-simplex
σ : ∆3 → X such that d1σ = s0f and d2σ = s1f . Suppose furthermore that
there exists a p-Cartesian edge f̃ : x̃ → y such that p(f̃) = p(f). Then f is
p-Cartesian.



122 CHAPTER 2

Proof. We have a diagram of simplicial sets

Λ2
2

( ef,f,•) ��
� �

��

X

p

��
∆2

s0p(f) ��

τ

��
S.

Because f̃ is p-Cartesian, there exists a map τ rendering the diagram com-
mutative. Let g = d2(τ), which we regard as a morphism x → x̃ in the
∞-category Xp(x) = X ×S {p(x)}. We will show that g is an equivalence in
Xp(x). It will follow that g is p-Cartesian and that f , being a composition of
p-Cartesian edges, is p-Cartesian (Proposition 2.4.1.7).

Now consider the diagram

Λ2
1

(d0d3σ,•,g) ��
� �

��

X

p

��
∆2

d3p(σ) ��

τ ′
��
S.

The map τ ′ exists since p is an inner fibration. Let g′ = d1τ
′. We will show

that g′ : x̃ → x is a homotopy inverse to g in the ∞-category Xp(x).
Using τ and τ ′, we construct a new diagram

Λ3
2

(τ ′,d3σ,•,τ) ��
� �

��

X

p

��
∆3

s0d3p(σ) ��

θ

��
S.

Since p is an inner fibration, we deduce the existence of θ : ∆3 → X, ren-
dering the diagram commutative. The simplex d2(θ) exhibits idx as a com-
position g′ ◦ g in the ∞-category Xp(s). It follows that g′ is a left homotopy
inverse to g.

We now have a diagram

Λ2
1

(g,•,g′) ��
� �

��

Xp(x)

∆2.

τ ′′
���������

The indicated 2-simplex τ ′′ exists since Xp(x) is an ∞-category and exhibits
d1(τ ′′) as a composition g ◦ g′. To complete the proof, it will suffice to show
that d1(τ ′′) is an equivalence in Xp(x).

Consider the diagrams

Λ3
1

(d0σ,•,s1 ef,τ ′) ��
� �

��

X

p

��

Λ3
1

(τ,•,d1θ′,τ ′′) ��
� �

��

X

p

��
∆3

θ′
�� σ �� S ∆3

s0s0p(f) ��

θ′′
��
S.
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Since p is an inner fibration, there exist 3-simplices θ′, θ′′ : ∆3 → X with the
indicated properties. The 2-simplex d1(θ′′) identifies d1(τ ′′) as a map between
two p-Cartesian lifts of p(f); it follows that d1(τ ′′) is an equivalence, which
completes the proof.

2.4.2 Cartesian Fibrations

In this section, we will introduce the study of Cartesian fibrations between
simplicial sets. The theory of Cartesian fibrations is a generalization of the
theory of right fibrations studied in §2.1. Recall that if f : X → S is a right
fibration of simplicial sets, then the fibers {Xs}s∈S are Kan complexes, which
depend in a (contravariantly) functorial fashion on the choice of vertex s ∈ S.
The condition that f be a Cartesian fibration has a similar flavor: we still
require that Xs depend functorially on s but weaken the requirement that
Xs be a Kan complex; instead, we merely require that it be an ∞-category.

Definition 2.4.2.1. We will say that a map p : X → S of simplicial sets is
a Cartesian fibration if the following conditions are satisfied:

(1) The map p is an inner fibration.

(2) For every edge f : x → y of S and every vertex ỹ of X with p(ỹ) = y,
there exists a p-Cartesian edge f̃ : x̃ → ỹ with p(f̃) = f .

We say that p is a coCartesian fibration if the opposite map pop : Xop →
Sop is a Cartesian fibration.

If a general inner fibration p : X → S associates to each vertex s ∈ S an
∞-category Xs and to each edge s → s′ a correspondence from Xs to Xs′ ,
then p is Cartesian if each of these correspondences arises from a (canonically
determined) functor Xs′ → Xs. In other words, a Cartesian fibration with
base S ought to be roughly the same thing as a contravariant functor from
S into an ∞-category of ∞-categories, where the morphisms are given by
functors. One of the main goals of Chapter 3 is to give a precise formulation
(and proof) of this assertion.

Remark 2.4.2.2. Let F : C → C′ be a functor between (ordinary) cate-
gories. The induced map of simplicial sets N(F ) : N(C) → N(C′) is auto-
matically an inner fibration; it is Cartesian if and only if F is a fibration of
categories in the sense of Grothendieck.

The following formal properties follow immediately from the definition:

Proposition 2.4.2.3. (1) Any isomorphism of simplicial sets is a Carte-
sian fibration.

(2) The class of Cartesian fibrations between simplicial sets is stable under
base change.

(3) A composition of Cartesian fibrations is a Cartesian fibration.
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Recall that an ∞-category C is a Kan complex if and only if every mor-
phism in C is an equivalence. We now establish a relative version of this
statement:

Proposition 2.4.2.4. Let p : X → S be an inner fibration of simplicial
sets. The following conditions are equivalent:

(1) The map p is a Cartesian fibration, and every edge in X is p-Cartesian.

(2) The map p is a right fibration.

(3) The map p is a Cartesian fibration, and every fiber of p is a Kan
complex.

Proof. In view of Remark 2.4.1.4, the assertion that every edge of X is p-
Cartesian is equivalent to the assertion that p has the right lifting property
with respect to Λnn ⊆ ∆n for all n ≥ 2. The requirement that p be a Cartesian
fibration further imposes the right lifting property with respect to Λ1

1 ⊆ ∆1.
This proves that (1) ⇔ (2).

Suppose that (2) holds. Since we have established that (2) implies (1), we
know that p is Cartesian. Furthermore, we have already seen that the fibers
of a right fibration are Kan complexes. Thus (2) implies (3).

We complete the proof by showing that (3) implies that every edge f :
x → y of X is p-Cartesian. Since p is a Cartesian fibration, there exists a
p-Cartesian edge f ′ : x′ → y with p(f ′) = p(f). Since f ′ is p-Cartesian, there
exists a 2-simplex σ : ∆2 → X which we may depict as a diagram

x′
f ′

���
��

��
��

x

g
���������� f �� y,

where p(σ) = s0p(f). Then g lies in the fiber Xp(x) and is therefore an
equivalence (since Xp(x) is a Kan complex). It follows that f is equivalent to
f ′ as objects of X/y ×S/p(y) {p(f)}, so that f is p-Cartesian, as desired.

Corollary 2.4.2.5. Let p : X → S be a Cartesian fibration. Let X ′ ⊆ X
consist of all those simplices σ of X such that every edge of σ is p-Cartesian.
Then p|X′ is a right fibration.

Proof. We first show that p|X ′ is an inner fibration. It suffices to show that
p|X ′ has the right lifting property with respect to every horn inclusion Λni ,
0 < i < n. If n > 2, then this follows immediately from the fact that p
has the appropriate lifting property. If n = 2, then we must show that if
f : ∆2 → X is such that f |Λ2

1 factors through X ′, then f factors through
X ′. This follows immediately from Proposition 2.4.1.7.

We now wish to complete the proof by showing that p is a right fibration.
According to Proposition 2.4.2.4, it suffices to prove that every edge of X ′

is p|X ′-Cartesian. This follows immediately from the characterization given
in Remark 2.4.1.4 because every edge of X ′ is p-Cartesian (when regarded
as an edge of X).
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In order to verify that certain maps are Cartesian fibrations, it is often
convenient to work in a slightly more general setting.

Definition 2.4.2.6. A map p : X → S of simplicial sets is a locally Cartesian
fibration if it is an inner fibration and, for every edge ∆1 → S, the pullback
X ×S ∆1 → ∆1 is a Cartesian fibration.

In other words, an inner fibration p : X → S is a locally Cartesian fibration
if and only if, for every vertex x ∈ X and every edge e : s → p(x) in S, there
exists a locally p-Cartesian edge s → x which lifts e.

Let p : X → S be an inner fibration of simplicial sets. It is clear that
every p-Cartesian morphism of X is locally p-Cartesian. Moreover, Proposi-
tion 2.4.1.7 implies that the class of p-Cartesian edges of X is stable under
composition. Then following result can be regarded as a sort of converse:

Lemma 2.4.2.7. Let p : X → S be a locally Cartesian fibration of simplicial
sets and let f : x′ → x be an edge of X. The following conditions are
equivalent:

(1) The edge e is p-Cartesian.

(2) For every 2-simplex σ

x′
f

���
��

��
��

�

x′′

g
��							
h �� x

in X, the edge g is locally p-Cartesian if and only if the edge h is locally
p-Cartesian.

(3) For every 2-simplex σ

x′
f

���
��

��
��

�

x′′

g
��							
h �� x

in X, if g is locally p-Cartesian, then h is locally p-Cartesian.

Proof. We first show that (1) ⇒ (2). Pulling back via the composition p◦σ :
∆2 → S, we can reduce to the case where S = ∆2. In this case, g is locally p-
Cartesian if and only if it is p-Cartesian, and likewise for h. We now conclude
by applying Proposition 2.4.1.7.

The implication (2) ⇒ (3) is obvious. We conclude by showing that (3) ⇒
(1). We must show that η : X/f → X/x ×S/p(x) S/p(f) is a trivial fibration.
Since η is a right fibration, it will suffice to show that the fiber of η over any
vertex is contractible. Any such vertex determines a map σ : ∆2 → S with
σ|∆{1,2} = p(f). Pulling back via σ, we may suppose that S = ∆2.

It will be convenient to introduce a bit of notation: for every map q : K →
X let Y/q ⊆ X/q denote the full simplicial subset spanned by those vertices
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of X/q which map to the initial vertex of S. We wish to show that the natural
map Y/f → Y/x is a trivial fibration. By assumption, there exists a locally
p-Cartesian morphism g : x′′ → x′ in X covering the edge ∆{0,1} ⊆ S. Since
X is an ∞-category, there exists a 2-simplex τ : ∆2 → X with d2(τ) = g and
d0(τ) = f . Then h = d1(τ) is a composite of f and g, and assumption (3)
guarantees that h is locally p-Cartesian. We have a commutative diagram

Y/h

��$$
$$$

$$$
$$$

$$$
$$

Y/τ



������������������

��#
##

##
##

#
Y/x

Y/τ |Λ2
1

�� Y/f .

ζ
��%%%%%%%%

Moreover, all of the maps in this diagram are trivial fibrations except possibly
ζ, which is known to be a right fibration. It follows that ζ is a trivial fibration
as well, which completes the proof.

In fact, we have the following:

Proposition 2.4.2.8. Let p : X → S be a locally Cartesian fibration. The
following conditions are equivalent:

(1) The map p is a Cartesian fibration.

(2) Given a 2-simplex

x
f ��

h

���
��

��
��

� x′

g
����
��
��
�

z,

if f and g are locally p-Cartesian, then h is locally p-Cartesian.

(3) Every locally p-Cartesian edge of X is p-Cartesian.

Proof. The equivalence (2) ⇔ (3) follows from Lemma 2.4.2.7, and the im-
plication (3) ⇒ (1) is obvious. To prove that (1) ⇒ (3), let us suppose
that e : x → y is a locally p-Cartesian edge of X. Choose a p-Cartesian
edge e′ : x′ → y lifting p(e). The edges e and e′ are both p′-Cartesian in
X ′ = X ×S ∆1, where p′ : X ′ → ∆1 denotes the projection. It follows that
e and e′ are equivalent in X ′ and therefore also equivalent in X. Since e′ is
p-Cartesian, we deduce that e is p-Cartesian as well.

Remark 2.4.2.9. If p : X → S is a locally Cartesian fibration, then we can
associate to every edge s → s′ of S a functor Xs′ → Xs, which is well-defined
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up to homotopy. A 2-simplex

s ��

���
��

��
��

� s′

����
��
��
�

s′′

determines a triangle of ∞-categories

Xs Xs′
F

��

Xs′′

H

����������
G

		��������

which commutes up to a (generally noninvertible) natural transformation
α : F ◦G → H. Proposition 2.4.2.8 implies that p is a Cartesian fibration if
and only if every such natural transformation is an equivalence of functors.

Corollary 2.4.2.10. Let p : X → S be an inner fibration of simplicial
sets. Then p is Cartesian if and only if every pullback X ×S ∆n → ∆n is a
Cartesian fibration for n ≤ 2.

One advantage the theory of locally Cartesian fibrations holds over the
theory of Cartesian fibrations is the following “fiberwise” existence criterion:

Proposition 2.4.2.11. Suppose we are given a commutative diagram of
simplicial sets

X
p

���
��

��
��

r �� Y

q
����
��
��
�

S

satisfying the following conditions:

(1) The maps p and q are locally Cartesian fibrations, and r is an inner
fibration.

(2) The map r carries locally p-Cartesian edges of X to locally q-Cartesian
edges of Y .

(3) For every vertex s of S, the induced map rs : Xs → Ys is a locally
Cartesian fibration.

Then r is a locally Cartesian fibration. Moreover, an edge e of X is locally
r-Cartesian if and only if there exists a 2-simplex σ

x′

e′′

��












x

e′
���������� e �� x′′

with the following properties:
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(i) In the simplicial set S, we have p(σ) = s0(p(e)).

(ii) The edge e′′ is locally p-Cartesian.

(iii) The edge e′ is locally rp(x)-Cartesian.

Proof. Suppose we are given a vertex x′′ ∈ X and an edge e0 : y → p(x′′)
in Y . It is clear that we can construct a 2-simplex σ in X satisfying (i)
through (iii), with p(e) = q(e0). Moreover, σ is uniquely determined up to
equivalence. We will prove that e is locally r-Cartesian. This will prove that
r is a locally Cartesian fibration and the “if” direction of the final assertion.
The converse will then follow from the uniqueness (up to equivalence) of
locally r-Cartesian lifts of a given edge (with specified terminal vertex).

To prove that e is locally r-Cartesian, we are free to pull back by the
edge p(e) : ∆1 → S and thereby reduce to the case S = ∆1. Then p and
q are Cartesian fibrations. Since e′′ is p-Cartesian and r(e′′) is q-Cartesian,
Proposition 2.4.1.3 implies that e′′ is r-Cartesian. Remark 2.4.1.12 implies
that e′ is locally p-Cartesian. It follows from Lemma 2.4.2.7 that e is locally
p-Cartesian as well.

Remark 2.4.2.12. The analogue of Proposition 2.4.2.11 for Cartesian fi-
brations is false.

2.4.3 Stability Properties of Cartesian Fibrations

In this section, we will prove the class of Cartesian fibrations is stable un-
der the formation of overcategories and undercategories. Since the definition
of a Cartesian fibration is not self-dual, we must treat these results sepa-
rately, using slightly different arguments (Propositions 2.4.3.2 and 2.4.3.3).
We begin with the following simple lemma.

Lemma 2.4.3.1. Let A ⊆ B be an inclusion of simplicial sets. Then the
inclusion

({1}  B)
∐

{1}�A
(∆1  A) ⊆ ∆1  B

is inner anodyne.

Proof. Working by transfinite induction, we may reduce to the case where B
is obtained from A by adjoining a single nondegenerate simplex and therefore
to the universal case B = ∆n, A = ∂∆n. Now the inclusion in question is
isomorphic to Λn+2

1 ⊆ ∆n+2.

Proposition 2.4.3.2. Let p : C → D be a Cartesian fibration of simplicial
sets and let q : K → C be a diagram. Then

(1) The induced map p′ : C/q → D/pq is a Cartesian fibration.

(2) An edge f of C/q is p′-Cartesian if and only if the image of f in C is
p-Cartesian.
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Proof. Proposition 2.1.2.5 implies that p′ is an inner fibration. Let us call an
edge f of Cq/ special if its image in C is p-Cartesian. To complete the proof,
we will verify the following assertions:

(i) Given a vertex q ∈ C/q and an edge f̃ : r′ → p′(q), there exists a special
edge f : r → q with p′(f) = f̃ .

(ii) Every special edge of C/q is p′-Cartesian.

To prove (i), let f̃ ′ denote the image of f̃ in D and c the image of q in
C. Using the assumption that p is a coCartesian fibration, we can choose a
p-coCartesian edge f ′ : c → d lifting f̃ ′. To extend this data to the desired
edge f of C/q, it suffices to solve the lifting problem depicted in the diagram

({1}  K)
∐

{1} ∆1 ��
� �

i

��

C

p

��
∆1  K ��

��&&&&&&&
D .

This lifting problem has a solution because p is an inner fibration and i is
inner anodyne (Lemma 2.4.3.1).

To prove (ii), it will suffice to show that if n ≥ 2, then any lifting problem
of the form

Λnn  K
g ��

� �

��

C

p

��
∆n  K ��

G

���
�

�
�

�
D

has a solution provided that e = g(∆{n−1,n}) is a p-Cartesian edge of C.
Consider the set P of pairs (K′, GK′), where K ′ ⊆ K and GK′ fits in a
commutative diagram

(Λnn  K)
∐

Λn
n�K

′(∆n  K ′)
GK′ ��

� �

��

C

p

��
∆n  K �� D .

Because e is p-Cartesian, there exists an element (∅, G∅) ∈ P . We regard P
as partially ordered, where (K′, GK′) ≤ (K ′′, GK′′) if K ′ ⊆ K ′′ and GK′

is a restriction of GK′′ . Invoking Zorn’s lemma, we deduce the existence of
a maximal element (K′, GK′) of P . If K ′ = K, then the proof is complete.
Otherwise, it is possible to enlargeK ′ by adjoining a single nondegeneratem-
simplex of K. Since (K′, GK′′) is maximal, we conclude that the associated
lifting problem

(Λnn ∆m)
∐

Λn
n�∂∆m(∆n  ∂∆m) ��

� �

��

C

p

��
∆n ∆m ��

σ



'''''''''
D
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has no solution. The left vertical map is equivalent to the inclusion Λn+m+1
n+1 ⊆

∆n+m+1, which is inner anodyne. Since p is an inner fibration by assumption,
we obtain a contradiction.

Proposition 2.4.3.3. Let p : C → D be a coCartesian fibration of simplicial
sets and let q : K → C be a diagram. Then

(1) The induced map p′ : C/q → D/pq is a coCartesian fibration.

(2) An edge f of C/q is p′-coCartesian if and only if the image of f in C

is p-coCartesian.

Proof. Proposition 2.1.2.5 implies that p′ is an inner fibration. Let us call
an edge f of C/q special if its image in C is p-coCartesian. To complete the
proof, it will suffice to verify the following assertions:

(i) Given a vertex q ∈ C/q and an edge f̃ : p′(q) → r′, there exists a special
edge f : q → r with p′(f) = f̃ .

(ii) Every special edge of C/q is p′-coCartesian.

To prove (i), we begin with a commutative diagram

∆0  K
q ��

� �

��

C

��
∆1  K

ef �� D .

Let C ∈ C denote the image under q of the cone point of ∆0 K and choose
a p-coCartesian morphism u : C → C ′ lifting f̃ |∆1. We now consider the
collection P of all pairs (L, fL), where L is a simplicial subset of K and fL
is a map fitting into a commutative diagram

(∆0  K)
∐

∆0�L(∆1  L)
fL ��

� �

��

C

��
∆1  K

ef �� D,

where fL|∆1 = u and fL|∆0  K = q. We partially order the set P as
follows: (L, fL) ≤ (L′, fL′) if L ⊆ L′ and fL is equal to the restriction of fL′ .
The partially ordered set P satisfies the hypotheses of Zorn’s lemma and
therefore contains a maximal element (L, fL). If L �= K, then we can choose
a simplex σ : ∆n → K of minimal dimension which does not belong to L.
By maximality, we obtain a diagram

Λn+2
0

��
� �

��

C

��
∆n+2 ��

��%
%

%
%

%
D
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in which the indicated dotted arrow cannot be supplied. This is a contra-
diction since the upper horizontal map carries the initial edge of Λn+2

0 to a
p-coCartesian edge of C. It follows that L = K, and we may take f = fL.
This completes the proof of (i).

The proof of (ii) is similar. Suppose we are given n ≥ 2 and let

Λn0  K
f0 ��

� �

��

C

��
∆n  K

g ��

f

���
�

�
�

�
D

be a commutative diagram, where f0|K = q and f0|∆{0,1} is a p-coCartesian
edge of C. We wish to prove the existence of the dotted arrow f indicated in
the diagram. As above, we consider the collection P of all pairs (L, fL), where
L is a simplicial subset of K and fL extends f0 and fits into a commutative
diagram

(Λn0  K)
∐

Λn
0 �L

(∆n  L) fL ��
� �

��

C

��
∆n  K

g �� D .

We partially order P as follows: (L, fL) ≤ (L′, fL′) if L ⊆ L′ and fL is
a restriction of fL′ . Using Zorn’s lemma, we conclude that P contains a
maximal element (L, fL). If L �= K, then we can choose a simplex σ : ∆m →
K which does not belong to L, where m is as small as possible. Invoking the
maximality of (L, fL), we obtain a diagram

Λn+m+1
0

h ��
� �

��

C

��
∆n+m+1 ��

���
�

�
�

�
D,

where the indicated dotted arrow cannot be supplied. However, the map
h carries the initial edge of ∆n+m+1 to a p-coCartesian edge of C, so we
obtain a contradiction. It follows that L = K, so that we can take f = fL
to complete the proof.

2.4.4 Mapping Spaces and Cartesian Fibrations

Let p : C → D be a functor between ∞-categories and let X and Y be
objects of C. Then p induces a map

φ : MapC(X,Y ) → MapD(p(X), p(Y )).

Our goal in this section is to understand the relationship between the fibers
of p and the homotopy fibers of φ.
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Lemma 2.4.4.1. Let p : C → D be an inner fibration of ∞-categories and
let X,Y ∈ C. The induced map φ : HomR

C(X,Y ) → HomR
D(p(X), p(Y )) is a

Kan fibration.

Proof. Since p is an inner fibration, the induced map φ̃ : C/X → D/p(X) ×D C

is a right fibration by Proposition 2.1.2.1. We note that φ is obtained from φ̃
by restricting to the fiber over the vertex Y of C. Thus φ is a right fibration;
since the target of φ is a Kan complex, φ is a Kan fibration by Lemma
2.1.3.3.

Suppose the conditions of Lemma 2.4.4.1 are satisfied. Let us consider
the problem of computing the fiber of φ over a vertex e : p(X) → p(Y ) of
HomR

D(X,Y ). Suppose that there is a p-Cartesian edge e : X ′ → Y lifting e.
By definition, we have a trivial fibration

ψ : C/e → C/Y ×D/p(Y ) D/e .

Consider the 2-simplex σ = s1(e) regarded as a vertex of D/e. Passing to
the fiber, we obtain a trivial fibration

F → φ−1(e),

where F denotes the fiber of C/e → D/e×D C over the point (σ,X). On
the other hand, we have a trivial fibration C/e → D/e×D/p(X) C/X′ by
Proposition 2.1.2.5. Passing to the fiber again, we obtain a trivial fibration
F → HomR

Cp(X)
(X,X ′). We may summarize the situation as follows:

Proposition 2.4.4.2. Let p : C → D be an inner fibration of ∞-categories.
Let X,Y ∈ C, let e : p(X) → p(Y ) be a morphism in D, and let e : X ′ → Y be
a locally p-Cartesian morphism of C lifting e. Then in the homotopy category
H of spaces, there is a fiber sequence

MapCp(X)
(X,X ′) → MapC(X,Y ) → MapD(p(X), p(Y )).

Here the fiber is taken over the point classified by e : p(X) → p(Y ).

Proof. The edge e defines a map ∆1 → D. Note that the fiber of the Kan
fibration HomR

C(X,Y ) → HomR
D(pX, pY ) does not change if we replace p by

the induced projection C×D∆1 → ∆1. We may therefore assume without
loss of generality that e is p-Cartesian, and the desired result follows from
the above analysis.

A similar assertion can be taken as a characterization of Cartesian mor-
phisms:

Proposition 2.4.4.3. Let p : C → D be an inner fibration of ∞-categories
and let f : Y → Z be a morphism in C. The following are equivalent:

(1) The morphism f is p-Cartesian.
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(2) For every object X of C, composition with f gives rise to a homotopy
Cartesian diagram

MapC(X,Y ) ��

��

MapC(X,Z)

��
MapD(p(X), p(Y )) �� MapD(p(X), p(Z)).

Proof. Let φ : C/f → C/Z ×D/p(Z) D/p(f) be the canonical map; then (1) is
equivalent to the assertion that φ is a trivial fibration. According to Propo-
sition 2.1.2.1, φ is a right fibration. Thus, φ is a trivial fibration if and only
if the fibers of φ are contractible Kan complexes. For each object X ∈ C, let

φX : C/f ×C{X} → C/Z ×D/p(Z) D/p(f) ×C{X}
be the induced map. Then φX is a right fibration between Kan complexes
and therefore a Kan fibration; it has contractible fibers if and only if it is a
homotopy equivalence. Thus (1) is equivalent to the assertion that φX is a
homotopy equivalence for every object X of C.

We remark that (2) is somewhat imprecise: although all the maps in the
diagram are well-defined in the homotopy category H of spaces, we need to
represent this by a commutative diagram in the category of simplicial sets
before we can ask whether or not the diagram is homotopy Cartesian. We
therefore rephrase (2) more precisely: it asserts that the diagram of Kan
complexes

C/f ×C{X} ��

��

C/Z ×C{X}

��
D/p(f) ×D{p(X)} �� D/p(Z) ×D{p(X)}

is homotopy Cartesian. Lemma 2.4.4.1 implies that the right vertical map
is a Kan fibration, so the homotopy limit in question is given by the fiber
product

C/Z ×D/p(Z) D/p(f) ×C{X}.
Consequently, assertion (2) is also equivalent to the condition that φX be a
homotopy equivalence for every object X ∈ C.

Corollary 2.4.4.4. Suppose we are given maps C
p→ D

q→ E of ∞-categories
such that both q and q ◦ p are locally Cartesian fibrations. Suppose that p
carries locally (q ◦ p)-Cartesian edges of C to locally q-Cartesian edges of D

and that for every object Z ∈ E, the induced map CZ → DZ is a categorical
equivalence. Then p is a categorical equivalence.

Proof. Proposition 2.4.4.2 implies that p is fully faithful. If Y is any object of
D, then Y is equivalent in the fiber Dq(Y ) to the image under p of some vertex
of Cq(Y ). Thus p is essentially surjective, and the proof is complete.
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Corollary 2.4.4.5. Let p : C → D be a Cartesian fibration of ∞-categories.
Let q : D′ → D be a categorical equivalence of ∞-categories. Then the induced
map q′ : C′ = D′ ×D C → C is a categorical equivalence.

Proof. Proposition 2.4.4.2 immediately implies that q′ is fully faithful. We
claim that q′ is essentially surjective. LetX be any object of C. Since q is fully
faithful, there exists an object y of T ′ and an equivalence e : q(Y ) → p(X).
Since p is Cartesian, we can choose a p-Cartesian edge e : Y ′ → X lifting
e. Since e is p-Cartesian and p(e) is an equivalence, e is an equivalence. By
construction, the object Y ′ of S lies in the image of q′.

Corollary 2.4.4.6. Let p : C → D be a Cartesian fibration of ∞-categories.
Then p is a categorical equivalence if and only if p is a trivial fibration.

Proof. The “if” direction is clear. Suppose then that p is a categorical equiva-
lence. We first claim that p is surjective on objects. The essential surjectivity
of p implies that for each Y ∈ D, there is an equivalence Y → p(X) for some
object X of C. Since p is Cartesian, this equivalence lifts to a p-Cartesian
edge Ỹ → X of S, so that p(Ỹ ) = Y .

Since p is fully faithful, the map MapC(X,X ′) → MapD(p(X), p(X ′))
is a homotopy equivalence for any pair of objects X,X ′ ∈ C. Suppose
that p(X) = p(X ′). Then, applying Proposition 2.4.4.2, we deduce that
MapCp(X)

(X,X ′) is contractible. It follows that the ∞-category Cp(X) is
nonempty with contractible morphism spaces; it is therefore a contractible
Kan complex. Proposition 2.4.2.4 now implies that p is a right fibration.
Since p has contractible fibers, it is a trivial fibration by Lemma 2.1.3.4.

We have already seen that if an ∞-category S has an initial object, then
that initial object is essentially unique. We now establish a relative version
of this result.

Lemma 2.4.4.7. Let p : C → D be a Cartesian fibration of ∞-categories
and let C be an object of C. Suppose that D = p(C) is an initial object of D

and that C is an initial object of the ∞-category CD = C×D{D}. Then C
is an initial object of C.

Proof. Let C′ be any object of C and set D′ = p(C′). Since D is an initial
object of D, the space MapD(D,D′) is contractible. In particular, there
exists a morphism f : D → D′ in D. Let f̃ : D̃ → C ′ be a p-Cartesian lift
of f . According to Proposition 2.4.4.2, there exists a fiber sequence in the
homotopy category H:

MapCD
(C, D̃) → MapC(C,C ′) → MapD(D,D′).

Since the first and last spaces in this sequence are contractible, we deduce
that MapC(C,C ′) is contractible as well, so that C is an initial object of
C.
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Lemma 2.4.4.8. Suppose we are given a diagram of simplicial sets

∂∆n
f0 ��

� �

��

X

p

��
∆n

f
		�

�
�

� g �� S,

where p is a Cartesian fibration and n > 0. Suppose that f0(0) is an initial
object of the ∞-category Xg(0) = X ×S {g(0)}. Then there exists a map
f : ∆n → S as indicated by the dotted arrow in the diagram, which renders
the diagram commutative.

Proof. Pulling back via g, we may replace S by ∆n and thereby reduce to the
case where S is an ∞-category and g(0) is an initial object of S. It follows
from Lemma 2.4.4.7 that f0(v) is an initial object of S, which implies the
existence of the desired extension f .

Proposition 2.4.4.9. Let p : X → S be a Cartesian fibration of simplicial
sets. Assume that for each vertex s of S, the ∞-category Xs = X×S {s} has
an initial object.

(1) Let X ′ ⊆ X denote the full simplicial subset of X spanned by those
vertices x which are initial objects of Xp(x). Then p|X ′ is a trivial
fibration of simplicial sets.

(2) Let C = MapS(S,X) be the ∞-category of sections of p. An arbitrary
section q : S → X is an initial object of C if and only if q factors
through X ′.

Proof. Since every fiber Xs has an initial object, the map p|X ′ has the
right lifting property with respect to the inclusion ∅ ⊆ ∆0. If n > 0, then
Lemma 2.4.4.8 shows that p|X ′ has the right lifting property with respect
to ∂∆n ⊆ ∆n. This proves (1). In particular, we deduce that there exists
a map q : S → X ′ which is a section of p. In view of the uniqueness of
initial objects, (2) will follow if we can show that q is an initial object of C.
Unwinding the definitions, we must show that for n > 0, any lifting problem

S × ∂∆n
f ��

� �

��

X

q

��
S × ∆n ��

���
�

�
�

�
S

can be solved provided that f |S × {0} = q. The desired extension can be
constructed simplex by simplex using Lemma 2.4.4.8.

2.4.5 Application: Invariance of Undercategories

Our goal in this section is to complete the proof of Proposition 1.2.9.3 by
proving the following assertion:
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(∗) Let p : C → D be an equivalence of ∞-categories and let j : K → C be
a diagram. Then the induced map

Cj/ → Dpj/

is a categorical equivalence.

We will need a lemma.

Lemma 2.4.5.1. Let p : C → D be a fully faithful map of ∞-categories and
let j : K → C be any diagram in C. Then, for any object x of C, the map of
Kan complexes

Cj/×C{x} → Dpj/×D{p(x)}
is a homotopy equivalence.

Proof. For any map r : K ′ → K of simplicial sets, let Cr = Cjr/×C{x} and
Dr = Dpjr/×D{p(x)}.

Choose a transfinite sequence of simplicial subsets Kα of K such that
Kα+1 is the result of adjoining a single nondegenerate simplex to Kα and
Kλ =

⋃
α<λKα whenever λ is a limit ordinal (we include the case where

λ = 0, so that K0 = ∅). Let iα : Kα → K denote the inclusion. We claim
the following:

(1) For every ordinal α, the map φα : Ciα → Diα is a homotopy equivalence
of simplicial sets.

(2) For every pair of ordinals β ≤ α, the maps Ciα → Ciβ and Diα → Diβ

are Kan fibrations of simplicial sets.

We prove both of these claims by induction on α. When α = 0, (2) is
obvious and (1) follows since both sides are isomorphic to ∆0. If α is a
limit ordinal, (2) is again obvious, while (1) follows from the fact that both
Ciα and Diα are obtained as the inverse limits of transfinite sequences of
fibrations, and the map φα is an inverse limit of maps which are individually
homotopy equivalences.

Assume that α = β+1 is a successor ordinal, so that Kα � Kβ

∐
∂∆n ∆n.

Let f : ∆n → Kα be the induced map, so that

Ciα = Ciβ ×Cf| ∂ ∆n Cf

Diα = Diβ ×Df| ∂ ∆n Df .

We note that the projections Cf → Df | ∂∆n and Cf → Df | ∂∆n are left
fibrations by Proposition 2.1.2.1 and therefore Kan fibrations by Lemma
2.1.3.3. This proves (2) since the class of Kan fibrations is stable under
pullback. We also note that the pullback diagrams defining Xiα and Yiα are
also homotopy pullback diagrams. Thus, to prove that φα is a homotopy
equivalence, it suffices to show that φβ and the maps

Cf | ∂∆n → Df | ∂∆n
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Cf → Df

are homotopy equivalences. In other words, we may reduce to the case where
K is a finite complex.

We now work by induction on the dimension of K. Suppose that the
dimension of K is n and that the result is known for all simplicial sets
having smaller dimensions. Running through the above argument again, we
can reduce to the case where K = ∆n. Let v denote the final vertex of ∆n.
By Proposition 2.1.2.5, the maps

Cj → Cj|{v}

Dj → Dj|{v}

are trivial fibrations. Thus, it suffices to consider the case where K is a
single point {v}. In this case, we have Cj = HomL

C(j(v), x) and Yj =
HomL

D(p(j(v)), p(x)). It follows that the map φ is a homotopy equivalence
since p is assumed to be fully faithful.

Proof of (∗). Let p : C → D be a categorical equivalence of ∞-categories
and j : K → C any diagram. We have a factorization

Cj/
f→ Dpj/×D C

g→ Dpj/ .

Lemma 2.4.5.1 implies that Cj/ and Dpj/×D C are fiberwise equivalent left
fibrations over C, so that f is a categorical equivalence by Corollary 2.4.4.4
(we note that the map f automatically carries coCartesian edges to coCarte-
sian edges because all edges of the target Dpj/×D C are coCartesian). The
map g is a categorical equivalence by Corollary 2.4.4.5. It follows that g ◦ f
is a categorical equivalence, as desired.

2.4.6 Application: Categorical Fibrations over a Point

Our main goal in this section is to prove the following result:

Theorem 2.4.6.1. Let C be a simplicial set. Then C is fibrant for the Joyal
model structure if and only if C is an ∞-category.

The proof will require a few technical preliminaries.

Lemma 2.4.6.2. Let p : C → D be a categorical equivalence of ∞-categories
and let m ≥ 2 be an integer. Suppose we are given maps f0 : ∂∆{1,...,m} → C

and h0 : Λm0 → D with h0| ∂∆{1,...,m} = p ◦ f0. Suppose further that the
restriction of h to ∆{0,1} is an equivalence in D. Then there exist maps f :
∆{1,...,m} → C, h : ∆m → D such that h|∆{1,...,n} = p◦f , f0 = f | ∂∆{1,...,m},
and h0 = h|Λm0 .

Proof. We may regard h0 as a point of the simplicial set D/p◦f0 . Since p is a
categorical equivalence, Proposition 1.2.9.3 implies that p′ : C/f0 → D/p◦f0
is a categorical equivalence. It follows that h0 lies in the essential image
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of p′. Consider the linearly ordered set {0 < 0′ < 1 < · · · < n} and the
corresponding simplex ∆{0,0′,...,n}. By hypothesis, we can extend f0 to a
map f ′

0 : Λ{0′,...,m}
0′ → C and h0 to a map h′0 : ∆{0,0′}  ∂∆{1,...,m} → D such

that h′0|∆{0,0′} is an equivalence and h′0|Λ{0′,...,m}
0 = p ◦ f ′0.

Since h′0|∆{0,0′} and h′0|∆{0,1} are both equivalences in D, we deduce that
h′0|∆{0′,1} is an equivalence in D. Since p is a categorical equivalence, it
follows that f ′0|∆{0′,1} is an equivalence in C. Proposition 1.2.4.3 implies
that f ′0 extends to a map f ′ : ∆{0′,...,m} → C. The union of p ◦ f ′ and h′0
determines a map Λ{0,0′,...,m}

0′ → D; since D is an ∞-category, this extends
to a map h′ : ∆{0,0′,...,m} → D. We may now take f = f ′|∆{1,...,m} and
h = h′|∆m.

Lemma 2.4.6.3. Let p : C → D be a categorical equivalence of ∞-categories
and let A ⊆ B be an inclusion of simplicial sets. Let f0 : A → C, g : B → D

be any maps and let h0 : A× ∆1 → D be an equivalence from g|A to p ◦ f0.
Then there exists a map f : B → C and an equivalence h : B × ∆1 → D

from g to p ◦ f such that f0 = f |A and h0 = h|A× ∆1.

Proof. Working simplex by simplex with the inclusion A ⊆ B, we may re-
duce to the case where B = ∆n, A = ∂∆n. If n = 0, the existence of the
desired extensions is a reformulation of the assumption that p is essentially
surjective. Let us assume therefore that n ≥ 1.

We consider the task of constructing h : ∆n × ∆1 → D. Consider the
filtration

X(n+ 1) ⊆ · · · ⊆ X(0) = ∆n × ∆1

described in the proof of Proposition 2.1.2.6. We note that the value of
h on X(n + 1) is uniquely prescribed by h0 and g. We extend the defi-
nition of h to X(i) by descending induction on i. We note that X(i) �
X(i + 1)

∐
Λn+1

k
∆n+1. For i > 0, the existence of the required extension is

guaranteed by the assumption that D is an ∞-category. Since n ≥ 1, Lemma
2.4.6.2 allows us to extend h over the simplex σ0 and to define f so that the
desired conditions are satisfied.

Lemma 2.4.6.4. Let C ⊆ D be an inclusion of simplicial sets which is also
a categorical equivalence. Suppose further that C is an ∞-category. Then C

is a retract of D.

Proof. Enlarging D by an inner anodyne extension if necessary, we may
suppose that D is an ∞-category. We now apply Lemma 2.4.6.3 in the case
where A = C, B = D.

Proof of Theorem 2.4.6.1. The “only if” direction has already been estab-
lished (Remark 2.2.5.5). For the converse, we must show that if C is an
∞-category, then C has the extension property with respect to every inclu-
sion of simplicial sets A ⊆ B which is a categorical equivalence. Fix any
map A → C. Since the Joyal model structure is left proper, the inclusion
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C ⊆ C
∐
AB is a categorical equivalence. We now apply Lemma 2.4.6.4 to

conclude that C is a retract of C
∐
AB.

We can state Theorem 2.4.6.1 as follows: if S is a point, then p : X → S
is a categorical fibration (in other words, a fibration with respect to the
Joyal model structure on S) if and only if it is an inner fibration. However,
the class of inner fibrations does not coincide with the class of categorical
fibrations in general. The following result describes the situation when T is
an ∞-category:

Corollary 2.4.6.5 (Joyal). Let p : C → D be a map of simpicial sets,
where D is an ∞-category. Then p is a categorical fibration if and only if
the following conditions are satisfied:

(1) The map p is an inner fibration.

(2) For every equivalence f : D → D′ in D and every object C ∈ C with
p(C) = D, there exists an equivalence f : C → C′ in C with p(f) = f .

Proof. Suppose first that p is a categorical fibration. Then (1) follows im-
mediately (since the inclusions Λni ⊆ ∆n are categorical equivalences for
0 < i < n). To prove (2), we let D0 denote the largest Kan complex con-
tained in D, so that the edge f belongs to D. There exists a contractible
Kan complex K containing an edge f̃ : D̃ → D̃′ and a map q : K → D such
that q(f̃) = f . Since the inclusion {D̃} ⊆ K is a categorical equivalence,
our assumption that p is a categorical fibration allows us to lift q to a map
q̃ : K → C such that q̃(D̃) = C. We can now take f = q̃(f̃); since f̃ is an
equivalence in K, f is an equivalence in C.

Now suppose that (1) and (2) are satisfied. We wish to show that p is a
categorical fibration. Consider a lifting problem

A� �

i

��

g0 �� C

p

��
B

h ��

g

���
�

�
�

D,

where i is a cofibration and a categorical equivalence; we wish to show that
there exists a morphism g as indicated which renders the diagram commuta-
tive. We first observe that condition (1), together with our assumption that
D is an ∞-category, guarantees that C is an ∞-category. Applying Theorem
2.4.6.1, we can extend g0 to a map g′ : B → C (not necessarily satisfying
h = p ◦ g′). The maps h and p ◦ g′ have the same restriction to A. Let

H0 : (B × ∂∆1)
∐

A×∂∆1

(A× ∆1) → D

be given by (p ◦ g′, h) on B × ∂∆1 and by the composition

A× ∆1 → A ⊆ B
h→ D
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on A×∆1. Applying Theorem 2.4.6.1 once more, we deduce that H0 extends
to a map H : B × ∆1 → D. The map H carries {a} × ∆1 to an equivalence
in D for every vertex a of A. Since the inclusion A ⊆ B is a categorical
equivalence, we deduce that H carries {b} × ∆1 to an equivalence for every
b ∈ B.

Let

G0 : (B × {0})
∐

A×{0}
(A× ∆1) → C

be the composition of the projection to B with the map g′. We have a
commutative diagram

(B × {0}) ∐
A×{0}(A× ∆1) G0 ��

��

C

p

��
B × ∆1 H ��

G

����������
D .

To complete the proof, it will suffice to show that we can supply a map G
as indicated, rendering the diagram commutative; in this case, we can solve
the original lifting problem by defining g = G|B × {1}.

We construct the desired extension G working simplex by simplex on B.
We start by applying assumption (2) to construct the map G|{b} × ∆1 for
every vertex b of B (that does not already belong to A); moreover, we ensure
that G|{b} × ∆1 is an equivalence in C.

To extend G0 to simplices of higher dimension, we encounter lifting prob-
lems of the type

(∆n × {0}) ∐
∂∆n×{0}(∂∆n × ∆1) e ��

� �

��

C

p

��
∆n × ∆1 ��



''''''''''
D .

According to Proposition 2.4.1.8, these lifting problems can be solved pro-
vided that e carries {0} × ∆1 to a p-coCartesian edge of C. This follows
immediately from Proposition 2.4.1.5.

2.4.7 Bifibrations

As we explained in §2.1.2, left fibrations p : X → S can be thought of as
covariant functors from S into an ∞-category of spaces. Similarly, right fi-
brations q : Y → T can be thought of as contravariant functors from T into
an ∞-category of spaces. The purpose of this section is to introduce a con-
venient formalism which encodes covariant and contravariant functoriality
simultaneously.

Remark 2.4.7.1. The theory of bifibrations will not play an important role
in the remainder of the book. In fact, the only result from this section that
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we will actually use is Corollary 2.4.7.12, whose statement makes no mention
of bifibrations. A reader who is willing to take Corollary 2.4.7.12 on faith,
or supply an alternative proof, may safely omit the material covered in this
section.

Definition 2.4.7.2. Let S, T , andX be simplicial sets and let p : X → S×T
be a map. We shall say that p is a bifibration if it is an inner fibration having
the following properties:

• For every n ≥ 1 and every diagram of solid arrows

Λn0� �

��

�� X

��
∆n

���
�

�
�

� f �� S × T

such that πT ◦ f maps ∆{0,1} ⊆ ∆n to a degenerate edge of T , there
exists a dotted arrow as indicated, rendering the diagram commutative.
Here πT denotes the projection S × T → T .

• For every n ≥ 1 and every diagram of solid arrows

Λnn� �

��

�� X

��
∆n

���
�

�
�

� f �� S × T

such that πS ◦f maps ∆{n−1,n} ⊆ ∆n to a degenerate edge of T , there
exists a dotted arrow as indicated, rendering the diagram commutative.
Here πS denotes the projection S × T → S.

Remark 2.4.7.3. The condition that p be a bifibration is not a condition on
p alone but also refers to a decomposition of the codomain of p as a product
S×T . We note also that the definition is not symmetric in S and T : instead,
p : X → S × T is a bifibration if and only if pop : Xop → T op × Sop is a
bifibration.

Remark 2.4.7.4. Let p : X → S × T be a map of simplicial sets. If T = ∗,
then p is a bifibration if and only if it is a left fibration. If S = ∗, then p is
a bifibration if and only if it is a right fibration.

Roughly speaking, we can think of a bifibration p : X → S × T as a
bifunctor from S×T to an ∞-category of spaces; the functoriality is covariant
in S and contravariant in T .

Lemma 2.4.7.5. Let p : X → S × T be a bifibration of simplicial sets.
Suppose that S is an ∞-category. Then the composition q = πT ◦ p is a
Cartesian fibration of simplicial sets. Furthermore, an edge e of X is q-
Cartesian if and only if πS(p(e)) is an equivalence.
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Proof. The map q is an inner fibration because it is a composition of inner
fibrations. Let us say that an edge e : x → y of X is quasi-Cartesian if
πS(p(e)) is degenerate in S. Let y ∈ X0 be any vertex of X and let e : x →
q(y) be an edge of S. The pair (e, s0q(y)) is an edge of S×T whose projection
to T is degenerate; consequently, it lifts to a (quasi-Cartesian) edge e : x → y
in X. It is immediate from Definition 2.4.7.2 that any quasi-Cartesian edge
of X is q-Cartesian. Thus q is a Cartesian fibration.

Now suppose that e is a q-Cartesian edge of X. Then e is equivalent to a
quasi-Cartesian edge of X; it follows easily that πS(p(e)) is an equivalence.
Conversely, suppose that e : x → y is an edge of X and that πS(p(e))
is an equivalence. We wish to show that e is q-Cartesian. Choose a quasi-
Cartesian edge e′ : x′ → y with q(e′) = q(e). Since e′ is q-Cartesian, there
exists a simplex σ ∈ X2 with d0σ = e′, d1σ = e, and q(σ) = s0q(e). Let
f = d2(σ), so that πS(p(e′)) ◦ πS(p(f)) � πSp(e) in the ∞-category S. We
note that f lies in the fiber Xq(x), which is left fibered over S; since f maps
to an equivalence in S, it is an equivalence in Xq(x). Consequently, f is
q-Cartesian, so that e = e′ ◦ f is q-Cartesian as well.

Proposition 2.4.7.6. Let X
p→ Y

q→ S × T be a diagram of simplicial
sets. Suppose that q and q ◦ p are bifibrations and that p induces a homotopy
equivalence X(s,t) → Y(s,t) of fibers over each vertex (s, t) of S × T . Then p
is a categorical equivalence.

Proof. By means of a standard argument (see the proof of Proposition
2.2.2.7), we may reduce to the case where S and T are simplices; in par-
ticular, we may suppose that S and T are ∞-categories. Fix t ∈ T0 and
consider the map of fibers pt : Xt → Yt. Both sides are left fibered over
S × {t}, so that pt is a categorical equivalence by (the dual of) Corollary
2.4.4.4. We may then apply Corollary 2.4.4.4 again (along with the charac-
terization of Cartesian edges given in Lemma 2.4.7.5) to deduce that p is a
categorical equivalence.

Proposition 2.4.7.7. Let p : X → S × T be a bifibration, let f : S′ →
S, g : T ′ → T be categorical equivalences between ∞-categories, and let
X ′ = X ×S×T (S′ × T ′). Then the induced map X ′ → X is a categorical
equivalence.

Proof. We will prove the result assuming that f is an isomorphism. A dual
argument will establish the result when g is an isomorphism and applying
the result twice we will deduce the desired statement for arbitrary f and g.

Given a map i : A → S, let us say that i is good if the induced map
X ×S×T (A× T ′) → X ×S×T (A× T ′) is a categorical equivalence. We wish
to show that the identity map S → S is good; it will suffice to show that all
maps A → S are good. Using the argument of Proposition 2.2.2.7, we can
reduce to showing that every map ∆n → S is good. In other words, we may
assume that S = ∆n, and in particular that S is an ∞-category. By Lemma
2.4.7.5, the projection X → T is a Cartesian fibration. The desired result
now follows from Corollary 2.4.4.5.
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We next prove an analogue of Lemma 2.4.6.3.

Lemma 2.4.7.8. Let X
p→ Y

q→ S×T satisfy the hypotheses of Proposition
2.4.7.6. Let A ⊆ B be a cofibration of simplicial sets over S × T . Let f0 :
A → X, g : B → Y be morphisms in (Set∆)/S×T and let h0 : A × ∆1 → Y
be a homotopy (again over S × T ) from g|A to p ◦ f0.

Then there exists a map f : B → X (of simplicial sets over S × T ) and a
homotopy h : B × ∆1 → T (over S × T ) from g to p ◦ f such that f0 = f |A
and h0 = h|A× ∆1.

Proof. Working simplex by simplex with the inclusion A ⊆ B, we may reduce
to the case where B = ∆n, A = ∂∆n. If n = 0, we may invoke the fact
that p induces a surjection π0X(s,t) → π0Y(s,t) on each fiber. Let us assume
therefore that n ≥ 1. Without loss of generality, we may pull back along the
maps B → S, B → T and reduce to the case where S and T are simplices.

We consider the task of constructing h : ∆n × ∆1 → T . We now employ
the filtration

X(n+ 1) ⊆ · · · ⊆ X(0)

described in the proof of Proposition 2.1.2.6. We note that the value of
h on X(n + 1) is uniquely prescribed by h0 and g. We extend the defi-
nition of h to X(i) by descending induction on i. We note that X(i) �
X(i + 1)

∐
Λn+1

k
∆n+1. For i > 0, the existence of the required extension is

guaranteed by the assumption that Y is inner-fibered over S × T .
We note that, in view of the assumption that S and T are simplices, any

extension of h over the simplex σ0 is automatically a map over S × T . Since
S and T are ∞-categories, Proposition 2.4.7.6 implies that p is a categorical
equivalence of ∞-categories; the existence of the desired extension of h (and
the map f) now follows from Lemma 2.4.6.2.

Proposition 2.4.7.9. Let X
p→ Y

q→ S×T satisfy the hypotheses of Propo-
sition 2.4.7.6. Suppose that p is a cofibration. Then there exists a retraction
r : Y → X (as a map of simplicial sets over S × T ) such that r ◦ p = idX .

Proof. Apply Lemma 2.4.7.8 in the case where A = X and B = Y .

Let q : M → ∆1 be an inner fibration, which we view as a correspondence
from C = q−1{0} to D = q−1{1}. Evaluation at the endpoints of ∆1 induces
maps Map∆1(∆1,M) → C, Map∆1(∆1,M) → D.

Proposition 2.4.7.10. For every inner fibration q : M → ∆1 as above, the
map p : Map∆1(∆1,M) → C×D is a bifibration.

Proof. We first show that p is an inner fibration. It suffices to prove that q
has the right lifting property with respect to

(Λni × ∆1)
∐

Λn
i ×∂∆1

(∆n × ∂∆1) ⊆ ∆n × ∆1
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for any 0 < i < n. But this is a smash product of ∂∆1 ⊆ ∆1 with the inner
anodyne inclusion Λni ⊆ ∆n.

To complete the proof that p is a bifibration, we verify that for every n ≥ 1,
f0 : Λ0

n → X, and g : ∆n → S × T with g|Λn0 = p ◦ f0, if (πS ◦ g)|∆{0,1} is
degenerate, then there exists f : ∆n → X with g = p ◦ f and f0 = f |Λn0 .
(The dual assertion, regarding extensions of maps Λnn → X, is verified in the
same way.) The pair (f0, g) may be regarded as a map

h0 : (∆n × {0, 1})
∐

Λn
0 ×{0,1}

(Λn0 × ∆1) → M,

and our goal is to prove that h0 extends to a map h : ∆n × ∆1 → M.
Let {σi}0≤i≤n be the maximal-dimensional simplices of ∆n × ∆1, as in

the proof of Proposition 2.1.2.6. We set

K(0) = (∆n × {0, 1})
∐

Λn
0×{0,1}

(Λn0 × ∆1)

and, for 0 ≤ i ≤ n, let K(i + 1) = K(i) ∪ σi. We construct maps hi :
Ki → M, with hi = hi+1|Ki, by induction on i. We note that for i <
n, K(i + 1) � K(i)

∐
Λn+1

i+1
∆n+1, so that the desired extension exists by

virtue of the assumption that M is an ∞-category. If i = n, we have instead
an isomorphism ∆n × ∆1 = K(n + 1) � K(n)

∐
Λn+1

0
∆n+1. The desired

extension of hn can be found using Proposition 1.2.4.3 because h0|∆{0,1} ×
{0} is an equivalence in C ⊆ M by assumption.

Corollary 2.4.7.11. Let C be an ∞-category. Evaluation at the endpoints
gives a bifibration Fun(∆1,C) → C×C.

Proof. Apply Proposition 2.4.7.10 to the correspondence C×∆1.

Corollary 2.4.7.12. Let f : C → D be a functor between ∞-categories. The
projection

p : Fun(∆1,D) ×Fun({1},D) C → Fun({0},D)

is a Cartesian fibration. Moreover, a morphism of Fun(∆1,D) ×Fun({1},D) C

is p-Cartesian if and only if its image in C is an equivalence.

Proof. Combine Corollary 2.4.7.11 with Lemma 2.4.7.5.



Chapter Three

The ∞-Category of ∞-Categories

The power of category theory lies in its role as a unifying language for math-
ematics: nearly every class of mathematical structures (groups, manifolds,
algebraic varieties, and so on) can be organized into a category. This lan-
guage is somewhat inadequate in situations where the structures need to be
classified up to some notion of equivalence less rigid than isomorphism. For
example, in algebraic topology one wishes to study topological spaces up
to homotopy equivalence; in homological algebra one wishes to study chain
complexes up to quasi-isomorphism. Both of these examples are most natu-
rally described in terms of higher category theory (for example, the theory
of ∞-categories developed in this book).

Another source of examples arises in category theory itself. In classical
category theory, it is generally regarded as unnatural to ask whether two
categories are isomorphic; instead, one asks whether or not they are equiv-
alent. The same phenomenon arises in higher category theory. Throughout
this book, we generally regard two ∞-categories C and D as the same if
they are categorically equivalent, even if they are not isomorphic to one an-
other as simplicial sets. In other words, we are not interested in the ordinary
category of ∞-categories (a full subcategory of Set∆) but in an underlying
∞-category which we now define.

Definition 3.0.0.1. The simplicial category Cat∆∞ is defined as follows:

(1) The objects of Cat∆∞ are (small) ∞-categories.

(2) Given ∞-categories C and D, we define MapCat∆∞
(C,D) to be the largest

Kan complex contained in the ∞-category Fun(C,D).

We let Cat∞ denote the simplicial nerve N(Cat∆∞). We will refer to Cat∞
as the ∞-category of (small) ∞-categories.

Remark 3.0.0.2. By construction, Cat∞ arises as the nerve of a simpli-
cial category Cat∆∞, where composition is strictly associative. This is one
advantage of working with ∞-categories: the correct notion of functor is en-
coded by simply considering maps of simplicial sets (rather than homotopy
coherent diagrams, say), so there is no difficulty in composing them.

Remark 3.0.0.3. The mapping spaces in Cat∆∞ are Kan complexes, so that
Cat∞ is an ∞-category (Proposition 1.1.5.10) as suggested by the terminol-
ogy.
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Remark 3.0.0.4. By construction, the objects of Cat∞ are ∞-categories,
morphisms are given by functors, and 2-morphisms are given by homotopies
between functors. In other words, Cat∞ discards all information about non-
invertible natural transformations between functors. If necessary, we could
retain this information by forming an ∞-bicategory of (small) ∞-categories.
We do not wish to become involved in any systematic discussion of ∞-
bicategories, so we will be content to consider only Cat∞.

Our goal in this chapter is to study the ∞-category Cat∞. For exam-
ple, we would like to show that Cat∞ admits limits and colimits. There
are two approaches to proving this assertion. We can attack the problem
directly by giving an explicit construction of the limits and colimits in ques-
tion: see §3.3.3 and §3.3.4. Alternatively, we can try to realize Cat∞ as the
∞-category underlying a (simplicial) model category A and deduce the ex-
istence of limits and colimits in Cat∞ from the existence of homotopy limits
and homotopy colimits in A (Corollary 4.2.4.8). The objects of Cat∞ can
be identified with the fibrant-cofibrant objects of Set∆ with respect to the
Joyal model structure. However, we cannot apply Corollary 4.2.4.8 directly
because the Joyal model structure on Set∆ is not compatible with the (usual)
simplicial structure. We will remedy this difficulty by introducing the cat-
egory Set+∆ of marked simplicial sets. We will explain how to endow Set+∆
with the structure of a simplicial model category in such a way that there
is an equivalence of simplicial categories Cat∆∞ � (Set+∆)◦. This will allow
us to identify Cat∞ with the ∞-category underlying Set+∆, so that Corollary
4.2.4.8 can be invoked.

We will introduce the formalism of marked simplicial sets in §3.1. In par-
ticular, we will explain the construction of a model structure not only on
Set+∆ itself but also for the category (Set+∆)/S of marked simplicial sets over
a given simplicial set S. The fibrant objects of (Set+∆)/S can be identified
with Cartesian fibrations X → S, which we can think of as contravariant
functors from S into Cat∞. In §3.2, we will justify this intuition by introduc-
ing the straightening and unstraightening functors which will allow us to pass
back and forth between Cartesian fibrations over S and functors from Sop to
Cat∞. This correspondence has applications both to the study of Cartesian
fibrations and to the study of the ∞-category Cat∞; we will survey some of
these applications in §3.3.

Remark 3.0.0.5. In the later chapters of this book, it will be necessary
to undertake a systematic study of ∞-categories which are not small. For
this purpose, we introduce the following notational conventions: Cat∞ will
denote the simplicial nerve of the category of small ∞-categories, while Ĉat∞
denotes the simplicial nerve of the category of ∞-categories which are not
necessarily small.
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3.1 MARKED SIMPLICIAL SETS

The Joyal model structure on Set∆ is a powerful tool in the study of ∞-
categories. Nevertheless, in relative situations it is somewhat inconvenient.
Roughly speaking, a categorical fibration p : X → S determines a family
of ∞-categories Xs parametrized by the vertices s of S. However, we are
generally more interested in those cases where Xs can be regarded as a
functor of s. As we explained in §2.4.2, this naturally translates into the
assumption that p is a Cartesian (or coCartesian) fibration. According to
Proposition 3.3.1.7, every Cartesian fibration is a categorical fibration, but
the converse is false. Consequently, it is natural to try to endow (Set∆)/S
with some other model structure in which the fibrant objects are precisely
the Cartesian fibrations over S.

Unfortunately, this turns out to be an unreasonable demand. In order to
have a model category, we need to be able to form fibrant replacements: in
other words, we need the ability to enlarge an arbitrary map p : X → S into
a commutative diagram

X
p

���
��

��
��

φ �� Y

q
����
��
��
�

S,

where q is a Cartesian fibration generated by p. A question arises: for which
edges f ofX should φ(f) be a q-Cartesian edge of Y ? This sort of information
is needed for the construction of Y ; consequently, we need a formalism in
which certain edges of X have been distinguished.

Definition 3.1.0.1. A marked simplicial set is a pair (X,E), where X is a
simplicial set and E is a set of edges of X which contains every degenerate
edge. We will say that an edge of X will be called marked if it belongs to E.

A morphism f : (X,E) → (X ′,E′) of marked simplicial sets is a map
f : X → X ′ having the property that f(E) ⊆ E′. The category of marked
simplicial sets will be denoted by Set+∆.

Every simplicial set S may be regarded as a marked simplicial set, usually
in many different ways. The two extreme cases deserve special mention: if
S is a simplicial set, we let S� = (S, S1) denote the marked simplicial set
in which every edge of S has been marked and let S� = (S, s0(S0)) denote
the marked simplicial set in which only the degenerate edges of S have been
marked.

Notation 3.1.0.2. Let S be a simplicial set. We let (Set+∆)/S denote the
category of marked simplicial sets equipped with a map to S (which might
otherwise be denoted as (Set+∆)/S�).

Our goal in this section is to study the theory of marked simplicial sets
and, in particular, to endow each (Set+∆)/S with the structure of a model cat-
egory. We will begin in §3.1.1 by introducing the notion of a marked anodyne
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morphism in Set+∆. In §3.1.2, we will establish a basic stability property of
the class of marked anodyne maps, which implies the stability of Cartesian
fibrations under exponentiation (Proposition 3.1.2.1). In §3.1.3, we will in-
troduce the Cartesian model structure on (Set+∆)/S for every simplicial set S.
In §3.1.4, we will study these model categories; in particular, we will see that
each (Set+∆)/S is a simplicial model category whose fibrant objects are pre-
cisely the Cartesian fibrations X → S (with Cartesian edges of X marked).
Finally, we will conclude with §3.1.5, where we compare the Cartesian model
structure on (Set+∆)/S with other model structures considered in this book
(such as the Joyal and contravariant model structures).

3.1.1 Marked Anodyne Morphisms

In this section, we will introduce the class of marked anodyne morphisms in
Set+∆. The definition is chosen so that the condition that a map X → S have
the right lifting property with respect to all marked anodyne morphisms is
closely related to the condition that the underlying map of simplicial sets
X → S be a Cartesian fibration (we refer the reader to Proposition 3.1.1.6
for a more precise statement). The theory of marked anodyne maps is a
technical device which will prove useful when we discuss the Cartesian model
structure in §3.1.3: every marked anodyne morphism is a trivial cofibration
with respect to the Cartesian model structure, but not conversely. In this
respect, the class of marked anodyne morphisms of Set+∆ is analogous to the
class of inner anodyne morphisms of Set∆.

Definition 3.1.1.1. The class of marked anodyne morphisms in Set+∆ is the
smallest weakly saturated (see §A.1.2) class of morphisms with the following
properties:

(1) For each 0 < i < n, the inclusion (Λni )
� ⊆ (∆n)� is marked anodyne.

(2) For every n > 0, the inclusion

(Λnn,E∩(Λnn)1) ⊆ (∆n,E)

is marked anodyne, where E denotes the set of all degenerate edges of
∆n together with the final edge ∆{n−1,n}.

(3) The inclusion

(Λ2
1)
�

∐
(Λ2

1)
�

(∆2)� → (∆2)�

is marked anodyne.

(4) For every Kan complex K, the map K� → K� is marked anodyne.

Remark 3.1.1.2. The definition of a marked simplicial set is self-dual.
However, Definition 3.1.1.1 is not self-dual: if A → B is marked anodyne,
then the opposite morphism Aop → Bop need not be marked anodyne. This
reflects the fact that the theory of Cartesian fibrations is not self-dual.
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Remark 3.1.1.3. In part (4) of Definition 3.1.1.1, it suffices to allow K
to range over a set of representatives for all isomorphism classes of Kan
complexes with only countably many simplices. Consequently, we deduce
that the class of marked anodyne morphisms in Set+∆ is of small generation,
so that the small object argument applies (see §A.1.2). We will refine this
observation further: see Corollary 3.1.1.8 below.

Remark 3.1.1.4. In Definition 3.1.1.1, we are free to replace (1) by

(1′) For every inner anodyne map A → B of simplicial sets, the induced
map A� → B� is marked anodyne.

Proposition 3.1.1.5. Consider the following classes of morphisms in Set+∆:

(2) All inclusions

(Λnn,E∩(Λnn)1) ⊆ (∆n,E),

where n > 0 and E denotes the set of all degenerate edges of ∆n together
with the final edge ∆{n−1,n}.

(2′) All inclusions

((∂∆n)� × (∆1)�)
∐

(∂∆n)�×{1}�

((∆n)� × {1}�) ⊆ (∆n)� × (∆1)�.

(2′′) All inclusions

(A� × (∆1)�)
∐

A�×{1}�

(B� × {1}�) ⊆ B� × (∆1)�,

where A ⊆ B is an inclusion of simplicial sets.

The classes (2′) and (2′′) generate the same weakly saturated class of mor-
phisms of Set+∆ which contains the weakly saturated class generated by (2).
Conversely, the weakly saturated class of morphisms generated by (1) and
(2) from Definition 3.1.1.1 contains (2′) and (2′′).

Proof. To see that each of the morphisms specified in (2′′) is contained in
the weakly saturated class generated by (2′), it suffices to work simplex by
simplex with the inclusion A ⊆ B. The converse is obvious since the class
of morphisms of type (2′) is contained in the class of morphisms of type
(2′′). To see that the weakly saturated class generated by (2′′) contains (2),
it suffices to show that every morphism in (2) is a retract of a morphism in
(2′′). For this, we consider maps

∆n j→ ∆n × ∆1 r→ ∆n.

Here j is the composition of the identification ∆n � ∆n × {0} with the
inclusion ∆n × {0} ⊆ ∆n × ∆1, and r may be identified with the map of
partially ordered sets

r(m, i) =

{
n if m = n− 1, i = 1
m otherwise.
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Now we simply observe that j and r exhibit the inclusion

(Λnn,E∩(Λnn)0) ⊆ (∆n,E)

as a retract of

((Λnn)
� × (∆1)�)

∐
(Λn

n)�×{1}�

((∆n)� × {1}�) ⊆ (∆n)� × (∆1)�.

To complete the proof, we must show that each of the inclusions

((∂∆n)� × (∆1)�)
∐

(∂∆n)�×{1}�

((∆n)� × {1}�) ⊆ (∆n)� × (∆1)�

of type (2′) belongs to the weakly saturated class generated by (1) and (2).
To see this, consider the filtration

Yn+1 ⊆ · · · ⊆ Y0 = ∆n × ∆1

which is the opposite of the filtration defined in the proof of Proposition
2.1.2.6. We let Ei denote the class of all edges of Yi which are marked in
(∆n)� × (∆1)�. It will suffice to show that each inclusion fi : (Yi+1,Ei+1) ⊆
(Yi,Ei) lies in the weakly saturated class generated by (1) and (2). For i �= 0,
the map fi is a pushout of (Λn+1

n+1−i)
� ⊆ (∆n+1)�. For i = 0, fi is a pushout

of

(Λn+1
n+1,E∩(Λn+1

n+1)1) ⊆ (∆n+1,E),

where E denotes the set of all degenerate edges of ∆n+1, together with
∆{n,n+1}.

We now characterize the class of marked anodyne maps:

Proposition 3.1.1.6. A map p : X → S in Set+∆ has the right lifting
property with respect to all marked anodyne maps if and only if the following
conditions are satisfied:

(A) The map p is an inner fibration of simplicial sets.

(B) An edge e of X is marked if and only if p(e) is marked and e is p-
Cartesian.

(C) For every object y of X and every marked edge e : x → p(y) in S, there
exists a marked edge e : x → y of X with p(e) = e.

Proof. We first prove the “only if” direction. Suppose that p has the right
lifting property with respect to all marked anodyne maps. By considering
maps of the form (1) from Definition 3.1.1.1, we deduce that (A) holds.
Considering (2) in the case n = 0, we deduce that (C) holds. Considering
(2) for n > 0, we deduce that every marked edge of X is p-Cartesian. For
the converse, let us suppose that e : x → y is a p-Cartesian edge of X
and that p(e) is marked in S. Invoking (C), we deduce that there exists a
marked edge e′ : x′ → y with p(e) = p(e′). Since e′ is Cartesian, we can
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find a 2-simplex σ of X with d0(σ) = e′, d1(σ) = e, and p(σ) = s1p(e).
Then d2(σ) is an equivalence between x and x′ in the ∞-category Xp(x).
Let K denote the largest Kan complex contained in Xp(x). Since p has the
right lifting property with respect to K� → K�, we deduce that every edge
of K is marked; in particular, d2(σ) is marked. Since p has the right lifting
property with respect to the morphism described in (3) of Definition 3.1.1.1,
we deduce that d1(σ) = e is marked.

Now suppose that p satisfies the hypotheses of the proposition. We must
show that p has the right lifting property with respect to the classes of
morphisms (1), (2), (3), and (4) of Definition 3.1.1.1. For (1), this follows
from the assumption that p is an inner fibration. For (2), this follows from
(C) and from the assumption that every marked edge is p-Cartesian. For
(3), we are free to replace S by (∆2)�; then p is a Cartesian fibration over
an ∞-category S, and we can apply Proposition 2.4.1.7 to deduce that the
class of p-Cartesian edges is stable under composition.

Finally, for (4), we may replace S by K�; then S is a Kan complex and
p is a Cartesian fibration, so the p-Cartesian edges of X are precisely the
equivalences in X. Since K is a Kan complex, any map K → X carries the
edges of K to equivalences in X.

By Quillen’s small object argument, we deduce that a map j : A → B in
Set+∆ is marked anodyne if and only if it has the left lifting property with
respect to all morphisms p : X → S satisfying the hypotheses of Proposition
3.1.1.6. From this, we deduce:

Corollary 3.1.1.7. The inclusion

i : (Λ2
2)
�

∐
(Λ2

2)
�

(∆2)� ↪→ (∆2)�

is marked anodyne.

Proof. It will suffice to show that i has the left lifting property with respect to
any of the morphisms p : X → S described in Proposition 3.1.1.6. Without
loss of generality, we may replace S by (∆2)�; we now apply Proposition
2.4.1.7.

The following somewhat technical corollary will be needed in §3.1.3:

Corollary 3.1.1.8. In Definition 3.1.1.1, we can replace the class of mor-
phisms (4) by

(4′) the map j : A� → (A, s0A0 ∪{f}), where A is the quotient of ∆3 which
corepresents the functor

HomSet∆(A,X) = {σ ∈ X3, e ∈ X1 : d1σ = s0e, d2σ = s1e}
and f ∈ A1 is the image of ∆{0,1} ⊆ ∆3 in A.
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Proof. We first show that for every Kan complex K, the map i : K� → K�

lies in the weakly saturated class of morphisms generated by (4′). We note
that i can be obtained as an iterated pushout of morphisms having the form
K� → (K, s0K0 ∪{e}), where e is an edge of K. It therefore suffices to show
that there exists a map p : A → K such that p(f) = e. In other words, we
must prove that there exists a 3-simplex σ : ∆3 → K with d1σ = s0e and
d2σ = s1e. This follows immediately from the Kan extension condition.

To complete the proof, it will suffice to show that the map j is marked
anodyne. To do so, it suffices to prove that for any diagram

A�� �

��

�� X

p

��
(A, s0A0 ∪ {f}) ��

��
S

for which p satisfies the conditions of Proposition 3.1.1.6, there exists a dot-
ted arrow as indicated, rendering the diagram commutative. This is simply
a reformulation of Proposition 2.4.1.13.

Definition 3.1.1.9. Let p : X → S be a Cartesian fibration of simplicial
sets. We let X� denote the marked simplicial set (X,E), where E is the set
of p-Cartesian edges of X.

Remark 3.1.1.10. Our notation is slightly abusive because X� depends
not only on X but also on the map X → S.

Remark 3.1.1.11. According to Proposition 3.1.1.6, a map (Y,E) → S� has
the right lifting property with respect to all marked anodyne maps if and
only if the underlying map Y → S is a Cartesian fibration and (Y,E) = Y �.

We conclude this section with the following easy result, which will be
needed later:

Proposition 3.1.1.12. Let p : X → S be an inner fibration of simplicial
sets, let f : A → B be a marked anodyne morphism in Set+∆, let q : B → X be
map of simplicial sets which carries each marked edge of B to a p-Cartesian
edge of X, and set q0 = q ◦ f . Then the induced map

X/q → X/q0 ×S/pq0
S/pq

is a trivial fibration of simplicial sets.

Proof. It is easy to see that the class of all morphisms f of Set+∆ which satisfy
the desired conclusion is weakly saturated. It therefore suffices to prove that
this class contains a collection of generators for the weakly saturated class
of marked anodyne morphisms. If f induces a left anodyne map on the
underlying simplicial sets, then the desired result is automatic. It therefore
suffices to consider the case where f is the inclusion

(Λnn,E∩(Λnn)1) ⊆ (∆n,E)
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as described in (2) of Definition 3.1.1.1. In this case, a lifting problem

∂∆m ��
� �

��

X/q

��
∆m ��

��&&&&&&&
X/q0 ×S/pq0

S/pq

can be reformulated as an equivalent lifting problem

Λn+m+1
n+m+1

σ0 ��
� �

��

X

p

��
∆n+m+1 ��

���
�

�
�

�
S.

This lifting problem admits a solution since the hypothsis on q guarantees
that σ0 carries ∆{n+m,n+m+1} to a p-Cartesian edge of X.

3.1.2 Stability Properties of Marked Anodyne Morphisms

Our main goal in this section is to prove the following stability result:

Proposition 3.1.2.1. Let p : X → S be a Cartesian fibration of simplicial
sets and let K be an arbitrary simplicial set. Then

(1) The induced map pK : XK → SK is a Cartesian fibration.

(2) An edge ∆1 → XK is pK-Cartesian if and only if, for every vertex k
of K, the induced edge ∆1 → X is p-Cartesian.

We could easily have given an ad hoc proof of this result in §2.4.3. However,
we have opted instead to give a proof using the language of marked simplicial
sets.

Definition 3.1.2.2. A morphism (X,E) → (X ′,E′) in Set+∆ is a cofibration
if the underlying map X → X ′ of simplicial sets is a cofibration.

The main ingredient we will need to prove Proposition 3.1.2.1 is the fol-
lowing:

Proposition 3.1.2.3. The class of marked anodyne maps in Set+∆ is stable
under smash products with arbitrary cofibrations. In other words, if f : X →
X ′ is marked anodyne and g : Y → Y ′ is a cofibration, then the induced map

(X × Y ′)
∐
X×Y

(X ′ × Y ) → X ′ × Y ′

is marked anodyne.

Proof. The argument is tedious but straightforward. Without loss of gener-
ality we may suppose that f belongs either to the class (2′) of Proposition
3.1.1.5, or to one of the classes specified in (1), (3), or (4) of Definition 3.1.1.1.
The class of cofibrations is generated by the inclusions (∂∆n)� ⊆ (∆n)� and
(∆1)� ⊆ (∆1)�; thus we may suppose that g : Y → Y ′ is one of these maps.
There are eight cases to consider:
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(A1) Let f be the inclusion (Λni )� ⊆ (∆n)� and let g be the inclusion
(∂∆n)� → (∆n)�, where 0 < i < n. Since the class of inner anodyne
maps between simplicial sets is stable under smash products with in-
clusions, the smash product of f and g is marked anodyne (see Remark
3.1.1.4).

(A2) Let f be the inclusion (Λni )
� → (∆n)�, and let g be the map (∆1)� →

(∆1)�, where 0 < i < n. Then the smash product of f and g is an
isomorphism (since Λni contains all vertices of ∆n).

(B1) Let f be the inclusion

({1}� × (∆n)�)
∐

{1}�×(∂∆n)�

((∆1)� × (∂∆n)�) ⊆ (∆1)� × (∆n)�

and let g be the inclusion (∂∆n)� → (∆n)�. Then the smash product
of f and g belongs to the class (2′′) of Proposition 3.1.1.5.

(B2) Let f be the inclusion

({1}� × (∆n)�)
∐

{1}�×(∂∆n)�

((∆1)� × (∂∆n)�) ⊆ (∆1)� × (∆n)�

and let g denote the map (∆1)� → (∆1)�. If n > 0, then the smash
product of f and g is an isomorphism. If n = 0, then the smash product
may be identified with the map (∆1 × ∆1,E) → (∆1 × ∆1)�, where E

consists of all degenerate edges together with {0}×∆1, {1}×∆1, and
∆1 × {1}. This map may be obtained as a composition of two marked
anodyne maps: the first is of type (3) in Definition 3.1.1.1 (adjoining
the “diagonal” edge to E), and the second is the map described in
Corollary 3.1.1.7 (adjoining the edge ∆1 × {0} to E).

(C1) Let f be the inclusion

(Λ2
1)
�

∐
(Λ2

1)
�

(∆2)� → (∆2)�

and let g be the inclusion (∂∆n)� ⊆ (∆n)�. Then the smash product of
f and g is an isomorphism for n > 0 and is isomorphic to f for n = 0.

(C2) Let f be the inclusion

(Λ2
1)
�

∐
(Λ2

1)
�

(∆2)� → (∆2)�

and let g be the canonical map (∆1)� → (∆1)�. Then the smash prod-
uct of f and g is a pushout of the map f .

(D1) Let f be the map K� → K�, where K is a Kan complex, and let g be
the inclusion (∂∆n)� ⊆ (∆n)�. Then the smash product of f and g is
an isomorphism for n > 0, and isomorphic to f for n = 0.
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(D2) Let f be the map K� → K�, where K is a Kan complex, and let g
be the map (∆1)� → (∆1)�. The smash product of f and g can be
identified with the inclusion

(K × ∆1,E) ⊆ (K × ∆1)�,

where E denotes the class of all edges e = (e′, e′′) of K × ∆1 for which
either e′ : ∆1 → K or e′′ : ∆1 → ∆1 is degenerate. This inclusion can
be obtained as a transfinite composition of pushouts of the map

(Λ2
1)
�

∐
(Λ2

1)
�

(∆2)� → (∆2)�.

We now return to our main objective:

Proof of Proposition 3.1.2.1. Since p is a Cartesian fibration, it induces a
map X� → S� which has the right lifting property with respect to all marked
anodyne maps. By Proposition 3.1.2.3, the induced map

(X�)K
� → (S�)K

�

= (SK)�

has the right lifting property with respect to all marked anodyne morphisms.
The desired result now follows from Remark 3.1.1.11.

3.1.3 The Cartesian Model Structure

Let S be a simplicial set. Our goal in this section is to introduce the Cartesian
model structure on the category (Set+∆)/S of marked simplicial sets over S. We
will eventually show that the fibrant objects of (Set+∆)/S correspond precisely
to Cartesian fibrations X → S and that they encode (contravariant) functors
from S into the ∞-category Cat∞.

The category Set+∆ is Cartesian-closed; that is, for any two objects X,Y ∈
Set+∆, there exists an internal mapping object Y X equipped with an “evalu-
ation map” Y X ×X → Y which induces bijections

HomSet+∆
(Z, Y X) → HomSet+∆

(Z ×X,Y )

for every Z ∈ Set+∆. We let Map�(X,Y ) denote the underlying simplicial set
of Y X and Map�(X,Y ) ⊆ Map�(X,Y ) the simplicial subset consisting of
all simplices σ ⊆ Map�(X,Y ) such that every edge of σ is a marked edge
of Y X . Equivalently, we may describe these simplicial sets by the mapping
properties

HomSet∆(K,Map�(X,Y )) � HomSet+∆
(K� ×X,Y )

HomSet∆(K,Map�(X,Y )) � HomSet+∆
(K� ×X,Y ).

IfX and Y are objects of (Set+∆)/S , then we let Map�S(X,Y ) ⊆ Map�(X,Y )
and Map�S(X,Y ) ⊆ Map�(X,Y ) denote the simplicial subsets classifying
those maps which are compatible with the projections to S.
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Remark 3.1.3.1. If X ∈ (Set+∆)/S and p : Y → S is a Cartesian fibration,
then Map�S(X,Y �) is an ∞-category and Map�S(X,Y �) is the largest Kan
complex contained in Map�S(X,Y �).

Lemma 3.1.3.2. Let f : C → D be a functor between ∞-categories. The
following are equivalent:

(1) The functor f is a categorical equivalence.

(2) For every simplicial set K, the induced map Fun(K,C) → Fun(K,D)
is a categorical equivalence.

(3) For every simplicial set K, the functor Fun(K,C) → Fun(K,D) in-
duces a homotopy equivalence from the largest Kan complex contained
in Fun(K,C) to the largest Kan complex contained in Fun(K,D).

Proof. The implications (1) ⇒ (2) ⇒ (3) are obvious. Suppose that (3) is
satisfied. Let K = D. According to (3), there exists an object x of Fun(K,C)
whose image in Fun(K,D) is equivalent to the identity map K → D. We
may identify x with a functor g : D → C having the property that f ◦ g is
homotopic to the identity idD. It follows that g also has the property asserted
by (3), so the same argument shows that there is a functor f ′ : C → D such
that g ◦ f ′ is homotopic to idC. It follows that f ◦ g ◦ f ′ is homotopic to both
f and f ′, so that f is homotopic to f ′. Thus g is a homotopy inverse to f ,
which proves that f is an equivalence.

Proposition 3.1.3.3. Let S be a simplicial set and let p : X → Y be a
morphism in (Set+∆)/S. The following are equivalent:

(1) For every Cartesian fibration Z → S, the induced map

Map�S(Y, Z�) → Map�S(X,Z�)

is an equivalence of ∞-categories.

(2) For every Cartesian fibration Z → S, the induced map

Map�S(Y, Z�) → Map�S(X,Z�)

is a homotopy equivalence of Kan complexes.

Proof. Since Map�S(M,Z�) is the largest Kan complex contained in the ∞-
category Map�S(M,Z�), it is clear that (1) implies (2). Suppose that (2) is
satisfied and let Z → S be a Cartesian fibration. We wish to show that

Map�S(Y,Z�) → Map�S(X,Z�)

is an equivalence of ∞-categories. According to Lemma 3.1.3.2, it suffices to
show that

Map�S(Y, Z�)K → Map�S(X,Z�)K
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induces a homotopy equivalence on the maximal Kan complexes contained in
each side. Let Z(K) = ZK×SKS. Proposition 3.1.2.1 implies that Z(K) → S
is a Cartesian fibration and that there is a natural identification

Map�S(M,Z(K)�) � Map�S(M,Z(K)�).

We observe that the largest Kan complex contained in the right hand side
is Map�S(M,Z(K)�). On the other hand, the natural map

Map�S(Y,Z(K)�) → Map�S(X,Z(K)�)

is a homotopy equivalence by assumption (2).

We will say that a map X → Y in (Set+∆)/S is a Cartesian equivalence if
it satisfies the equivalent conditions of Proposition 3.1.3.3.

Remark 3.1.3.4. Let f : X → Y be a morphism in (Set+∆)/S which is
marked anodyne when regarded as a map of marked simplicial sets. Since
the smash product of f with any inclusion A� ⊆ B� is also marked anodyne,
we deduce that the map

φ : Map�S(Y,Z�) → Map�S(X,Z�)

is a trivial fibration for every Cartesian fibration Z → S. Consequently, f is
a Cartesian equivalence.

Let S be a simplicial set and let X,Y ∈ (Set+∆)/S . We will say a pair of
morphisms f, g : X → Y are strongly homotopic if there exists a contractible
Kan complex K and a map K → Map�S(X,Y ) whose image contains both
of the vertices f and g. If Y = Z�, where Z → S is a Cartesian fibration,
then this simply means that f and g are equivalent when viewed as objects
of the ∞-category Map�S(X,Y ).

Proposition 3.1.3.5. Let X
p→ Y

q→ S be a diagram of simplicial sets,
where both q and q ◦ p are Cartesian fibrations. The following assertions are
equivalent:

(1) The map p induces a Cartesian equivalence X� → Y � in (Set+∆)/S .

(2) There exists a map r : Y → X which is a strong homotopy inverse to
p, in the sense that p ◦ r and r ◦ p are both strongly homotopic to the
identity.

(3) The map p induces a categorical equivalence Xs → Ys for each vertex
s of S.

Proof. The equivalence between (1) and (2) is easy, as is the assertion that
(2) implies (3). It therefore suffices to show that (3) implies (2). We will
construct r and a homotopy from r ◦ p to the identity. It then follows that
the map r satisfies (3), so the same argument will show that r has a right
homotopy inverse; by general nonsense this right homotopy inverse will au-
tomatically be homotopic to p, and the proof will be complete.



158 CHAPTER 3

Choose a transfinite sequence of simplicial subsets S(α) ⊆ S, where each
S(α) is obtained from

⋃
β<α S(β) by adjoining a single nondegenerate sim-

plex (if such a simplex exists). We construct rα : Y ×S S(α) → X and an
equivalence hα : (X ×S S(α))×∆1 → X ×S S(α) from rα ◦ p to the identity
by induction on α. By this device we may reduce to the case where S = ∆n,
and the maps

r0 : Y ′ → X

h0 : X ′ × ∆1 → X

are already specified, where Y ′ = Y ×∆n ∂∆n ⊆ Y and X ′ = X×∆n ∂∆n ⊆
X. We may regard r′ and h′ together as defining a map ψ0 : Z′ → X, where

Z′ = Y ′ ∐
X′×{0}

(X ′ × ∆1)
∐

X′×{1}
X.

Let Z = Y
∐
X×{0}X × ∆1; then our goal is to solve the lifting problem

depicted in the diagram

Z′ ψ0 ��
� �

��

X

��
Z ��

ψ
��%

%
%

%
∆n

in such a way that ψ carries {x}×∆1 to an equivalence in X for every object
x of X. We note that this last condition is vacuous for n > 0.

If n = 0, the problem amounts to constructing a map Y → X which is
homotopy inverse to p: this is possible in view of the assumption that p is
a categorical equivalence. For n > 0, we note that any map φ : Z → X
extending φ0 is automatically compatible with the projection to S (since S
is a simplex and Z′ contains all vertices of Z). Since the inclusion Z ′ ⊆ Z is
a cofibration between cofibrant objects in the model category Set∆ (with the
Joyal model structure) and X is a ∞-category (since q is an inner fibration
and ∆n is an ∞-category), Proposition A.2.3.1 asserts that it is sufficient
to show that the extension φ exists up to homotopy. Since Corollary 2.4.4.4
implies that p is an equivalence, we are free to replace the inclusion Z ′ ⊆ Z
with the weakly equivalent inclusion

(X × {1})
∐

X×∆n∂∆n×∆1

(X ×∆n ∂∆n × {1}) ⊆ X × ∆1.

Since φ0 carries {x} × ∆1 to a (q ◦ p)-Cartesian edge of X, for every vertex
x of X, the existence of φ follows from Proposition 3.1.1.5.

Lemma 3.1.3.6. Let S be a simplicial set, let i : X → Y be a cofibration in
(Set+∆)/S, and let Z → S be a Cartesian fibration. Then the associated map
p : Map�S(Y,Z�) → Map�S(X,Z�) is a Kan fibration.
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Proof. Let A ⊆ B be an anodyne inclusion of simplicial sets. We must show
that p has the right lifting property with respect to p. Equivalently, we must
show that Z� → S has the right lifting property with respect to the inclusion

(B� ×X)
∐
A�×X

(A� × Y ) ⊆ B� × Y.

This follows from Proposition 3.1.2.3 since the inclusion A� ⊆ B� is marked
anodyne.

Proposition 3.1.3.7. Let S be a simplicial set. There exists a left proper
combinatorial model structure on (Set+∆)/S which may be described as follows:

(C) The cofibrations in (Set+∆)/S are those morphisms p : X → Y in
(Set+∆)/S which are cofibrations when regarded as morphisms of sim-
plicial sets.

(W ) The weak equivalences in (Set+∆)/S are the Cartesian equivalences.

(F ) The fibrations in (Set+∆)/S are those maps which have the right lifting
property with respect to every map which is simultaneously a cofibration
and a Cartesian equivalence.

Proof. It suffices to show that the hypotheses of Proposition A.2.6.13 are
satisfied by the class (C) of cofibrations and the class (W ).

(1) The class (W ) of Cartesian equivalences is perfect (in the sense of
Definition A.2.6.10). To prove this, we first observe that the class of
marked anodyne maps is generated by the classes of morphisms (1),
(2), and (3) of Definition 3.1.1.1 and class (4′) of Corollary 3.1.1.8. By
Proposition A.1.2.5, there exists a functor T from (Set+∆)/S to itself
and a (functorial) factorization

X
iX→ T (X)

jX→ S�,

where iX is marked anodyne (and therefore a Cartesian equivalence)
and jX has the right lifting property with respect to all marked an-
odyne maps and therefore corresponds to a Cartesian fibration over
S. Moreover, the functor T commutes with filtered colimits. Accord-
ing to Proposition 3.1.3.5, a map X → Y in (Set+∆)/S is a Cartesian
equivalence if and only if, for each vertex s ∈ S, the induced map
T (X)s → T (Y )s is a categorical equivalence. It follows from Corollary
A.2.6.12 that (W ) is a perfect class of morphisms.

(2) The class of weak equivalences is stable under pushouts by cofibrations.
Suppose we are given a pushout diagram

X
p ��

i

��

Y

��
X ′ p′ �� Y ′



160 CHAPTER 3

where i is a cofibration and p is a Cartesian equivalence. We wish to
show that p′ is also a Cartesian equivalence. In other words, we must
show that for any Cartesian fibration Z → S, the associated map
Map�S(Y ′, Z�) → Map�S(X ′, Z�) is a homotopy equivalence. Consider
the pullback diagram

Map�S(Y ′, Z�) ��

��

Map�S(X ′, Z�)

��
Map�S(Y,Z�) �� Map�S(X,Z�).

Since p is a Cartesian equivalence, the bottom horizontal arrow is a
homotopy equivalence. According to Lemma 3.1.3.6, the right verti-
cal arrow is a Kan fibration; it follows that the diagram is homotopy
Cartesian, so that the top horizontal arrow is an equivalence as well.

(3) A map p : X → Y in (Set+∆)/S which has the right lifting property with
respect to every map in (C) belongs to (W ). Unwinding the definition,
we see that p is a trivial fibration of simplicial sets and that an edge
e of X is marked if and only if p(e) is a marked edge of Y . It follows
that p has a section s with s◦p fiberwise homotopic to idX . From this,
we deduce easily that p is a Cartesian equivalence.

Warning 3.1.3.8. Let S be a simplicial set. We must be careful to distin-
guish between Cartesian fibrations of simplicial sets (in the sense of Defi-
nition 2.4.2.1) and fibrations with respect to the Cartesian model structure
on (Set+∆)/S (in the sense of Proposition 3.1.3.7). Though distinct, these
notions are closely related: for example, the fibrant objects of (Set+∆)/S are
precisely those objects of the form X�, where X → S is a Cartesian fibration
(Proposition 3.1.4.1).

Remark 3.1.3.9. The definition of the Cartesian model structure on the
category (Set+∆)/S is not self-opposite. Consequently, we can define another
model structure on (Set+∆)/S as follows:

(C) The cofibrations in (Set+∆)/S are precisely the monomorphisms.

(W ) The weak equivalences in (Set+∆)/S are precisely the coCartesian equiv-
alences: that is, those morphisms f : X → Y such that the induced
map fop : X

op → Y
op

is a Cartesian equivalence in (Set+∆)/Sop .

(F ) The fibrations in (Set+∆)/S are those morphisms which have the right
lifting property with respect to every morphism satisfying both (C)
and (W ).

We will refer to this model structure on (Set+∆)/S as the coCartesian model
structure.
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3.1.4 Properties of the Cartesian Model Structure

In this section, we will establish some of the basic properties of Cartesian
model structures on (Set+∆)/S which was introduced in §3.1.3. In particular,
we will show that each (Set+∆)/S is a simplicial model category and charac-
terize its fibrant objects.

Proposition 3.1.4.1. An object X ∈ (Set+∆)/S is fibrant (with respect to
the Cartesian model structure) if and only if X � Y �, where Y → S is a
Cartesian fibration.

Proof. Suppose first that X is fibrant. The small object argument implies
that there exists a marked anodyne map j : X → Z� for some Cartesian
fibration Z → S. Since j is marked anodyne, it is a Cartesian equivalence.
Since X is fibrant, it has the extension property with respect to the trivial
cofibration j; thus X is a retract of Z�. It follows that X is isomorphic to
Y �, where Y is a retract of Z.

Now suppose that Y → S is a Cartesian fibration; we claim that Y � has
the right lifting property with respect to any trivial cofibration j : A → B
in (Set+∆)/S . Since j is a Cartesian equivalence, the map η : Map�S(B, Y �) →
Map�S(A, Y �) is a homotopy equivalence of Kan complexes. Hence, for any
map f : A → Z�, there is a map g : B → Z� such that g|A and f are joined
by an edge e of Map�S(A,Z�). Let M = (A × (∆1)�)

∐
A×{1}�(B × {1}�) ⊆

B × (∆1)�. We observe that e and g together determine a map M → Z�.
Consider the diagram

M ��

��

Z�

��
B × (∆1)� ��

F

���
�

�
�

�
S�.

The left vertical arrow is marked anodyne by Proposition 3.1.2.3. Conse-
quently, there exists a dotted arrow F as indicated. We note that F |B×{0}
is an extension of f to B, as desired.

We now study the behavior of the Cartesian model structures with respect
to products.

Proposition 3.1.4.2. Let S and T be simplicial sets and let Z be an object
of (Set+∆)/T . Then the functor

(Set+∆)/S → (Set+∆)/S×T

X �→ X × Z

preserves Cartesian equivalences.

Proof. Let f : X → Y be a Cartesian equivalence in (Set+∆)/S . We wish to
show that f × idZ is a Cartesian equivalence in (Set+∆)/S×T . Let X → X ′
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be a marked anodyne map, where X ′ ∈ (Set+∆)/S is fibrant. Now choose a
marked anodyne map X ′ ∐

X Y → Y ′, where Y ′ ∈ (Set+∆)/S is fibrant. Since
the product maps X × Z → X ′ × Z and Y × Z → Y ′ × Z are also marked
anodyne (by Proposition 3.1.2.3), it suffices to show that X ′ × Z → Y ′ × Z
is a Cartesian equivalence. In other words, we may reduce to the situation
where X and Y are fibrant. By Proposition 3.1.3.5, f has a homotopy inverse
g; then g × idY is a homotopy inverse to f × idY .

Corollary 3.1.4.3. Let f : A → B be a cofibration in (Set+∆)/S and f ′ :
A′ → B′ a cofibration in (Set+∆)/T . Then the smash product map

(A×B′)
∐
A×B

(A′ ×B) → A′ ×B′

is a cofibration in (Set+∆)/S×T , which is trivial if either f or g is trivial.

Corollary 3.1.4.4. Let S be a simplicial set and regard (Set+∆)/S as a sim-
plicial category with mapping objects given by Map�S(X,Y ). Then (Set+∆)/S
is a simplicial model category.

Proof. Unwinding the definitions, we are reduced to proving the following:
given a cofibration i : X → X ′ in (Set+∆)/S and a cofibration j : Y → Y ′ in
Set∆, the induced cofibration

(X ′ × Y �)
∐
X×Y �

(X × Y ′�) ⊆ X ′ × Y ′�

in (Set+∆)/S is trivial if either i is a Cartesian equivalence or j is a weak
homotopy equivalence. If i is trivial, this follows immediately from Corollary
3.1.4.3. If j is trivial, the same argument applies provided that we can verify
that Y � → Y ′� is a Cartesian equivalence in Set+∆. Unwinding the definitions,
we must show that for every ∞-category Z, the restriction map

θ : Map�(Y ′�, Z�) → Map�(Y �, Z�)
is a homotopy equivalence of Kan complexes. Let K be the largest Kan
complex contained in Z, so that θ can be identified with the restriction map

MapSet∆(Y ′,K) → MapSet∆(Y,K).
Since j is a weak homotopy equivalence, this map is a trivial fibration.

Remark 3.1.4.5. There is a second simplicial structure on (Set+∆)/S , where
the simplicial mapping spaces are given by Map�S(X,Y ). This simplicial
structure is not compatible with the Cartesian model structure: for fixed
X ∈ (Set+∆)/S the functor

A �→ A� ×X

does not carry weak homotopy equivalences (in the A-variable) to Cartesian
equivalences. It does, however, carry categorical equivalences (in A) to Carte-
sian equivalences, and consequently (Set+∆)/S is endowed with the structure
of a Set∆-enriched model category, where we regard Set∆ as equipped with
the Joyal model structure. This second simplicial structure reflects the fact
that (Set+∆)/S is really a model for an ∞-bicategory.
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Remark 3.1.4.6. Suppose S is a Kan complex. A map p : X → S is a
Cartesian fibration if and only if it is a coCartesian fibration (this follows
in general from Proposition 3.3.1.8; if S = ∆0, the main case of interest for
us, it is obvious). Moreover, the class of p-coCartesian edges of X coincides
with the class of p-Cartesian edges of X: both may be described as the class
of equivalences in X. Consequently, if A ∈ (Set+∆)/S , then

Map�S(A,X�) � Map�Sop(Aop, (Xop)�)op,

where Aop is regarded as a marked simplicial set in the obvious way. It
follows that a map A → B is a Cartesian equivalence in (Set+∆)/S if and only
if Aop → Bop is a Cartesian equivalence in (Set+∆)/Sop . In other words, the
Cartesian model structure on (Set+∆)/S is self-dual when S is a Kan complex.
In particular, if S = ∆0, we deduce that the functor

A �→ Aop

determines an autoequivalence of the model category Set+∆ � (Set+∆)/∆0 .

3.1.5 Comparison of Model Categories

Let S be a simplicial set. We now have a plethora of model structures on
categories of simplicial sets over S:

(0) Let C0 denote the category (Set∆)/S of simplicial sets over S endowed
with the Joyal model structure defined in §2.2.5: the cofibrations are
monomorphisms of simplicial sets, and the weak equivalences are cat-
egorical equivalences.

(1) Let C1 denote the category (Set+∆)/S of marked simplicial sets over
S endowed with the marked model structure of Proposition 3.1.3.7:
the cofibrations are maps (X,EX) → (Y,EY ) which induce monomor-
phisms X → Y , and the weak equivalences are the Cartesian equiva-
lences.

(2) Let C2 denote the category (Set+∆)/S of marked simplicial sets over S
endowed with the following localization of the Cartesian model struc-
ture: a map f : (X,EX) → (Y,EY ) is a cofibration if the under-
lying map X → Y is a monomorphism, and a weak equivalence if
f : X� → Y � is a marked equivalence in (Set+∆)/S .

(3) Let C3 denote the category (Set∆)/S of simplicial sets over S, which
is endowed with the contravariant model structure described in §2.1.4:
the cofibrations are the monomorphisms, and the weak equivalences
are the contravariant equivalences.

(4) Let C4 denote the category (Set∆)/S of simplicial sets over S endowed
with the usual homotopy-theoretic model structure: the cofibrations
are the monomorphisms of simplicial sets, and the weak equivalences
are the weak homotopy equivalences of simplicial sets.
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The goal of this section is to study the relationship between these five
model categories. We may summarize the situation as follows:

Theorem 3.1.5.1. There exists a sequence of Quillen adjunctions

C0
F0→ C1

F1→ C2
F2→ C3

F3→ C4

C0
G0← C1

G1← C2
G2← C3

G3← C4,

which may be described as follows:

(A0) The functor G0 is the forgetful functor from (Set+∆)/S to (Set∆)/S,
which ignores the collection of marked edges. The functor F0 is the
left adjoint to G0, which is given by X �→ X�. The Quillen adjunction
(F0, G0) is a Quillen equivalence if S is a Kan complex.

(A1) The functors F1 and G1 are the identity functors on (Set+∆)/S.

(A2) The functor F2 is the forgetful functor from (Set+∆)/S to (Set∆)/S which
ignores the collection of marked edges. The functor G2 is the right
adjoint to F2, which is given by X �→ X�. The Quillen adjunction
(F2, G2) is a Quillen equivalence for every simplicial set S.

(A3) The functors F3 and G3 are the identity functors on (Set+∆)/S. The
Quillen adjunction (F3, G3) is a Quillen equivalence whenever S is a
Kan complex.

The rest of this section is devoted to giving a proof of Theorem 3.1.5.1. We
will organize our efforts as follows. First, we verify that the model category
C2 is well-defined (the analogous results for the other model structures have
already been established). We then consider each of the adjunctions (Fi, Gi)
in turn and show that it has the desired properties.

Proposition 3.1.5.2. Let S be a simplicial set. There exists a left proper
combinatorial model structure on the category (Set+∆)/S which may be de-
scribed as follows:

(C) A map f : (X,EX) → (Y,EY ) is a cofibration if and only if the under-
lying map X → Y is a monomorphism of simplicial sets.

(W ) A map f : (X,EX) → (Y,EY ) is a weak equivalence if and only if the
induced map X� → Y � is a Cartesian equivalence in (Set+∆)/S .

(F ) A map f : (X,EX) → (Y,EY ) is a fibration if and only if it has the
right lifting property with respect to all trivial cofibrations.

Proof. It suffices to show that the conditions of Proposition A.2.6.13 are
satisfied. We check them in turn:

(1) The class (W ) of Cartesian equivalences is perfect (in the sense of
Definition A.2.6.10). This follows from Corollary A.2.6.12, since the
class of Cartesian equivalences is perfect and the functor (X,EX) → X�

commutes with filtered colimits.
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(2) The class of weak equivalences is stable under pushouts by cofibrations.
This follows from the analogous property of the Cartesian model struc-
ture because the functor (X,EX) �→ X� preserves pushouts.

(3) A map p : (X,EX) → (Y,EY ) which has the right lifting property with
respect to every cofibration is a weak equivalence. In this case, the
underlying map of simplicial sets is a trivial fibration, so the induced
map X� → Y � has the right lifting property with respect to all trivial
cofibrations and is a Cartesian equivalence (as observed in the proof
of Proposition 3.1.3.7).

Proposition 3.1.5.3. Let S be a simplicial set. Consider the adjoint func-
tors

(Set∆)/S
F0 ��(Set+∆)/S
G0

��

described by the formulas

F0(X) = X�

G0(X,E) = X.

The adjoint functors (F0, G0) determine a Quillen adjunction between the
category (Set∆)/S (with the Joyal model structure) and the category (Set+∆)/S
(with the Cartesian model structure). If S is a Kan complex, then (F0, G0)
is a Quillen equivalence.

Proof. To prove that (F0, G0) is a Quillen adjunction, it will suffice to show
that F1 preserves cofibrations and trivial cofibrations. The first claim is ob-
vious. For the second, we must show that if X ⊆ Y is a categorical equiva-
lence of simplicial sets over S, then the induced map X� → Y � is a Cartesian
equivalence in (Set+∆)/S . For this, it suffices to show that for any Cartesian
fibration p : Z → S, the restriction map

Map�S(Y �, Z�) → Map�S(X�, Z�)

is a trivial fibration of simplicial sets. In other words, we must show that
for every inclusion A ⊆ B of simplicial sets, it is possible to solve any lifting
problem of the form

A ��
� �

��

Map�S(Y �, Z�)

��
B ��

� ((((((
Map�S(X�, Z�).

Replacing Y by Y ×B and X by (X ×B)
∐
X×A(Y ×A), we may suppose

that A = ∅ and B = ∗. Moreover, we may rephrase the lifting problem as the
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problem of constructing the dotted arrow indicated in the following diagram:

X� �

��

�� Z

p

��
Y ��

���
�

�
�

�� S

By Proposition 3.3.1.7, p is a categorical fibration, and the lifting problem
has a solution by virtue of the assumption that X ⊆ Y is a categorical
equivalence.

Now suppose that S is a Kan complex. We want to prove that (F0, G0)
is a Quillen equivalence. In other words, we must show that for any fibrant
object of (Set+∆)/S corresponding to a Cartesian fibration Z → S, a map
X → Z in (Set∆)/S is a categorical equivalence if and only if the associated
map X� → Z� is a Cartesian equivalence.

Suppose first that X → Z is a categorical equivalence. Then the induced
map X� → Z� is a Cartesian equivalence by the argument given above. It
therefore suffices to show that Z� → Z� is a Cartesian equivalence. Since S
is a Kan complex, Z is an ∞-category; let K denote the largest Kan complex
contained in Z. The marked edges of Z� are precisely the edges which belong
to K, so we have a pushout diagram

K� ��

��

K�

��
Z� �� Z�.

It follows that Z� → Z� is marked anodyne and therefore a Cartesian equiv-
alence.

Now suppose that X� → Z� is a Cartesian equivalence. Choose a factoriza-
tion X

f→ Y
g→ Z, where f is a categorical equivalence and g is a categorical

fibration. We wish to show that g is a categorical equivalence. Proposition
3.3.1.8 implies that Z → S is a categorical fibration, so that X ′ → S is
a categorical fibration. Applying Proposition 3.3.1.8 again, we deduce that
Y → S is a Cartesian fibration. Thus we have a factorization

X� → Y � → Y � → Z�,

where the first two maps are Cartesian equivalences by the arguments given
above and the composite map is a Cartesian equivalence. Thus Y � → Z� is
an equivalence between fibrant objects of (Set+∆)/S and therefore admits a
homotopy inverse. The existence of this homotopy inverse proves that g is a
categorical equivalence, as desired.

Proposition 3.1.5.4. Let S be a simplicial set and let F1 = G1 be the
identity functor from (Set+∆)/S to itself. Then (F1, G1) determines a Quillen
adjunction between C1 and C2.
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Proof. We must show that F1 preserves cofibrations and trivial cofibrations.
The first claim is obvious. For the second, let B : (Set+∆)/S → (Set+∆)/S be
the functor defined by

B(M,EM ) = M �.

We wish to show that if X → Y is a Cartesian equivalence in (Set+∆)/S , then
B(X) → B(Y ) is a Cartesian equivalence.

We first observe that if X → Y is marked anodyne, then the induced map
B(X) → B(Y ) is also marked anodyne: by general nonsense, it suffices to
check this for the generators described in Definition 3.1.1.1, for which it is
obvious. Now return to the case of a general Cartesian equivalence p : X → Y
and choose a diagram

X
i ��

p

��

X ′

��

q

 !)
))

))
))

))
)

Y �� X ′ ∐
X Y

j �� Y ′

in which X ′ and Y ′ are (marked) fibrant and i and j are marked anodyne.
It follows that B(i) and B(j) are marked anodyne and therefore Cartesian
equivalences. Thus, to prove that B(p) is a Cartesian equivalence, it suffices
to show that B(q) is a Cartesian equivalence. But q is a Cartesian equivalence
between fibrant objects of (Set+∆)/S and therefore has a homotopy inverse.
It follows that B(q) also has a homotopy inverse and is therefore a Cartesian
equivalence, as desired.

Remark 3.1.5.5. In the language of model categories, we may summarize
Proposition 3.1.5.4 by saying that the model structure of Proposition 3.1.5.2
is a localization of the Cartesian model structure on (Set+∆)/S .

Proposition 3.1.5.6. Let S be a simplicial set and consider the adjunction

(Set+∆)/S
F2 ��(Set∆)/S
G2

��

determined by the formulas

F2(X,E) = X

G2(X) = X�.

The adjoint functors (F2, G2) determine a Quillen equivalence between C2

and C3.

Proof. We first claim that F2 is conservative: that is, a map f : (X,EX) →
(Y,EY ) is a weak equivalence in C2 if and only if the induced map X → Y is
a weak equivalence in C3. Unwinding the definition, f is a weak equivalence
if and only if X� → Y � is a Cartesian equivalence. This holds if and only if,
for every Cartesian fibration Z → S, the induced map

φ : Map�S(Y �, Z�) → Map�S(X�, Z�)
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is a homotopy equivalence. Let Z0 → S be the right fibration associated to
Z → S (see Corollary 2.4.2.5). We have natural identifications

Map�S(Y �, Z�) � MapS(Y, Z0) Map�S(X�, Z�) � MapS(X,Z0).

Consequently, f is a weak equivalence if and only if, for every right fibration
Z0 → S, the associated map

MapS(Y,Z0) → MapS(X,Z0)

is a homotopy equivalence. Since C3 is a simplicial model category for which
the fibrant objects are precisely the right fibrations Z0 → S (Corollary
2.2.3.12), this is equivalent to the assertion thatX → Y is a weak equivalence
in C3.

To prove that (F2, G2) is a Quillen adjunction, it suffices to show that F2

preserves cofibrations and trivial cofibrations. The first claim is obvious, and
the second follows because F2 preserves all weak equivalences (by the above
argument).

To show that (F2, G2) is a Quillen equivalence, we must show that the
unit and counit

LF2 ◦RG2 → id

id → RG2 ◦ LF2

are weak equivalences. In view of the fact that F2 = LF2 is conservative, the
second assertion follows from the first. To prove the first, it suffices to show
that if X is a fibrant object of C3, then the counit map (F2 ◦G2)(X) → X
is a weak equivalence. But this map is an isomorphism.

Proposition 3.1.5.7. Let S be a simplicial set and let F3 = G3 be the
identity functor from (Set∆)/S to itself. Then (F3, G3) gives a Quillen ad-
junction between C3 and C4. If S is a Kan complex, then (F3, G3) is a Quillen
equivalence (in other words, the model structures on C3 and C4 coincide).

Proof. To prove that (F3, G3) is a Quillen adjunction, it suffices to prove that
F3 preserves cofibrations and weak equivalences. The first claim is obvious
(the cofibrations in C3 and C4 are the same). For the second, we note that
both C3 and C4 are simplicial model categories in which every object is
cofibrant. Consequently, a map f : X → Y is a weak equivalence if and only
if, for every fibrant object Z, the associated map Map(Y, Z) → Map(X,Z) is
a homotopy equivalence of Kan complexes. Thus, to show that F3 preserves
weak equivalences, it suffices to show that G3 preserves fibrant objects. A
map p : Z → S is fibrant as an object of C4 if and only if p is a Kan
fibration, and fibrant as an object of C3 if and only if p is a right fibration
(Corollary 2.2.3.12). Since every Kan fibration is a right fibration, it follows
that F3 preserves weak equivalences. If S is a Kan complex, then the converse
holds: according to Lemma 2.1.3.4, every right fibration p : Z → S is a Kan
fibration. It follows that G3 preserves weak equivalences as well, so that the
two model structures under consideration coincide.
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3.2 STRAIGHTENING AND UNSTRAIGHTENING

Let C be a category and let χ : Cop → Cat be a functor from C to the
category Cat of small categories. To this data, we can associate (by means of
the Grothendieck construction discussed in §2.1.1) a new category C̃ which
may be described as follows:

• The objects of C̃ are pairs (C, η), where C ∈ C and η ∈ χ(C).

• Given a pair of objects (C, η), (C′, η′) ∈ C̃), a morphism from (C, η) to
(C ′, η′) in C̃ is a pair (f, α), where f : C → C ′ is a morphism in the
category C and α : η → χ(f)(η′) is a morphism in the category χ(C).

• Composition is defined in the obvious way.

This construction establishes an equivalence between Cat-valued functors on
Cop and categories which are fibered over C. (To formulate the equivalence
precisely, it is best to view Cat as a bicategory, but we will not dwell on this
technical point here.)

The goal of this section is to establish an ∞-categorical version of the
equivalence described above. We will replace the category C by a simplicial
set S, the category Cat by the ∞-category Cat∞, and the notion of fibered
category with the notion of Cartesian fibration. In this setting, we will obtain
an equivalence of ∞-categories, which arises from a Quillen equivalence of
simplicial model categories. On one side, we have the category (Set+∆)/S ,
equipped with the Cartesian model structure (a simplicial model category
whose fibrant objects are precisely the Cartesian fibrations X → S; see
§3.1.4). On the other, we have the category of simplicial functors

C[S]op → Set+∆
equipped with the projective model structure (see §A.3.3) whose underly-
ing ∞-category is equivalent to Fun(Sop,Cat∞) (Proposition 4.2.4.4). The
situation may be summarized as follows:

Theorem 3.2.0.1. Let S be a simplicial set, C a simplicial category, and
φ : C[S] → Cop a functor between simplicial categories. Then there exists a
pair of adjoint functors

(Set+∆)/S
St+φ ��(Set+∆)C

Un+
φ

��

with the following properties:

(1) The functors (St+φ ,Un+
φ ) determine a Quillen adjunction between the

category (Set+∆)/S (with the Cartesian model structure) and the cate-
gory (Set+∆)C (with the projective model structure).

(2) If φ is an equivalence of simplicial categories, then (St+φ ,Un+
φ ) is a

Quillen equivalence.
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We will refer to St+φ and Un+
φ as the straightening and unstraightening

functors, respectively. We will construct these functors in §3.2.1 and estab-
lish part (1) of Theorem 3.2.0.1. Part (2) is more difficult and requires some
preliminary work; we will begin in §3.2.2 by analyzing the structure of Carte-
sian fibrations X → ∆n. We will apply these analyses in §3.2.3 to complete
the proof of Theorem 3.2.0.1 when S is a simplex. In §3.2.4, we will de-
duce the general result by using formal arguments to reduce to the case of
a simplex.

In the case where C is an ordinary category, the straightening and un-
straightening procedures of §3.2.1 can be substantially simplified. We will
discuss the situation in §3.2.5, where we provide an analogue of Theorem
3.2.0.1 (see Propositions 3.2.5.18 and 3.2.5.21).

3.2.1 The Straightening Functor

Let S be a simplicial set and let φ : C[S] → Cop be a functor between
simplicial categories, which we regard as fixed throughout this section. Our
objective is to define the straightening functor St+φ : (Set+∆)/S → (Set+∆)C and
its right adjoint Un+

φ . The intuition is that an objectX of (Set+∆)/S associates
∞-categories to vertices of S in a homotopy coherent fashion, and the functor
St+φ “straightens” this diagram to obtain an ∞-category valued functor on C.
The right adjoint Un+

φ should be viewed as a forgetful functor which takes a
strictly commutative diagram and retains the underlying homotopy coherent
diagram.

The functors St+φ and Un+
φ are more elaborate versions of the straightening

and unstraightening functors introduced in §2.2.1. We begin by recalling the
unmarked version of the construction. For each object X ∈ (Set∆)/S , form
a pushout diagram of simplicial categories

C[X] ��

φ

��

C[X
]

��
Cop �� CopX ,

where the left vertical map is given by composing φ with the map C[X] →
C[S]. The functor StφX : C → Set∆ is defined by the formula

(StφX)(C) = MapCop
X

(C, ∗),
where ∗ denotes the cone point of X
.

We will define St+φ by designating certain marked edges on the simplicial
sets (StφX)(C) which depend in a natural way on the marked edges of X.
In order to describe this dependence, we need to introduce a bit of notation.

Notation 3.2.1.1. Let X be an object of (Set∆)/S . Given an n-simplex σ
of the simplicial set MapCop(C,D), we let σ∗ : (StφX)(D)n → (StφX)(C)n
denote the associated map on n-simplices.
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Let c be a vertex of X and let C = φ(c) ∈ C. We may identify c with
a map c : ∆0 → X. Then c  id∆0 : ∆1 → X
 is an edge of X
 and so
determines a morphism C → ∗ in C

op
X , which we can identify with a vertex

c̃ ∈ (StφX)(C).
Similarly, suppose that f : c → d is an edge of X corresponding to a

morphism

C
F→ D

in the simplicial category Cop. We may identify f with a map f : ∆1 → X.
Then f  id∆1 : ∆2 → X
 determines a map C[∆2] → CX , which we may
identify with a diagram (not strictly commutative)

C
F ��

ec
���

��
��

��
D

ed����
��
��
�

∗
together with an edge

f̃ : c̃ → d̃ ◦ F = F∗d̃

in the simplicial set MapCop
X

(C, ∗) = (StφX)(C).

Definition 3.2.1.2. Let S be a simplicial set, C a simplicial category, and
φ : C[S] → Cop a simplicial functor. Let (X,E) be an object of (Set+∆)/S .
Then

St+φ (X,E) : C → Set+∆
is defined by the formula

St+φ (X,E)(C) = ((StφX)(C),Eφ(C)),

where Eφ(C) is the set of all edges of (StφX)(C) having the form

G∗f̃ ,

where f : d → e is a marked edge of X, giving rise to an edge f̃ : d̃ → F ∗ẽ
in (StφX)(D), and G belongs to MapCop(C,D)1.

Remark 3.2.1.3. The construction

(X,E) �→ St+φ (X,E) = (StφX,Eφ)

is obviously functorial in X. Note that we may characterize the subsets
{Eφ(C) ⊆ (StφX)(C)1} as the smallest collection of sets which contain f̃ for
every f ∈ E and depend functorially on C.

The following formal properties of the straightening functor follow imme-
diately from the definition:

Proposition 3.2.1.4. (1) Let S be a simplicial set, C a simplicial cat-
egory, and φ : C[S] → Cop a simplicial functor; then the associated
straightening functor

St+φ : (Set+∆)/S → (Set+∆)C

preserves colimits.
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(2) Let p : S′ → S be a map of simplicial sets, C a simplicial category, and
φ : C[S] → Cop a simplicial functor, and let φ′ : C[S′] → Cop denote the
composition φ◦C[p]. Let p! : (Set+∆)/S′ → (Set+∆)/S denote the forgetful
functor given by composition with p. There is a natural isomorphism
of functors

St+φ ◦ p! � St+φ′

from (Set+∆)/S′ to (Set+∆)C.

(3) Let S be a simplicial set, π : C → C′ a simplicial functor between
simplicial categories, and φ : C[S] → Cop a simplicial functor. Then
there is a natural isomorphism of functors

St+π◦φ � π! ◦ St+φ
from (Set+∆)/S to (Set+∆)C′

. Here π! : (Set+∆)C → (Set+∆)C′
is the left

adjoint to the functor π∗ : (Set+∆)C′ → (Set+∆)C given by composition
with π; see §A.3.3.

Corollary 3.2.1.5. Let S be a simplicial set, C a simplicial category, and
φ : C[S] → Cop any simplicial functor. The straightening functor St+φ has a
right adjoint

Un+
φ : (Set+∆)C → (Set+∆)/S .

Proof. This follows from part (1) of Proposition 3.2.1.4 and the adjoint func-
tor theorem. (Alternatively, one can construct Un+

φ directly; we leave the
details to the reader.)

Notation 3.2.1.6. Let S be a simplicial set, let C = C[S]op, and let φ :
C[S] → Cop be the identity map. In this case, we will denote St+φ by St+S and
Un+

φ by Un+
S .

Our next goal is to show that the straightening and unstraightening func-
tors (St+φ ,Un+

φ ) give a Quillen adjunction between the model categories
(Set+∆)/S and (Set+∆)C. The first step is to show that St+φ preserves cofi-
brations.

Proposition 3.2.1.7. Let S be a simplicial set, C a simplicial category, and
φ : C[S] → Cop a simplicial functor. The functor St+φ carries cofibrations
(with respect to the Cartesian model structure on (Set+∆)/S) to cofibrations
(with respect to the projective model structure on (Set+∆)C)).

Proof. Let j : A → B be a cofibration in (Set+∆)/S ; we wish to show that
St+φ (j) is a cofibration. By general nonsense, we may suppose that j is a
generating cofibration having either the form (∂∆n)� ⊆ (∆n)� or the form
(∆1)� → (∆1)�. Using Proposition 3.2.1.4, we may reduce to the case where
S = B, C = C[S] and φ is the identity map. The result now follows from a
straightforward computation.
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To complete the proof that (St+φ ,Un+
φ ) is a Quillen adjunction, it suffices to

show that St+φ preserves trivial cofibrations. Since every object of (Set+∆)/S is
cofibrant, this is equivalent to the apparently stronger claim that if f : X →
Y is a Cartesian equivalence in (Set+∆)/S , then St+φ (f) is a weak equivalence
in (Set+∆)C. The main step is to establish this in the case where f is marked
anodyne. First, we need a few lemmas.

Lemma 3.2.1.8. Let E be the set of all degenerate edges of ∆n×∆1 together
with the edge {n} × ∆1. Let B ⊆ ∆n × ∆1 be the coproduct

(∆n × {1})
∐

∂∆n×{1}
(∂∆n × ∆1).

Then the map

i : (B,E∩B1) ⊆ (∆n × ∆1,E)

is marked anodyne.

Proof. We must show that i has the left lifting property with respect to
every map p : X → S satisfying the hypotheses of Proposition 3.1.1.6. This
is simply a reformulation of Proposition 2.4.1.8.

Lemma 3.2.1.9. Let K be a simplicial set, K ′ ⊆ K a simplicial subset,
and A a set of vertices of K. Let E denote the set of all degenerate edges
of K × ∆1 together with the edges {a} × ∆1, where a ∈ A. Let B = (K ′ ×
∆1)

∐
K′×{1}(K × {1}) ⊆ K × ∆1. Suppose that, for every nondegenerate

simplex σ of K, either σ belongs to K ′ or the final vertex of σ belongs to A.
Then the inclusion

(B,E∩B1) ⊆ (K × ∆1,E)

is marked anodyne.

Proof. Working simplex by simplex, we reduce to Lemma 3.2.1.8.

Lemma 3.2.1.10. Let X be a simplicial set, and let E ⊆ E′ be sets of edges
of X containing all degenerate edges. The following conditions are equivalent:

(1) The inclusion (X,E) → (X,E′) is a trivial cofibration in Set+∆ (with
respect to the Cartesian model structure).

(2) For every ∞-category C and every map f : X → C which carries each
edge of E to an equivalence in C, f also carries each edge of E′ to an
equivalence in C.

Proof. By definition, (1) holds if and only if for every ∞-category C, the
inclusion

j : Map�((X,E′),C�) → Map�((X,E),C�)

is a categorical equivalence. Condition (2) is the assertion that j is an isomor-
phism. Thus (2) implies (1). Suppose that (1) is satisfied and let f : X → C
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be a vertex of Map�((X,E),C�). By hypothesis, there exists an equivalence
f � f ′, where f ′ belongs to the image of j. Let e ∈ E′; then f ′(e) is an equiv-
alence in C. Since f and f ′ are equivalent, f(e) is also an equivalence in C.
Consequently, f also belongs to the image of j, and the proof is complete.

Proposition 3.2.1.11. Let S be a simplicial set, C a simplicial category,
and φ : C[S] → Cop a simplicial functor. The functor St+φ carries marked
anodyne maps in (Set+∆)/S (with respect to the Cartesian model structure) to
trivial cofibrations in (Set+∆)C (with respect to the projective model structure).

Proof. Let f : A → B be a marked anodyne map in (Set+∆)/S . We wish to
prove that St+φ (f) is a trivial cofibration. It will suffice to prove this under the
assumption that f is one of the generators for the class of marked anodyne
maps given in Definition 3.1.1.1. Using Proposition 3.2.1.4, we may reduce
to the case where S is the underlying simplicial set of B, C = C[S]op, and φ
is the identity. There are four cases to consider:

(1) Suppose first that f is among the morphisms listed in (1) of Definition
3.1.1.1; that is, f is an inclusion (Λni )

� ⊆ (∆n)�, where 0 < i < n.
Let vk denote the kth vertex of ∆n, which we may also think of as
an object of the simplicial category C. We note that St+φ (f) is an
isomorphism when evaluated at vk for k �= 0. Let K denote the cube
(∆1){j:0<j≤n,j 
=i}, let K ′ = ∂ K, let A denote the set of all vertices of
K corresponding to subsets of {j : 0 < j ≤ n, j �= i} which contain an
element > i, and let E denote the set of all degenerate edges of K×∆1

together with all edges of the form {a} × ∆1, where a ∈ A. Finally,
let B = (K × {1}) ∐

K′×{1}(K
′ × ∆1). The morphism St+φ (f)(vn) is a

pushout of g : (B,E∩B1) ⊆ (K × ∆1,E). Since i > 0, we may apply
Lemma 3.2.1.9 to deduce that g is marked anodyne and therefore a
trivial cofibration in Set+∆.

(2) Suppose that f is among the morphisms of part (2) in Definition
3.1.1.1; that is, f is an inclusion

(Λnn,E∩(Λnn)1) ⊆ (∆n,F),

where F denotes the set of all degenerate edges of ∆n together with
the final edge ∆{n−1,n}. If n > 1, then one can repeat the argument
given above in case (1), except that the set of vertices A needs to be
replaced by the set of all vertices of K which correspond to subsets of
{j : 0 < j < n} which contain n − 1. If n = 1, then we observe that
St+φ (f)(vn) is isomorphic to the inclusion {1}� ⊆ (∆1)�, which is again
a marked anodyne map and therefore a trivial cofibration in Set+∆.

(3) Suppose next that f is the morphism

(Λ2
1)
�

∐
(Λ2

1)
�

(∆2)� → (∆2)�
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specified in (3) of Definition 3.1.1.1. A simple computation shows that
St+φ (f)(vn) is an isomorphism for n �= 0, and St+φ (f)(v0) may be iden-
tified with the inclusion

(∆1 × ∆1,E) ⊆ (∆1 × ∆1)�,

where E denotes the set of all degenerate edges of ∆1 × ∆1 together
with ∆1×{0}, ∆1×{1}, and {1}×∆1. This inclusion may be obtained
as a pushout of

(Λ2
1)
�

∐
(Λ2

1)
�

(∆2)� → (∆2)�

followed by a pushout of

(Λ2
2)
�

∐
(Λ2

2)
�

(∆2)� → (∆2)�.

The first of these maps is marked anodyne by definition; the second is
marked anodyne by Corollary 3.1.1.7.

(4) Suppose that f is the morphism K� → K�, where K is a Kan complex,
as in (4) of Definition 3.1.1.1. For each vertex v of K, let St+φ (K�)(v) =
(Xv,Ev), so that St+φ (K�) = X�

v. For each g ∈ MapC[K](v, v
′)n, we let

g∗ : Xv × ∆n → Xv′ denote the induced map. We wish to show that
the natural map (Xv,Ev) → X�

v is an equivalence in Set+∆. By Lemma
3.2.1.10, it suffices to show that for every ∞-category Z, if h : Xv → Z
carries each edge belonging to Ev into an equivalence, then h carries
every edge of Xv to an equivalence.

We first show that h carries ẽ to an equivalence for every edge e : v → v′

in K. Let me : ∆1 → MapCop(v, v′) denote the degenerate edge at
the vertex corresponding to e. Since K is a Kan complex, the edge
e : ∆1 → K extends to a 2-simplex σ : ∆2 → K depicted as follows:

v′
e′

��















v

e
��������� idv �� v.

Let me′ : ∆1 → MapC(v′, v) denote the degenerate edge corresponding
to e′. The map σ gives rise to a diagram

ṽ
ee ��

idev
��

e∗ṽ′

m∗
eee′

��
ṽ �� e∗(e′)∗ṽ

in the simplicial set Xv. Since h carries the left vertical arrow and
the bottom horizontal arrow into equivalences, it follows that h carries
the composition (m∗

e ẽ
′) ◦ ẽ to an equivalence in Z; thus h(ẽ) has a
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left homotopy inverse. A similar argument shows that h(ẽ) has a right
homotopy inverse, so that h(ẽ) is an equivalence.

We observe that every edge of Xv has the form g∗ẽ, where g is an edge
of MapCop(v, v′) and e : v′ → v′′ is an edge of K. We wish to show
that h(g∗ẽ) is an equivalence in Z. Above, we have shown that this is
true if v = v′ and g is the identity. We now consider the more general
case where g is not necessarily the identity but is a degenerate edge
corresponding to some map v′ → v in C. Let h′ denote the composition

Xv′ → Xv
h→ Z.

Then h(g∗ẽ) = h′(ẽ) is an equivalence in Z by the argument given
above.

Now consider the case where g : ∆1 → MapCop(v, v′) is nondegenerate.
In this case, there is a simplicial homotopy G : ∆1×∆1 → MapC(v, v′)
with g = G|∆1 × {0} and g′ = G|∆1 × {1} a degenerate edge of
MapCop(v, v′) (for example, we can arrange that g′ is the constant edge
at an endpoint of g). The map G induces a simplicial homotopy G(e)
from g∗ẽ to (g′)∗ẽ. Moreover, the edges G(e)|{0}×∆1 and G(e)|{1}×
∆1 belong to Ev and are therefore carried by h into equivalences in Z.
Since h carries (g′)∗ẽ into an equivalence of Z, it carries g∗ẽ into an
equivalence of Z, as desired.

We now study the behavior of straightening functors with respect to prod-
ucts.

Notation 3.2.1.12. Given two simplicial functors F : C → Set+∆, F′ : C′ →
Set+∆, we let F �F′ : C×C′ → Set+∆ denote the functor described by the
formula

(F �F′)(C,C′) = F(C) × F′(C ′).

Proposition 3.2.1.13. Let S and S′ be simplicial sets, C and C′ simplicial
categories, and φ : C[S] → Cop, φ′ : C[S′] → (C′)op simplicial functors;
let φ � φ′ denote the induced functor C[S × S′] → (C×C′)op. For every
M ∈ (Set+∆)/S, M ′ ∈ (Set+∆)/S′ , the natural map

sM,M ′ : St+φ�φ′(M ×M ′) → St+φ (M) � St+φ′(M ′)

is a weak equivalence of functors C×C′ → Set+∆.

Proof. Since both sides are compatible with the formations of filtered co-
limits in M , we may suppose that M has only finitely many nondegenerate
simplices. We work by induction on the dimension n of M and the number of
n-dimensional simplices of M . If M = ∅, there is nothing to prove. If n �= 1,
we may choose a nondegenerate simplex of M having maximal dimension
and thereby write M = N

∐
(∂∆n)�(∆n)�. By the inductive hypothesis we



THE ∞-CATEGORY OF ∞-CATEGORIES 177

may suppose that the result is known for N and (∂∆n)�. The map sM,M ′

is a pushout of the maps sN,M ′ and s(∆n)�,M ′ over s(∂∆n)�,M ′ . Since Set+∆
is left proper, this pushout is a homotopy pushout; it therefore suffices to
prove the result after replacing M by N , (∂∆n)�, or (∆n)�. In the first two
cases, the inductive hypothesis implies that sM,M ′ is an equivalence; we are
therefore reduced to the case M = (∆n)�. If n = 0, the result is obvious. If
n > 2, we set

K = ∆{0,1} ∐
{1}

∆{1,2} ∐
{2}

· · ·
∐

{n−1}
∆{n−1,n} ⊆ ∆n.

The inclusion K ⊆ ∆n is inner anodyne so that K� ⊆ M is marked anodyne.
By Proposition 3.2.1.11, we deduce that sM,M ′ is an equivalence if and only
if sK�,M ′ is an equivalence, which follows from the inductive hypothesis since
K is 1-dimensional.

We may therefore suppose that n = 1. Using the above argument, we
may reduce to the case where M consists of a single edge, either marked
or unmarked. Repeating the above argument with the roles of M and M ′

interchanged, we may suppose that M ′ also consists of a single edge. Apply-
ing Proposition 3.2.1.4, we may reduce to the case where S = M , S′ = M ′,
C = C[S]op, and C′ = C[S′]op.

Let us denote the vertices of M by x and y, and the unique edge joining
them by e : x → y. Similarly, we let x′ and y′ denote the vertices of M ′,
and e′ : x′ → y′ the edge which joins them. We note that the map sM,M ′

induces an isomorphism when evaluated on any object of C×C′ except (x, x′).
Moreover, the map

sM,M ′(x, x′) : St+φ�φ′(M ×M ′)(x, x′) → St+φ (M)(x) × St+φ′(M ′)(x′)

is obtained from s(∆1)�,(∆1)� by successive pushouts along cofibrations of
the form (∆1)� ⊆ (∆1)�. Since Set+∆ is left proper, we may reduce to the
case where M = M ′ = (∆1)�. The result now follows from a simple explicit
computation.

We now study the situation in which S = ∆0, C = C[S], and φ is the
identity map. In this case, St+φ may be regarded as a functor T : Set+∆ →
Set+∆. The underlying functor of simplicial sets is familiar: we have

T (X,E) = (|X|Q• ,E′),

where Q denotes the cosimplicial object of Set∆ considered in §2.2.2. In that
section, we exhibited a natural map |X|Q• → X which we proved to be a
weak homotopy equivalence. We now prove a stronger version of that result:

Proposition 3.2.1.14. For any marked simplicial set M = (X,E), the
natural map |X|Q• → X induces a Cartesian equivalence

T (M) → M.



178 CHAPTER 3

Proof. As in the proof of Proposition 3.2.1.13, we may reduce to the case
where M consists of a simplex of dimension at most 1 (either marked or
unmarked). In these cases, the map T (M) → M is an isomorphism in Set+∆.

Corollary 3.2.1.15. Let S be a simplicial set, C a simplicial category, φ :
C[S] → Cop a simplicial functor, and X ∈ (Set+∆)/S an object. For every
K ∈ Set+∆, there is a natural equivalence

St+φ (M ×K) → St+φ (M) �K

of functors from C to Set+∆.

Proof. Combine the equivalences of Proposition 3.2.1.14 (in the case where
S′ = ∆0, C′ = C[S′]op, and φ′ is the identity) and Proposition 3.2.1.15.

We can now complete the proof that (St+φ ,Un+
φ ) is a Quillen adjunction:

Corollary 3.2.1.16. Let S be a simplicial set, C a simplicial category, and
φ : C[S]op → C a simplicial functor. The straightening functor St+φ carries
Cartesian equivalences in (Set+∆)/S to (objectwise) Cartesian equivalences in
(Set+∆)C.

Proof. Let f : M → N be a Cartesian equivalence in (Set+∆)/S . Choose a
marked anodyne map M → M ′, where M ′ is fibrant; then choose a marked
anodyne map M ′ ∐

M N → N ′, with N ′ fibrant. Since St+φ carries marked
anodyne maps to equivalences by Proposition 3.2.1.11, it suffices to prove
that the induced map St+φ (M ′) → St+φ (N ′) is an equivalence. In other words,
we may replace M by M ′ and N by N ′, thereby reducing to the case where
M and N are fibrant.

Since f is an Cartesian equivalence of fibrant objects, it has a homotopy
inverse g. We claim that St+φ (g) is an inverse to St+φ (f) in the homotopy
category of (Set+∆)C. We will show that St+φ (f) ◦St+φ (g) is homotopic to the
identity; applying the same argument with the roles of f and g reversed will
then establish the desired result.

Since f ◦ g is homotopic to the identity, there is a map h : N ×K� → N ,
where K is a contractible Kan complex containing vertices x and y, such
that f ◦ g = h|N × {x} and idN = h|N × {y}. The map St+φ (h) factors as

St+φ (N ×K�) → St+φ (N) �K� → St+φ (N),

where the left map is an equivalence by Corollary 3.2.1.15 and the right map
because K is contractible. Since St+φ (f ◦ g) and St+φ (idN ) are both sections
of St+φ (h), they represent the same morphism in the homotopy category of
(Set+∆)C.
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3.2.2 Cartesian Fibrations over a Simplex

A map of simplicial sets p : X → S is a Cartesian fibration if and only if the
pullback map X ×S ∆n → ∆n is a Cartesian fibration for each simplex of S.
Consequently, we might imagine that Cartesian fibrations X → ∆n are the
“primitive building blocks” out of which other Cartesian fibrations are built.
The goal of this section is to prove a structure theorem for these building
blocks. This result has a number of consequences and will play a vital role
in the proof of Theorem 3.2.0.1.

Note that ∆n is the nerve of the category associated to the linearly ordered
set

[n] = {0 < 1 < · · · < n}.
Since a Cartesian fibration p : X → S can be thought of as giving a (con-
travariant) functor from S to ∞-categories, it is natural to expect a close re-
lationship between Cartesian fibrations X → ∆n and composable sequences
of maps between ∞-categories

A0 ← A1 ← · · · ← An.

In order to establish this relationship, we need to introduce a few definitions.
Suppose we are given a composable sequence of maps

φ : A0 ← A1 ← · · · ← An

of simplicial sets. The mapping simplex M(φ) of φ is defined as follows. If
J is a nonempty finite linearly ordered set with greatest element j, then
to specify a map ∆J → M(φ), one must specify an order-preserving map
f : J → [n] together with a map σ : ∆J → Af(j). Given an order-preserving
map p : J → J ′ of partially ordered sets containing largest elements j and
j′, there is a natural map M(φ)(∆J′

) → M(φ)(∆J) which carries (f, σ) to
(f ◦ p, e ◦ σ), where e : Af(j′) → Af(p(j)) is obtained from φ in the obvious
way.

Remark 3.2.2.1. The mapping simplex M(φ) is equipped with a natural
map p : M(φ) → ∆n; the fiber of p over the vertex j is isomorphic to the
simplicial set Aj .

Remark 3.2.2.2. More generally, let f : [m] → [n] be an order-preserving
map, inducing a map ∆m → ∆n. ThenM(φ)×∆n ∆m is naturally isomorphic
to M(φ′), where the sequence φ′ is given by

Af(0) ← · · · ← Af(m).

Notation 3.2.2.3. Let φ : A0 ← · · · ← An be a composable sequence of
maps of simplicial sets. To give an edge e of M(φ), one must give a pair of
integers 0 ≤ i ≤ j ≤ n and an edge e ∈ Aj . We will say that e is marked if
e is degenerate; let E denote the set of all marked edges of M(φ). Then the
pair (M(φ),E) is a marked simplicial set which we will denote by M �(φ).
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Remark 3.2.2.4. There is a potential ambiguity between the terminology
of Definition 3.1.1.9 and that of Notation 3.2.2.3. Suppose that φ : A0 ←
· · · ← An is a composable sequence of maps and that p : M(φ) → ∆n is a
Cartesian fibration. Then M(φ)� (Definition 3.1.1.9) and M �(φ) (Notation
3.2.2.3) do not generally coincide as marked simplicial sets. We feel that
there is little danger of confusion since it is very rare that p is a Cartesian
fibration.

Remark 3.2.2.5. The construction of the mapping simplex is functorial in
the sense that a commutative ladder

φ : A0

f0

��

· · ·��

��

An��

fn

��
ψ : B0 · · ·�� Bn��

induces a map M(f) : M(φ) → M(ψ). Moreover, if each fi is a categorical
equivalence, then f is a categorical equivalence (this follows by induction on
n using the fact that the Joyal model structure is left proper).

Definition 3.2.2.6. Let p : X → ∆n be a Cartesian fibration and let

φ : A0 ← · · · ← An

be a composable sequence of maps. A map q : M(φ) → X is a quasi-
equivalence if it has the following properties:

(1) The diagram

M(φ)
q ��

��*
**

**
**

* X

p
��		
		
		
		

∆n

is commutative.

(2) The map q carries marked edges of M(φ) to p-Cartesian edges of S; in
other words, q induces a map M �(φ) → X� of marked simplicial sets.

(3) For 0 ≤ i ≤ n, the induced map Ai → p−1{i} is a categorical equiva-
lence.

The goal of this section is to prove the following:

Proposition 3.2.2.7. Let p : X → ∆n be a Cartesian fibration.

(1) There exists a composable sequence of maps

φ : A0 ← A1 ← · · · ← An

and a quasi-equivalence q : M(φ) → X.



THE ∞-CATEGORY OF ∞-CATEGORIES 181

(2) Let

φ : A0 ← A1 ← · · · ← An

be a composable sequence of maps and let q : M(φ) → X be a quasi-
equivalence. For any map T → ∆n, the induced map

M(φ) ×∆n T → X ×∆n T

is a categorical equivalence.

We first show that, to establish (2) of Proposition 3.2.2.7, it suffices to
consider the case where T is a simplex:

Proposition 3.2.2.8. Suppose we are given a diagram

X → Y → Z

of simplicial sets. For any map T → Z, we let XT denote X ×Z T and YT
denote Y ×Z T . The following statements are equivalent:

(1) For any map T → Z, the induced map XT → YT is a categorical
equivalence.

(2) For any n ≥ 0 and any map ∆n → Z, the induced map X∆n → Y∆n

is a categorical equivalence.

Proof. It is clear that (1) implies (2). Let us prove the converse. Since the
class of categorical equivalences is stable under filtered colimits, it suffices to
consider the case where T has only finitely many nondegenerate simplices.
We now work by induction on the dimension of T and the number of nonde-
generate simplices contained in T . If T is empty, there is nothing to prove.
Otherwise, we may write T = T ′ ∐

∂∆n ∆n. By the inductive hypothesis, the
maps

XT ′ → YT ′

X∂∆n → Y∂∆n

are categorical equivalences, and by assumption, X∆n → Y∆n is a categorical
equivalence as well. We note that

XT = XT ′
∐
X∂ ∆n

X∆n

YT = YT ′
∐
Y∂ ∆n

Y∆n .

Since the Joyal model structure is left proper, these pushouts are homotopy
pushouts and therefore categorically equivalent to one another.
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Suppose p : X → ∆n is a Cartesian fibration and q : M(φ) → X is a quasi-
equivalence. Let f : ∆m → ∆n be any map. We note (see Remark 3.2.2.5)
that M(φ) ×∆n ∆m may be identified with a mapping simplex M(φ′) and
that the induced map

M(φ′) → X ×∆n ∆m

is again a quasi-equivalence. Consequently, to establish (2) of Proposition
3.2.2.7, it suffices to prove that every quasi-equivalence is a categorical equiv-
alence. First, we need the following lemma.

Lemma 3.2.2.9. Let

φ : A0 ← · · · ← An

be a composable sequence of maps between simplicial sets, where n > 0. Let y
be a vertex of An and let the edge e : y′ → y be the image of ∆{n−1,n} ×{y}
under the map ∆n × An → M(φ). Let x be any vertex of M(φ) which does
not belong to the fiber An. Then composition with e induces a weak homotopy
equivalence of simplicial sets

MapC[M(φ)](x, y
′) → MapC[M(φ)](x, y).

Proof. Replacing φ by an equivalent diagram if necessary (using Remark
3.2.2.5), we may suppose that the map An → An−1 is a cofibration. Let φ′

denote the composable subsequence

A0 ← · · · ← An−1.

Let C = C[M(φ)] and let C− = C[M(φ′)] ⊆ C. There is a pushout diagram
in Cat∆

C[An × ∆n−1] ��

��

C[An × ∆n]

��
C− �� C .

This diagram is actually a homotopy pushout since Cat∆ is a left proper
model category and the top horizontal map is a cofibration. Now form the
pushout

C[An × ∆n−1]

��

�� C[An × (∆n−1
∐

{n−1} ∆{n−1,n})]

��
C− �� C0 .

This diagram is also a homotopy pushout. Since the diagram of simplicial
sets

{n− 1} ��

��

∆{n−1,n}

��
∆n−1 �� ∆n
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is homotopy coCartesian (with respect to the Joyal model structure), we
deduce that the natural map C0 → C is an equivalence of simplicial cate-
gories. It therefore suffices to prove that composition with e induces a weak
homotopy equivalence

MapC0
(x, y′) → MapC(x, y).

Form a pushout square

C[An × {n− 1, n}] ��

��

C[An] × C[∆{n−1,n}]

��
C0

F �� C′ .

The left vertical map is a cofibration (since An → An−1 is a cofibration of
simplicial sets), and the upper horizontal map is an equivalence of simplicial
categories (Corollary 2.2.5.6). Invoking the left properness of Cat∆, we con-
clude that F is an equivalence of simplicial categories. Consequently, it will
suffice to prove that MapC′(F (x), F (y′)) → MapC′(F (x), F (y)) is a weak
homotopy equivalence. We now observe that this map is an isomorphism of
simplicial sets.

Proposition 3.2.2.10. Let p : X → ∆n be a Cartesian fibration, let

φ : A0 ← · · · ← An

be a composable sequence of maps of simplicial sets and let q : M(φ) → X
be a quasi-equivalence. Then q is a categorical equivalence.

Proof. We proceed by induction on n. The result is obvious if n = 0, so let
us assume that n > 0. Let φ′ denote the composable sequence of maps

A0 ← A1 ← · · · ← An−1

which is obtained from φ by omitting An. Let v denote the final vertex of
∆n and let T = ∆{0,...,n−1} denote the face of ∆n which is opposite v. Let
Xv = X ×∆n {v} and XT = X ×∆n T .

We note that M(φ) = M(φ′)
∐
An×T (An×∆n). We wish to show that the

simplicial functor

F : C � C[M(φ)] � C[M(φ′)]
∐

C[An×T ]

C[An × ∆n] → C[X]

is an equivalence of simplicial categories. We note that C decomposes natu-
rally into full subcategories C+ = C[An × {v}] and C− = C[M(φ′)], having
the property that MapC(X,Y ) = ∅ if x ∈ C+, y ∈ C−.

Similarly, D = C[X] decomposes into full subcategories D+ = C[Xv] and
D− = C[XT ], satisfying MapD(x, y) = ∅ if x ∈ D+ and y ∈ D−. We observe
that F restricts to give an equivalence between C− and D− by assumption
and gives an equivalence between C+ and D+ by the inductive hypothesis.
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To complete the proof, it will suffice to show that if x ∈ C− and y ∈ C+,
then F induces a homotopy equivalence

MapC(x, y) → MapD(F (x), F (y)).

We may identify the object y ∈ C+ with a vertex of An. Let e denote
the edge of M(φ) which is the image of {y} × ∆{n−1,n} under the map
An × ∆n → M(φ). We let [e] : y′ → y denote the corresponding morphism
in C. We have a commutative diagram

MapC−(x, y′) ��

��

MapC(x, y)

��
MapD−(F (x), F (y′)) �� MapD(F (x), F (y)).

Here the left vertical arrow is a weak homotopy equivalence by the inductive
hypothesis, and the bottom horizontal arrow (which is given by composition
with [e]) is a weak homotopy equivalence because q(e) is p-Cartesian. Con-
sequently, to complete the proof, it suffices to show that the top horizontal
arrow (given by composition with e) is a weak homotopy equivalence. This
follows immediately from Lemma 3.2.2.9.

To complete the proof of Proposition 3.2.2.7, it now suffices to show that
for any Cartesian fibration p : X → ∆n, there exists a quasi-equivalence
M(φ) → X. In fact, we will prove something slightly stronger (in order to
make our induction work):

Proposition 3.2.2.11. Let p : X → ∆n be a Cartesian fibration of simpli-
cial sets and A another simplicial set. Suppose we are given a commutative
diagram of marked simplicial sets

A� × (∆n)�

!"++
+++

+++
++

s �� X�

"���
��
��
��
�

(∆n)�.

Then there exists a sequence of composable morphisms

φ : A0 ← · · · ← An,

a map A → An, and an extension

A� × (∆n)�

!"++
+++

+++
++

�� M �(φ)
f ��

��

X�

"���
��
��
��
�

(∆n)�

of the previous diagram, such that f is a quasi-equivalence.
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Proof. The proof goes by induction on n. We begin by considering the fiber
s over the final vertex v of ∆n. The map sv : A → Xv = X ×∆n {v} admits
a factorization

A
g→ An

h→ Sv,

where g is a cofibration and h is a trivial Kan fibration. The smash product
inclusion

({v}� × (An)�)
∐

{v}�×A�

((∆n)� ×A�) ⊆ (∆n)� × (An)�

is marked anodyne (Proposition 3.1.2.3). Consequently, we deduce the exis-
tence of a dotted arrow f0 as indicated in the diagram

A� × (∆n)�� �

��

�� X�

��
(An)� × (∆n)�

f0

��
�� (∆n)�

of marked simplicial sets, where f0|(An × {n}) = h.
If n = 0, we are now done. If n > 0, then we apply the inductive hypothesis

to the diagram

(An)� × (∆n−1)�

����
���

���
���

f0|An×∆n−1

�� (X ×∆n ∆n−1)�

##���
���

���
��

(∆n−1)�

to deduce the existence of a composable sequence of maps

φ′ : A0 ← · · · ← An−1,

a map An → An−1, and a commutative diagram

(An)� × (∆n−1)�

����
���

���
���

�� M �(φ′)
f ′
�� (X ×∆n ∆n−1)�

##���
���

���
��

(∆n−1)�,

where f ′ is a quasi-equivalence. We now define φ to be the result of appending
the map An → An−1 to the beginning of φ′ and f : M(φ) → X be the map
obtained by amalgamating f0 and f ′.

Corollary 3.2.2.12. Let p : X → S be a Cartesian fibration of simplicial
sets and let q : Y → Z be a coCartesian fibration. Define new simplicial sets
Y ′ and Z ′ equipped with maps Y ′ → S, Z ′ → S via the formulas

HomS(K,Y ′) � Hom(X ×S K,Y )

HomS(K,Z ′) � Hom(X ×S K,Z).

Then
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(1) Composition with q determines a coCartesian fibration q′ : Y ′ → Z′.

(2) An edge ∆1 → Y ′ is q′-coCartesian if and only if the induced map
∆1 ×S X → Y carries p-Cartesian edges to q-coCartesian edges.

Proof. Let us say that an edge of Y ′ is special if it satisfies the hypothesis of
(2). Our first goal is to show that there is a sufficient supply of special edges
in Y ′. More precisely, we claim that given any edge e : z → z′ in Z ′ and any
vertex z̃ ∈ Y ′ covering z, there exists a special edge ẽ : z̃ → z̃′ of Y ′ which
covers e.

Suppose that the edge e covers an edge e0 : s → s′ in S. We can identify z̃
with a map from Xs to Y . Using Proposition 3.2.2.7, we can choose a mor-
phism φ : X ′

s ← X ′
s′ and a quasi-equivalence M(φ) → X ×S ∆1. Composing

with z̃, we obtain a map X ′
s → Y . Using Propositions 3.3.1.7 and A.2.3.1,

we may reduce to the problem of providing a dotted arrow in the diagram
X ′
s� �

��

�� Y

q

��
M(φ)

��%
%

%
%

�� Z

which carries the marked edges of M �(φ) to q-coCartesian edges of Y . This
follows from the fact that qXs : Y Xs → ZXs is a coCartesian fibration and
the description of the qXs-coCartesian edges (Proposition 3.1.2.1).

To complete the proofs of (1) and (2), it will suffice to show that q′ is an
inner fibration and that every special edge of Y ′ is q′-coCartesian. For this,
we must show that every lifting problem

Λni
σ0 ��

� �

��

Y ′

q′

��
∆n ��

���
�

�
�

Z ′

has a solution provided that either 0 < i < n or i = 0, n ≥ 2, and σ0|∆{0,1}

is special. We can reformulate this lifting problem using the diagram
X ×S Λni ��

� �

��

Y

q

��
X ×S ∆n ��

���
�

�
�

�
Z.

Using Proposition 3.2.2.7, we can choose a composable sequence of mor-
phisms

ψ : X ′
0 ← · · · ← X ′

n

and a quasi-equivalence M(ψ) → X ×S ∆n. Invoking Propositions 3.3.1.7
and A.2.3.1, we may reduce to the associated mapping problem

M(ψ) ×∆n Λni ��

��

Y

q

��
M(ψ) ��

� ,,,,,,
Z.
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Since i < n, this is equivalent to the mapping problem

X ′
n × Λni ��

� �

��

Y

q

��
X ′
n × ∆n �� Z,

which admits a solution by virtue of Proposition 3.1.2.1.

Corollary 3.2.2.13. Let p : X → S be a Cartesian fibration of simplicial
sets, and let q : Y → S be a coCartesian fibration. Define a new simplicial
set T equipped with a map T → S by the formula

HomS(K,T ) � HomS(X ×S K,Y ).

Then:

(1) The projection r : T → S is a coCartesian fibration.

(2) An edge ∆1 → Z is r-coCartesian if and only if the induced map
∆1×SX → ∆1 ×S Y carries p-Cartesian edges to q-coCartesian edges.

Proof. Apply Corollary 3.2.2.12 in the case where Z = S.

We conclude by noting the following property of quasi-equivalences (which
is phrased using the terminology of §3.1.3):

Proposition 3.2.2.14. Let S = ∆n, let p : X → S be a Cartesian fibration,
let

φ : A0 ← · · · ← An

be a composable sequence of maps, and let q : M(φ) → X be a quasi-
equivalence. The induced map M �(φ) → X� is a Cartesian equivalence in
(Set+∆)/S.

Proof. We must show that for any Cartesian fibration Y → S, the induced
map of ∞-categories

Map�S(X�, Y �) → Map�S(M �(φ), Y �)

is a categorical equivalence. Because S is a simplex, the left side may be
identified with a full subcategory of Y X and the right side with a full sub-
category of YM(φ). Since q is a categorical equivalence, the natural map
Y X → YM(φ) is a categorical equivalence; thus, to complete the proof, it
suffices to observe that a map of simplicial sets f : X → Y is compatible
with the projection to S and preserves marked edges if and only if q ◦ f has
the same properties.
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3.2.3 Straightening over a Simplex

Let S be a simplicial set, C a simplicial category, and φ : C[S]op → C a simpli-
cial functor. In §3.2.1, we introduced the straightening and unstraightening
functors

(Set+∆)/S
St+φ ��(Set+∆)C

Un+
φ

�� .

In this section, we will prove that (St+φ ,Un+
φ ) is a Quillen equivalence pro-

vided that φ is a categorical equivalence and S is a simplex (the case of a
general simplicial set S will be treated in §3.2.4).

Our first step is to prove the result in the case where S is a point and φ
is an isomorphism of simplicial categories. We can identify the functor St+∆0

with the functor T : Set+∆ → Set+∆ studied in §3.2.1. Consequently, Theorem
3.2.0.1 is an immediate consequence of Proposition 3.2.1.14:

Lemma 3.2.3.1. The functor T : Set+∆ → Set+∆ has a right adjoint U , and
the pair (T,U) is a Quillen equivalence from Set+∆ to itself.

Proof. We have already established the existence of the unstraightening func-
tor U in §3.2.1 and proved that (T,U) is a Quillen adjunction. To complete
the proof, it suffices to show that the left derived functor of T (which we may
identify with T because every object of Set+∆ is cofibrant) is an equivalence
from the homotopy category of Set+∆ to itself. But Proposition 3.2.1.14 as-
serts that T is isomorphic to the identity functor on the homotopy category
of Set+∆.

Let us now return to the case of a general equivalence φ : C[S] → Cop.
Since we know that (St+φ ,Un+

φ ) give a Quillen adjunction between (Set+∆)/S
and (Set+∆)C, it will suffice to prove that the unit and counit

u : id → RUn+
φ ◦LSt+φ

v : LSt+φ ◦RUn+
φ → id

are weak equivalences. Our first step is to show that RUn+
φ detects weak

equivalences: this reduces the problem of proving that v is an equivalence to
the problem of proving that u is an equivalence.

Lemma 3.2.3.2. Let S be a simplicial set, C a simplicial category, and φ :
C[S] → Cop an essentially surjective functor. Let p : F → G be a map between
(weakly) fibrant objects of (Set+∆)C. Suppose that Un+

φ (p) : Un+
φ F → Un+

φ G

is a Cartesian equivalence. Then p is an equivalence.

Proof. Since φ is essentially surjective, it suffices to prove that F(C) → F(D)
is a Cartesian equivalence for every object C ∈ C which lies in the image of
φ. Let s be a vertex of S with ψ(s) = C. Let i : {s} → S denote the inclusion
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and let i∗ : (Set+∆)/S → Set+∆ denote the functor of passing to the fiber over
s:

i∗X = Xs = X ×S� {s}�.
Let i! denote the left adjoint to i∗. Let {C} denote the trivial category
with one object (and only the identity morphism), and let j : {C} → C be
the simplicial functor corresponding to the inclusion of C as an object of C.
According to Proposition 3.2.1.4, we have a natural identification of functors

St+φ ◦ i! � j! ◦ T.
Passing to adjoints, we get another identification

i∗ ◦ Un+
φ � U ◦ j∗

from (Set+∆)C to Set+∆. Here U denotes the right adjoint of T .
According to Lemma 3.2.3.1, the functor U detects equivalences between

fibrant objects of Set+∆. It therefore suffices to prove that U(j∗ F) → U(j∗ G)
is a Cartesian equivalence. Using the identification above, we are reduced to
proving that

Un+
φ (F)s → Un+

φ (G)s

is a Cartesian equivalence. But Un+
φ (F) and Un+

φ (G) are fibrant objects of
(Set+∆)/S and therefore correspond to Cartesian fibrations over S: the desired
result now follows from Proposition 3.1.3.5.

We have now reduced the proof of Theorem 3.2.0.1 to the problem of
showing that if φ : C[S] → Cop is an equivalence of simplicial categories,
then the unit transformation

u : id → RUn+
φ ◦St+φ

is an isomorphism of functors from the homotopy category h(Set+∆)/S to
itself.

Our first step is to analyze the effect of the straightening functor St+φ on a
mapping simplex. We will need a bit of notation. For any X ∈ (Set+∆)/S and
any vertex s of S, we let Xs denote the fiber X ×S� {s}� and let is denote
the composite functor

{s} ↪→ C[S] φ→ Cop

of simplicial categories. According to Proposition 3.2.1.4, there is a natural
identification

St+φ (Xs) � is! T (Xs)

which induces a map

ψXs : T (Xs) → St+φ (X)(s).
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Lemma 3.2.3.3. Let

θ : A0 ← · · · ← An

be a composable sequence of maps of simplicial sets and let M �(θ) ∈ (Set+∆)∆n

be its mapping simplex. For each 0 ≤ i ≤ n, the map

ψ
M�(θ)
i : T (Ai)� → St+∆n(M �(θ))(i)

is a Cartesian equivalence in Set+∆.

Proof. The proof proceeds by induction on n. We first observe that ψM
�(θ)

n

is an isomorphism; we may therefore restrict our attention to i < n. Let θ′

be the composable sequence

A0 ← · · · ← An−1

and M �(θ′) its mapping simplex, which we may regard as an object of either
(Set+∆)/∆n or (Set+∆)/∆n−1 .

For i < n, we have a commutative diagram

St+∆n(M �(θ′))(i)
fi

����
���

���
���

��

T ((Ai)�)

ψ
M�(θ′)
i

�������������
�� St+∆n(M �(θ))(i).

By Proposition 3.2.1.4, St+∆nM �(θ′) � j!St
+
∆n−1M

�(θ′), where j : C[∆n−1] →
C[∆n] denotes the inclusion. Consequently, the inductive hypothesis implies
that the maps

T (Ai)� → St+∆n−1(M �(θ′))(i)

are Cartesian equivalences for i < n. It now suffices to prove that fi is a
Cartesian equivalence for i < n.

We observe that there is a (homotopy) pushout diagram

(An)� × (∆n−1)� ��

��

(An)� × (∆n)�

��
M �(θ′) �� M �(θ).

Since St+∆n is a left Quillen functor, it induces a homotopy pushout diagram

St+∆n((An)� × (∆n−1)�)
g ��

��

St+∆n((An)� × (∆n)�)

��
St+∆nM �(θ′) �� St+∆nM �(θ)

in (Set+∆)C. We are therefore reduced to proving that g induces a Cartesian
equivalence after evaluation at any i < n.
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According to Proposition 3.2.1.13, the vertical maps of the diagram

St+∆n((An)� × (∆n−1)�) ��

��

St+∆n((An)� × (∆n)�)

��
T (An)� � St+∆n(∆n−1)� �� T (An)� � St+∆n(∆n)�

are Cartesian equivalences. To complete the proof we must show that

St+∆n(∆n−1)� → St+∆n(∆n)�

induces a Cartesian equivalence when evaluated at any i < n. Consider the
diagram

{n− 1}� ��

��

(∆n−1)�

��
(∆{n−1,n})� �� (∆n)�.

The horizontal arrows are marked anodyne. It therefore suffices to show that

St+∆n{n− 1}� → St+∆n(∆{n−1,n})�

induces Cartesian equivalences when evaluated at any i < n. This follows
from an easy computation.

Proposition 3.2.3.4. Let n ≥ 0. Then the Quillen adjunction

(Set+∆)/∆n

St+∆n ��(Set+∆)C[∆n]

Un+
∆n

��

is a Quillen equivalence.

Proof. As we have argued above, it suffices to show that the unit

id → RUn+
φ ◦St+∆n

is an isomorphism of functors from h(Set+∆)∆n to itself. In other words, we
must show that given an object X ∈ (Set+∆)/∆n and a weak equivalence

St+∆nX → F,

where F ∈ (Set+∆)C[∆n] is fibrant, the adjoint map

j : X → Un+
∆n F

is a Cartesian equivalence in (Set+∆)/∆n .
Choose a fibrant replacement for X: that is, a Cartesian equivalence X →

Y �, where Y → ∆n is a Cartesian fibration. According to Proposition 3.2.2.7,
there exists a composable sequence of maps

θ : A0 ← · · · ← An
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and a quasi-equivalence M �(θ) → Y �. Proposition 3.2.2.14 implies that
M �(θ) → Y � is a Cartesian equivalence. Thus, X is equivalent to M �(θ)
in the homotopy category of (Set+∆)/∆n and we are free to replace X by
M �(θ), thereby reducing to the case where X is a mapping simplex.

We wish to prove that j is a Cartesian equivalence. Since Un+
∆n F is fi-

brant, Proposition 3.2.2.14 implies that it suffices to show that j is a quasi-
equivalence: in other words, we need to show that the induced map of fibers
js : Xs → (Un+

∆n F)s is a Cartesian equivalence for each vertex s of ∆n.
As in the proof of Lemma 3.2.3.2, we may identify (Un+

∆n F)s with U(F(s)),
where U is the right adjoint to T . By Lemma 3.2.3.1, Xs → U(F(s)) is a
Cartesian equivalence if and only if the adjoint map T (Xs) → F(s) is a
Cartesian equivalence. This map factors as a composition

T (Xs) → St+∆n(X)(s) → F(s).

The map on the left is a Cartesian equivalence by Lemma 3.2.3.3, and the
map on the right also a Cartesian equivalence, by virtue of the assumption
that St+∆nX → F is a weak equivalence.

3.2.4 Straightening in the General Case

Let S be a simplicial set and φ : C[S] → Cop an equivalence of simplicial
categories. Our goal in this section is to complete the proof of Theorem
3.2.0.1 by showing that (St+φ ,Un+

φ ) is a Quillen equivalence between (Set+∆)/S
and (Set+∆)C. In §3.2.3, we handled the case where S is a simplex (and φ
an isomorphism) by verifying that the unit map id → RUn+

φ ◦St+φ is an
isomorphism of functors from h(Set+∆)/S to itself.

Here is the idea of the proof. Without loss of generality, we may suppose
that φ is an isomorphism (since the pair (φ!, φ

∗) is a Quillen equivalence
between (Set+∆)C[S]op

and (Set+∆)C by Proposition A.3.3.8). We wish to show
that Un+

φ induces an equivalence from the homotopy category of (Set+∆)C to
the homotopy category of (Set+∆)/S . According to Proposition 3.2.3.4, this
is true whenever S is a simplex. In the general case, we would like to regard
(Set+∆)C and (Set+∆)/S as somehow built out of pieces which are associated to
simplices and deduce that Un+

φ is an equivalence because it is an equivalence
on each piece. In order to make this argument work, it is necessary to work
not just with the homotopy categories of (Set+∆)C and (Set+∆)/S but also with
the simplicial categories which give rise to them.

We recall that both (Set+∆)C and (Set+∆)/S are simplicial model categories
with respect to the simplicial mapping spaces defined by

HomSet∆(K,Map(Set+∆)C(F,G)) = Hom(Set+∆)C(F �K�,G)

HomSet∆(K,Map(Set+∆)S
(X,Y )) = Hom(Set+∆)/S

(X ×K�, Y ).

The functor St+φ is not a simplicial functor. However, it is weakly compatible
with the simplicial structure in the sense that there is a natural map

St+φ (X �K�) → (St+φX) �K�
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for any X ∈ (Set+∆)/S , K ∈ Set∆ (according to Corollary 3.2.1.15, this map
is a weak equivalence in (Set+∆)C). Passing to adjoints, we get natural maps

Map(Set+∆)C(F,G) → Map�S(Un+
φ F,Un+

φ G).

In other words, Un+
φ does have the structure of a simplicial functor. We now

invoke Proposition A.3.1.10 to deduce the following:

Lemma 3.2.4.1. Let S be a simplicial set, C a simplicial category, and
φ : C[S] → Cop a simplicial functor. The following are equivalent:

(1) The Quillen adjunction (St+φ ,Un+
φ ) is a Quillen equivalence.

(2) The functor Un+
φ induces an equivalence of simplicial categories

(Un+
φ )◦ : ((Set+∆)C)◦ → ((Set+∆)/S)◦,

where ((Set+∆)C)◦ denotes the full (simplicial) subcategory of ((Set+∆)C)
consisting of fibrant-cofibrant objects and ((Set+∆)/S)◦ denotes the full
(simplicial) subcategory of (Set+∆)/S consisting of fibrant-cofibrant ob-
jects.

Consequently, to complete the proof of Theorem 3.2.0.1, it will suffice to
show that if φ is an equivalence of simplicial categories, then (Un+

φ )◦ is an
equivalence of simplicial categories. The first step is to prove that (Un+

φ )◦ is
fully faithful.

Lemma 3.2.4.2. Let S′ ⊆ S be simplicial sets and let p : X → S, q : Y → S
be Cartesian fibrations. Let X ′ = X×S S

′ and Y ′ = Y ×S S
′. The restriction

map

Map�S(X�, Y �) → Map�S′(X ′�, Y ′�)

is a Kan fibration.

Proof. It suffices to show that the map Y � → S has the right lifting property
with respect to the inclusion

(X ′� ×B�)
∐

X′�×A�

(X� ×A�) ⊆ X� ×B�

for any anodyne inclusion of simplicial sets A ⊆ B.
But this is a smash product of a marked cofibration X ′� → X� (in

(Set+∆)/S) and a trivial marked cofibration A� → B� (in Set+∆) and is there-
fore a trivial marked cofibration. We conclude by observing that Y � is a
fibrant object of (Set+∆)/S (Proposition 3.1.4.1).

Proof of Theorem 3.2.0.1. For each simplicial set S, let (Set+∆)C[S]op

f denote
the category of projectively fibrant objects of (Set+∆)C[S]op

and let WS be
the class of weak equivalences in (Set+∆)C[S]op

f . Let W ′
S be the collection
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of pointwise equivalences in (Set+∆)◦/S . We have a commutative diagram of
simplicial categories

((Set+∆)C[S]op

)◦
Un+

S ��

��

(Set+∆)◦/S

ψS

��
(Set+∆)C[S]op

f [W−1
S ]

φS �� (Set+∆)◦/S [W ′−1
S ]

(see Notation A.3.5.1). In view of Lemma 3.2.4.1, it will suffice to show that
the upper horizontal map is an equivalence of simplicial categories. Lemma
A.3.6.17 implies that the left vertical map is an equivalence. Using Lemma
2.2.3.6 and Remark A.3.2.14, we deduce that the right vertical map is also
an equivalence. It will therefore suffice to show that φS is an equivalence.

Let U denote the collection of simplicial sets S for which φS is an equiv-
alence. We will show that U satisfies the hypotheses of Lemma 2.2.3.5 and
therefore contains every simplicial set S. Conditions (i) and (ii) are obviously
satisfied, and condition (iii) follows from Lemma 3.2.4.1 and Proposition
3.2.3.4. We will verify condition (iv); the proof of (v) is similar.

Applying Corollary A.3.6.18, we deduce:

(∗) The functor S �→ (Set+∆)C[S]op

f [W−1
S ] carries homotopy colimit diagrams

indexed by a partially ordered set to homotopy limit diagrams in Cat∆.

Suppose we are given a pushout diagram

X ��

f

��

X ′

��
Y �� Y ′

in which X,X ′, Y ∈ U, where f is a cofibration. We wish to prove that
Y ′ ∈ U. We have a commutative diagram

(Set+∆)C[Y ′]op

f [W−1
Y ′ ]

φY ′

����
���

���
���

��

(Set+∆)◦/Y ′ [W ′−1
Y ′ ] u ��

v

��

w

��$$
$$$

$$$
$$$

$$
(Set+∆)◦/Y [W ′−1

Y ]

��
(Set+∆)◦/X′ [W ′−1

X′ ] �� (Set+∆)◦/X [W ′−1
X ].

Using (∗) and Corollary A.3.2.28, we deduce that φY ′ is an equivalence if
and only if, for every pair of objects x, y ∈ (Set+∆)◦/Y ′ [W ′−1

Y ′ ], the diagram of
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simplicial sets

Map(Set+∆)◦
/Y ′ [W ′−1

Y ′ ]
(x, y) ��

��

Map(Set+∆)◦
/Y

[W ′−1
Y ](u(x), u(y))

��
Map(Set+∆)◦

/X′ [W ′−1
X′ ]

(v(x), v(y)) �� Map(Set+∆)◦
/X

[W ′−1
X ](w(x), w(y))

is homotopy Cartesian. Since ψY ′ is a weak equivalence of simplicial cat-
egories, we may assume without loss of generality that x = ψY ′(x) and
y = ψY ′(y) for some x, y ∈ (Set+∆)◦/Y ′ . It will therefore suffice to prove that
the equivalent diagram

Map�Y ′(x, y) ��

��

Map�Y (u(x), u(y))

��
Map�X′(v(x), v(y))

g �� Map�X(w(x), w(y))

is homotopy Cartesian. But this diagram is a pullback square, and the map
g is a Kan fibration by Lemma 3.2.4.2.

3.2.5 The Relative Nerve

In §3.1.3, we defined the straightening and unstraightening functors, which
give rise to a Quillen equivalence of model categories

(Set+∆)/S
St+φ ��(Set+∆)C

Un+
φ

��

whenever φ : C[S] → Cop is a weak equivalence of simplicial categories. For
many purposes, these constructions are unnecessarily complicated. For exam-
ple, suppose that F : C → Set+∆ is a (weakly) fibrant diagram, so that Un+

φ (F)
is a fibrant object of (Set+∆)/S corresponding to a Cartesian fibration of sim-
plicial sets X → S. For every vertex s ∈ S, the fiber Xs is an ∞-category
which is equivalent to F(φ(s)) but usually not isomorphic to F(φ(s)). In the
special case where C is an ordinary category and φ : C[N(C)op] → Cop is the
counit map, there is another version of unstraightening construction Un+

φ

which does not share this defect. Our goal in this section is to introduce this
simpler construction, which we call the marked relative nerve F �→ N+

F(C),
and to study its basic properties.

Remark 3.2.5.1. To simplify the exposition which follows, the relative
nerve functor introduced below will actually be an alternative to the opposite
of the unstraightening functor

F �→ (Un+
φ Fop)op,

which is a right Quillen functor from the projective model structure on
(Set+∆)C to the coCartesian model structure on (Set+∆)/N(C).
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Definition 3.2.5.2. Let C be a small category and let f : C → Set∆ be a
functor. We define a simplicial set Nf (C), the nerve of C relative to f , as
follows. For every nonempty finite linearly ordered set J , a map ∆J → Nf (C)
consists of the following data:

(1) A functor σ from J to C.

(2) For every nonempty subset J ′ ⊆ J having a maximal element j′, a
map τ(J ′) : ∆J′ → F(σ(j′)).

(3) For nonempty subsets J ′′ ⊆ J ′ ⊆ J , with maximal elements j′′ ∈ J ′′,
j′ ∈ J ′, the diagram

∆J′′ τ(J ′′)��
� �

��

f(σ(j′′))

��
∆J′ τ(J ′)�� f(σ(j′))

is required to commute.

Remark 3.2.5.3. Let I denote the linearly ordered set [n], regarded as
a category, and let f : I → Set∆ correspond to a composable sequence of
morphisms φ : X0 → · · · → Xn. Then Nf (I) is closely related to the mapping
simplexMop(φ) introduced in §3.2.2. More precisely, there is a canonical map
Nf (I) → Mop(φ) compatible with the projection to ∆n, which induces an
isomorphism on each fiber.

Remark 3.2.5.4. The simplicial set Nf (C) of Definition 3.2.5.2 depends
functorially on f . When f takes the constant value ∆0, there is a canonical
isomorphism Nf (C) � N(C). In particular, for any functor f , there is a
canonical map Nf (C) → N(C); the fiber of this map over an object C ∈ C

can be identified with the simpicial set f(C).

Remark 3.2.5.5. Let C be a small ∞-category. The construction f �→
Nf (C) determines a functor from (Set∆)C to (Set∆)/N(C). This functor ad-
mits a left adjoint, which we will denote by X �→ FX(C) (the existence of
this functor follows from the adjoint functor theorem). If X → N(C) is a left
fibration, then FX(C) is a functor C → Set∆ which assigns to each C ∈ C

a simplicial set which is weakly equivalent to the fiber XC = X ×N(C) {C};
this follows from Proposition 3.2.5.18 below.

Example 3.2.5.6. Let C be a small category and regard N(C) as an object of
(Set∆)/N(C) via the identity map. Then FN(C)(C) ∈ (Set∆)C can be identified
with the functor C �→ N(C/C).

Remark 3.2.5.7. Let g : C → D be a functor between small categories
and let f : D → Set∆ be a diagram. There is a canonical isomorphism of
simplicial sets Nf◦g(C) � Nf (D)×N(D) N(C). In other words, the diagram of
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categories

(Set∆)D
g∗ ��

N•(D)

��

(Set∆)C

N•(C)

��
(Set∆)/N(D)

N(g)∗ �� (Set∆)/N(C)

commutes up to canonical isomorphism. Here g∗ denotes the functor given
by composition with g, and N(g)∗ the functor given by pullback along the
map of simplicial sets N(g) : N(C) → N(D).

Remark 3.2.5.8. Combining Remarks 3.2.5.5 and 3.2.5.7, we deduce that
for any functor g : C → D between small categories, the diagram of left
adjoints

(Set∆)D (Set∆)C
g!��

(Set∆)/N(D)

F•(D)

$$

(Set∆)/N(C)

F•(C)

$$

��

commutes up to canonical isomorphism; here g! denotes the functor of left
Kan extension along g, and the bottom arrow is the forgetful functor given
by composition with N(g) : N(C) → N(D).

Notation 3.2.5.9. Let C be a small category and let f : C → Set∆ be a
functor. We let fop denote the functor C → Set∆ described by the formula
fop(C) = f(C)op. We will use a similar notation in the case where f is a
functor from C to the category Set+∆ of marked simplicial sets.

Remark 3.2.5.10. Let C be a small category, let S = N(C)op, and let
φ : C[S] → Cop be the counit map. For each X ∈ (Set∆)/N(C), there is a
canonical map

αC(X) : StφXop → FX(C)op.
The collection of maps {αC(X)} is uniquely determined by the following
requirements:

(1) The morphism αC(X) depends functorially on X. More precisely, sup-
pose we are given a commutative diagram of simplicial sets

X
f ��

��#
##

##
##

# Y

"���
��
��
��

N(C).
Then the diagram

StφX
op αC(X)��

Stφf
op

��

FX(C)op

Ff (C)op

��
StφY

op αC(Y ) �� FY (C)op

commutes.
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(2) The transformation αC depends functorially on C in the following sense:
for every functor g : C → D, if φ′ : C[(ND)op] → Dop denotes the
counit map and X ∈ (Set∆)/N(C), then the diagram

StφX
op

��

g!αC �� g!FX(C)op

��
Stφ′Xop αD �� FX(D)op

commutes, where the vertical arrows are the isomorphisms provided
by Remark 3.2.5.8 and Proposition 2.2.1.1.

(3) Let C be the category associated to a partially ordered set P and let
X = N(C), regarded as an object of (Set∆)/N(C) via the identity map.
Then (StφXop) ∈ (Set∆)C can be identified with the functor p �→ NXp,
where for each p ∈ P we let Xp denote the collection of nonempty finite
chains in P having largest element p. Similarly, Example 3.2.5.6 allows
us to identify FX(C) ∈ (Set∆)C with the functor p �→ N{q ∈ P : q ≤ p}.
The map αC(X) : (StφXop) → FX(C)op is induced by the map of
partially ordered sets Xp → {q ∈ P : q ≤ p} which carries every chain
to its smallest element.

To see that the collection of maps {αC(X)}X∈(Set∆)/ N(C)
is determined

by these properties, we first note that because the functors Stφ and F•(C)
commute with colimits, any natural transformation βC : Stφ(•op) → F•(C)op

is determined by its values βC(X) : Stφ(Xop) → FX(C)op in the case where
X = ∆n is a simplex. In this case, any map X → N C factors through the
isomorphism X � N[n], so we can use property (2) to reduce to the case
where the category C is a partially ordered set and the map X → N(C) is an
isomorphism. The behavior of the natural transformation αC is then dictated
by property (3). This proves the uniqueness of the natural transformations
αC; the existence follows by a similar argument.

The following result summarizes some of the basic properties of the relative
nerve functor:

Lemma 3.2.5.11. Let I be a category and let α : f → f ′ be a natural
transformation of functors f, f ′ : C → Set∆.

(1) Suppose that, for each I ∈ C, the map α(I) : f(I) → f ′(I) is an inner
fibration of simplicial sets. Then the induced map Nf (C) → Nf ′(C) is
an inner fibration.

(2) Suppose that, for each I ∈ I, the simplicial set f(I) is an ∞-category.
Then Nf (C) is an ∞-category.

(3) Suppose that, for each I ∈ C, the map α(I) : f(I) → f ′(I) is a categor-
ical fibration of ∞-categories. Then the induced map Nf (C) → Nf ′(C)
is a categorical fibration of ∞-categories.
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Proof. Consider a commutative diagram

Λni ��
� �

��

Nf (I)

p

��
∆n

		�
�

�
�

�
�� Nf ′(C)

and let I be the image of {n} ⊆ ∆n under the bottom map. If 0 ≤ i < n,
then the lifting problem depicted in the diagram above is equivalent to the
existence of a dotted arrow in an associated diagram

Λni
g ��

� �

��

f(I)

α(I)

��
∆n

		�
�

�
�

�
�� f ′(I).

If α(I) is an inner fibration and 0 < i < n, then we conclude that this lifting
problem admits a solution. This proves (1). To prove (2), we apply (1) in the
special case where f ′ is the constant functor taking the value ∆0. It follows
that Nf (C) → N(C) is an inner fibration, so that Nf (C) is an ∞-category.

We now prove (3). According to Corollary 2.4.6.5, an inner fibration
D → E of ∞-categories is a categorical fibration if and only if the following
condition is satisfied:

(∗) For every equivalence e : E → E′ in E and every object D ∈ D lifting
E, there exists an equivalence e : D → D′ in D lifting e.

We can identify equivalences in Nf ′(C) with triples (g : I → I ′, X, e : X ′ →
Y ), where g is an isomorphism in C, X is an object of f ′(I), X ′ is the image
of X in f ′(I ′), and e : X ′ → Y is an equivalence in f ′(I ′). Given a lifting
X of X to f(I), we can apply the assumption that α(I ′) is a categorical
fibration (and Corollary 2.4.6.5) to lift e to an equivalence e : X

′ → Y in
f(I ′). This produces the desired equivalence (g : I → I ′,X, e : X

′ → Y ) in
Nf (C).

We now introduce a slightly more elaborate version of the relative nerve
construction.

Definition 3.2.5.12. Let C be a small category and F : C → Set+∆ a functor.
We let N+

F(C) denote the marked simplicial set (Nf (C),M), where f denotes

the composition C
F→ Set+∆ → Set∆ and M denotes the collection of all edges

e of Nf (C) with the following property: if e : C → C ′ is the image of e in
N(C) and σ denotes the edge of f(C ′) determined by e, then σ is a marked
edge of F(C ′). We will refer to N+

F(C) as the marked relative nerve functor.

Remark 3.2.5.13. Let C be a small category. We will regard the construc-
tion F �→ N+

F(C) as determining a functor from (Set+∆)C to (Set+∆)/N(C) (see
Remark 3.2.5.4). This functor admits a left adjoint, which we will denote by
X �→ F+

X
(C).
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Remark 3.2.5.14. Remark 3.2.5.8 has an evident analogue for the functors
F+: for any functor g : C → D between small categories, the diagram of left
adjoints

(Set+∆)D (Set+∆)C
g!��

(Set+∆)/N(D)

F+
• (D)

$$

(Set+∆)/C

F+
• (C)

$$

��

commutes up to canonical isomorphism.

Lemma 3.2.5.15. Let C be a small category. Then

(1) The functor X �→ FX(C) carries cofibrations in (Set∆)/N(C) to cofibra-
tions in (Set∆)C (with respect to the projective model structure).

(2) The functor X �→ F+

X
(C) carries cofibrations (with respect to the co-

Cartesian model structure on (Set+∆)/N(C)) to cofibrations in (Set+∆)C

(with respect to the projective model structure).

Proof. We will give the proof of (2); the proof of (1) is similar. It will suffice to
show that the right adjoint functor N+

• (C) : (Set+∆)C → Set+∆ N(C) preserves
trivial fibrations. Let F → F′ be a trivial fibration in (Set+∆)C with respect
to the projective model structure, so that for each C ∈ C the induced map
F(C) → F′(C) is a trivial fibration of marked simplicial sets. We wish to
prove that the induced map N+

F(C) → N+
F′(C) is also a trivial fibration of

marked simplicial sets. Let f denote the composition C
F→ Set+∆ → Set∆ and

let f ′ be defined likewise. We must verify two things:

(1) Every lifting problem of the form

∂∆n ��
� �

��

Nf (C)

��
∆n u �� Nf ′(C)

admits a solution. Let C ∈ C denote the image of the final vertex of
∆n under the map u. Then it suffices to solve a lifting problem of the
form

∂∆n ��
� �

��

f(C)

��
∆n �� f ′(C),

which is possible since the right vertical map is a trivial fibration of
simplicial sets.
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(2) If e is an edge of N+
F(C) whose image e′ in N+

F′(C) is marked, then e is
itself marked. Let e : C → C ′ be the image of e in N(C) and let σ denote
the edge of F(C′) determined by e. Since e′ is a marked edge of N+

F′(C),
the image of σ in F′(C ′) is marked. Since the map F(C ′) → F′(C ′) is a
trivial fibration of marked simplicial sets, we deduce that σ is a marked
edge of F(C ′), so that e is a marked edge of N+

F(C) as desired.

Remark 3.2.5.16. Let C be a small category, let S = N(C)op, and let
φ : C[S] → Cop be the counit map. For every X = (X,M) ∈ (Set+∆)/N(C),
the morphism αC(X) : Stφ(Xop) → FX(C)op of Remark 3.2.5.10 induces a
natural transformation St+φX

op → F+

X
(C)op, which we will denote by α+

C (X).
We will regard the collection of morphisms {α+

C (X)}X∈(Set+∆)/ N(C)
as deter-

mining a natural transformation of functors

αC : St+φ (•op) → F+
• (C)op.

Lemma 3.2.5.17. Let C be a small category, let S = N(C)op, let φ : C[S] →
Cop be the counit map, and let C ∈ C be an object. Then

(1) For every X ∈ (Set∆)/N(C), the map αC(X) : Stφ(Xop) → FX(C)op

of Remark 3.2.5.10 induces a weak homotopy equivalence of simplicial
sets Stφ(Xop)(C) → FX(C)(C)op.

(2) For every X ∈ (Set+∆)/N(C), the map α+
C (X) : St+φ (X

op
) → F+

X
(C)op

of Remark 3.2.5.16 induces a Cartesian equivalence St+φ (X
op

)(C) →
F+

X
(C)(C)op.

Proof. We will give the proof of (2); the proof of (1) is similar but easier. Let
us say that an object X ∈ (Set+∆)/N(C) is good if the map α+

C (X) is a weak
equivalence. We wish to prove that every object X = (X,M) ∈ (Set+∆)/N(C)

is good. The proof proceeds in several steps.

(A) Since the functors St+φ and F+
• (C) both commute with filtered colimits,

the collection of good objects of (Set+∆)/N(C) is stable under filtered
colimits. We may therefore reduce to the case where the simplicial set
X has only finitely many nondegenerate simplices.

(B) Suppose we are given a pushout diagram

X
f ��

g

��

X
′

��
Y ��

Y
′

in the category (Set+∆)/N(C). Suppose that either f or g is a cofibra-
tion and that the objects X,X

′
, and Y are good. Then Y

′
is good.
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This follows from the fact that the functors St+φ and F+
• (C) preserve

cofibrations (Proposition 3.2.1.7 and Lemma 3.2.5.15) together with
the observation that the projective model structure on (Set+∆)C is left
proper.

(C) Suppose that X � ∆n for n ≤ 1. In this case, the map α+
C (X) is an

isomorphism (by direct calculation), so that X is good.

(D) We now work by induction on the number of nondegenerate marked
edges of X. If this number is nonzero, then there exists a pushout
diagram

(∆1)� ��

��

(∆1)�

��
Y �� X,

where Y has fewer nondegenerate marked edges than X, so that Y is
good by the inductive hypothesis. The marked simplicial sets (∆1)� and
(∆1)� are good by virtue of (C), so that (B) implies that X is good. We
may therefore reduce to the case where X contains no nondegenerate
marked edges, so that X � X�.

(E) We now argue by induction on the dimension n of X and the number
of nondegenerate n-simplices of X. If X is empty, there is nothing to
prove; otherwise, we have a pushout diagram

∂∆n ��

��

∆n

��
Y �� X.

The inductive hypothesis implies that (∂∆n)� and Y � are good. Invok-
ing step (B), we can reduce to the case where X is an n-simplex. In
view of (C), we may assume that n ≥ 2.

Let Z = ∆{0,1} ∐
{1} ∆{1,2} ∐

{1} · · ·∐{n−1} ∆{n−1,n}, so that Z ⊆ X
is an inner anodyne inclusion. We have a commutative diagram

St+φ (Zop)� u ��

v

��

St+φ (Xop)�

��
F+
Z�(C)op w �� F+

X�(C)op.

The inductive hypothesis implies that v is a weak equivalence, and
Proposition 3.2.1.11 implies that u is a weak equivalence. To complete
the proof, it will suffice to show that w is a weak equivalence.
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(F ) The map X → N(C) factors as a composition

∆n � N([n])
g→ N(C).

Using Remark 3.2.5.14 (together with the fact that the left Kan ex-
tension functor g! preserves weak equivalences between projectively
cofibrant objects), we can reduce to the case where C = [n] and the
map X → N(C) is an isomorphism.

(G) Fix an object i ∈ [n]. A direct computation shows that the map
F+
Z�(C)(i) → F+

X�(C)(i) can be identified with the inclusion

(∆{0,1} ∐
{1}

∆{1,2} ∐
{1}

· · ·
∐

{i−1}
∆{i−1,i})op,� ⊆ (∆i)op,�.

This inclusion is marked anodyne and therefore an equivalence of
marked simplicial sets, as desired.

Proposition 3.2.5.18. Let C be a small category. Then

(1) The functors F•(C) and N•(C) determine a Quillen equivalence between
(Set∆)/N(C) (endowed with the covariant model structure) and (Set∆)C

(endowed with the projective model structure).

(2) The functors F+
• (C) and N+

• (C) determine a Quillen equivalence be-
tween (Set+∆)/N(C) (endowed with the coCartesian model structure) and
(Set+∆)C (endowed with the projective model structure).

Proof. We will give the proof of (2); the proof of (1) is similar but easier. We
first show that the adjoint pair (F+

• (C),N+
• (C)) is a Quillen adjunction. It

will suffice to show that the functor F+
• (C) preserves cofibrations and weak

equivalences. The case of cofibrations follows from Lemma 3.2.5.15, and the
case of weak equivalences from Lemma 3.2.5.17 and Corollary 3.2.1.16. To
prove that (F+

• (C),N+
• (C)) is a Quillen equivalence, it will suffice to show

that the left derived functor LF+
• (C) induces an equivalence from the homo-

topy category h(Set+∆)/N(C) to the homotopy category h(Set+∆)C. In view of
Lemma 3.2.5.17, it will suffice to prove an analogous result for the straight-
ening functor St+φ , where φ denotes the counit map C[N(C)op] → Cop. We
now invoke Theorem 3.2.0.1.

Corollary 3.2.5.19. Let C be a small category and let α : f → f ′ be a
natural transformation of functors f, f ′ : C → Set∆. Suppose that, for each
C ∈ C, the induced map f(C) → f ′(C) is a Kan fibration. Then the induced
map Nf (C) → Nf ′(C) is a covariant fibration in (Set∆)/N(C). In particular,
if each f(C) is Kan complex, then the map Nf (C) → N(C) is a left fibration
of simplicial sets.
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Corollary 3.2.5.20. Let C be a small category and F : C → Set+∆ a fibrant
object of (Set+∆)C. Let S = N(C) and let φ : C[Sop] → Cop denote the counit
map. Then the natural transformation α+

C of Remark 3.2.5.16 induces a
weak equivalence NF(C)op → (Un+

φ Fop) (with respect to the Cartesian model
structure on (Set+∆)/Sop).

Proof. It suffices to show that α+
C induces an isomorphism of right derived

functors RN•(C)op → R(Un+
φ •op), which follows immediately from Lemma

3.2.5.17.

Proposition 3.2.5.21. Let C be a category and let f : C → Set∆ be a
functor such that f(C) is an ∞-category for each C ∈ C. Then

(1) The projection p : Nf (C) → N(C) is a coCartesian fibration of simpli-
cial sets.

(2) Let e be an edge of Nf (C) covering a morphism C → C ′ in C. Then
e is p-coCartesian if and only if the corresponding edge of f(C ′) is an
equivalence.

(3) The coCartesian fibration p is associated to the functor N(f) : N(C) →
Cat∞ (see §3.3.2).

Proof. Let F : C → Set+∆ be the functor described by the formula F(C) =
f(C)�. Then F is a projectively fibrant object of (Set+∆)C. Invoking Propo-
sition 3.2.5.18, we deduce that N+

F(C) is a fibrant object of (Set+∆)/N(C). In-
voking Proposition 3.1.4.1, we deduce that the underlying map p : Nf (C) →
N(C) is a coCartesian fibration of simplicial sets and that the p-coCartesian
morphisms of Nf (C) are precisely the marked wedges of N+

F(C). This proves
(1) and (2). To prove (3), we let S = N(C) and φ : C[S]op → Cop be the
counit map. By definition, a coCartesian fibration X → N(C) is associated
to f if and only if it is equivalent to (Unφ fop)op; the desired equivalence is
furnished by Corollary 3.2.5.20.

3.3 APPLICATIONS

The purpose of this section is to survey some applications of technology
developed in §3.1 and §3.2. In §3.3.1, we give some applications to the theory
of Cartesian fibrations. In §3.3.2, we will introduce the language of classifying
maps which will allow us to exploit the Quillen equivalence provided by
Theorem 3.2.0.1. Finally, in §3.3.3 and §3.3.4, we will use Theorem 3.2.0.1
to give explicit constructions of limits and colimits in the ∞-category Cat∞
(and also in the ∞-category S of spaces).
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3.3.1 Structure Theory for Cartesian Fibrations

The purpose of this section is to prove that Cartesian fibrations between
simplicial sets enjoy several pleasant properties. For example, every Carte-
sian fibration is a categorical fibration (Proposition 3.3.1.7), and categorical
equivalences are stable under pullbacks by Cartesian fibrations (Proposition
3.3.1.3). These results are fairly easy to prove for Cartesian fibrations X → S
in the case where S is an ∞-category. Theorem 3.2.0.1 provides a method
for reducing to this special case:

Proposition 3.3.1.1. Let p : S → T be a categorical equivalence of simpli-
cial sets. Then the forgetful functor

p! : (Set+∆)/S → (Set+∆)/T
and its right adjoint p∗ induce a Quillen equivalence between (Set+∆)/S and
(Set+∆)/T .

Proof. Let C = C[S]op and D = C[T ]op. Consider the following diagram of
model categories and left Quillen functors:

(Set+∆)/S
p! ��

St+S

��

(Set+∆)/T

St+T

��
C

C[p]! �� D .

According to Proposition 3.2.1.4, this diagram commutes (up to natural iso-
morphism). Theorem 3.2.0.1 implies that the vertical arrows are Quillen
equivalences. Since p is a categorical equivalence, C[p] is an equivalence
of simplicial categories, so that C[p]! is a Quillen equivalence (Proposition
A.3.3.8). It follows that (p!, p∗) is a Quillen equivalence as well.

Corollary 3.3.1.2. Let p : X → S be a Cartesian fibration of simplicial sets
and let S → T be a categorical equivalence. Then there exists a Cartesian
fibration Y → T and an equivalence of X with S×TY (as Cartesian fibrations
over X).

Proof. Proposition 3.3.1.1 implies that the right derived functor Rp∗ is es-
sentially surjective.

As we explained in Remark 2.2.5.3, the Joyal model structure on Set∆ is
not right proper. In other words, it is possible to have a categorical fibration
X → S and a categorical equivalence T → S such that the induced mapX×S

T → X is not a categorical equivalence. This poor behavior of categorical
fibrations is one of the reasons that they do not play a prominent role in the
theory of ∞-categories. Working with a stronger notion of fibration corrects
the problem:

Proposition 3.3.1.3. Let p : X → S be a Cartesian fibration and let T →
S be a categorical equivalence. Then the induced map X ×S T → X is a
categorical equivalence.
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Proof. We first suppose that the map T → S is inner anodyne. By means
of a simple argument, we may reduce to the case where T → S is a middle
horn inclusion Λni ⊆ ∆n, where 0 < i < n. According to Proposition 3.2.2.7,
there exists a sequence of maps

φ : A0 ← · · · ← An

and a map M(φ) → X which is a categorical equivalence, such that M(φ)×S

T → X ×S T is also a categorical equivalence. Consequently, it suffices to
show that the inclusion M(φ)×S T ⊆ M(φ) is a categorical equivalence. But
this map is a pushout of the inclusion An × Λni ⊆ An × ∆n, which is inner
anodyne.

We now treat the general case. Choose an inner anodyne map T → T ′,
where T ′ is an ∞-category. Then choose an inner anodyne map T ′ ∐

T S →
S′, where S′ is also an ∞-category. The map S → S′ is inner anodyne; in
particular it is a categorical equivalence, so by Corollary 3.3.1.2 there is a
Cartesian fibration X ′ → S′ and an equivalence X → X ′ ×S′ S of Cartesian
fibrations over S. We have a commutative diagram

X ′ ×S′ T
u′

�� X ′ ×S′ T ′

u′′

 !))
)))

)))
))

X ×S T

u

��

v

%%--
---

---
---

X ′

X
v′ �� X ′ ×S′ S.

v′′
������������

Consequently, to prove that v is a categorical equivalence, it suffices to show
that every other arrow in the diagram is a categorical equivalence. The maps
u and v′ are equivalences of Cartesian fibrations and therefore categorical
equivalences. The other three maps correspond to special cases of the asser-
tion we are trying to prove. For the map u′′, we have the special case of the
map S′ → T ′, which is an equivalence of ∞-categories: in this case we simply
apply Corollary 2.4.4.5. For the maps u′ and v′′, we need to know that the
assertion of the proposition is valid in the special case of the maps S → S′

and T → T ′. Since these maps are inner anodyne, the proof is complete.

Corollary 3.3.1.4. Let

X ��

��

X ′

p′

��
S �� S′

be a pullback diagram of simplicial sets, where p′ is a Cartesian fibration.
Then the diagram is homotopy Cartesian (with respect to the Joyal model
structure).
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Proof. Choose an inner-anodyne map S′ → S′′, where S′′ is an ∞-category.
Using Proposition 3.3.1.1, we may assume without loss of generality that
X ′ � X ′′ ×S′′ S′, where X ′′ → S′′ is a Cartesian fibration. Now choose a
factorization

S
θ′→ T

θ′′→ S′′,

where θ′ is a categorical equivalence and θ′′ is a categorical fibration. The
diagram

T → S′′ ← X ′′

is fibrant. Consequently, the desired conclusion is equivalent to the assertion
that the map X → T ×S′′ X ′′ is a categorical equivalence, which follows
immediately from Proposition 3.3.1.3.

We now prove a stronger version of Corollary 2.4.4.4 which does not require
that the base S is a ∞-category.

Proposition 3.3.1.5. Suppose we are given a diagram of simplicial sets

X
p

���
��

��
��

f �� Y

q
����
��
��
�

S,

where p and q are Cartesian fibrations and f carries p-Cartesian edges to
q-Cartesian edges. The following conditions are equivalent:

(1) The map f is a categorical equivalence.

(2) For each vertex s of S, f induces a categorical equivalence Xs → Ys.

(3) The map X� → Y � is a Cartesian equivalence in (Set+∆)/S.

Proof. The equivalence of (2) and (3) follows from Proposition 3.1.3.5. We
next show that (2) implies (1). By virtue of Proposition 3.2.2.8, we may
reduce to the case where S is a simplex. Then S is an ∞-category, and the
desired result follows from Corollary 2.4.4.4. (Alternatively, we could observe
that (2) implies that f has a homotopy inverse.)

To prove that (1) implies (3), we choose an inner anodyne map j : S → S ′,
where S′ is an ∞-category. Let X� denote the object of (Set+∆)/S associated
to the Cartesian fibration p : X → S and let j!X� denote the same marked
simplicial set, regarded as an object of (Set+∆)/T . Choose a marked anodyne
map j!X

� → X ′�, where X ′ → S′ is a Cartesian fibration. By Proposition
3.3.1.1, the map X� → j∗X ′� is a Cartesian equivalence, so that X →
X′ ×S′ S is a categorical equivalence. According to Proposition 3.3.1.3, the
map X ′ ×S′ S → X ′ is a categorical equivalence; thus the composite map
X → X ′ is a categorical equivalence.
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Similarly, we may choose a marked anodyne map

X ′� ∐
j!X�

j!Y
� → Y ′�

for some Cartesian fibration Y ′ → S′. Since the Cartesian model structure is
left proper, the map j!Y � → Y ′� is a Cartesian equivalence, so we may argue
as above to deduce that Y → Y ′ is a categorical equivalence. Now consider
the diagram

X
f ��

��

Y

��
X ′ f ′

���� Y ′.

We have argued that the vertical maps are categorical equivalences. The
map f is a categorical equivalence by assumption. It follows that f ′ is a
categorical equivalence. Since S′ is an ∞-category, we may apply Corollary
2.4.4.4 to deduce that X ′

s → Y ′
s is a categorical equivalence for each object

s of S′. It follows that X ′� → Y ′� is a Cartesian equivalence in (Set+∆)/S , so
that we have a commutative diagram

X� ��

��

Y �

��
j∗X ′� �� j∗Y ′�

where the vertical and bottom horizontal arrows are Cartesian equivalences
in (Set+∆)/S . It follows that the top horizontal arrow is a Cartesian equiva-
lence as well, so that (3) is satisfied.

Corollary 3.3.1.6. Let

W ��

��

X

��
Y �� Z �� S

be a diagram of simplicial sets. Suppose that every morphism in this diagram
is a right fibration and that the square is a pullback. Then the diagram is
homotopy Cartesian with respect to the contravariant model structure on
(Set∆)/S.

Proof. Choose a fibrant replacement

X ′ → Y ′ ← Z′

for the diagram

X → Y ← Z

in (Set∆)/S and let W ′ = X ′ ×Z′ Y ′. We wish to show that the induced map
i : W → W ′ is a covariant equivalence in (Set∆)/S . According to Corollary
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2.2.3.13, it will suffice to show that, for each vertex s of S, the map of fibers
Ws → W ′

s is a homotopy equivalence of Kan complexes. To prove this, we
observe that we have a natural transformation of diagrams from

Ws
��

��

Xs

��
Ys �� Zs

to

W ′
s

��

��

X ′
s

��
Y ′
s

�� Z ′
s

which induces homotopy equivalences

Xs → X ′
s Ys → Y ′

s Zs → Z′
s

(Corollary 2.2.3.13), where both diagrams are homotopy Cartesian (Propo-
sition 2.1.3.1).

Proposition 3.3.1.7. Let p : X → S be a Cartesian fibration of simplicial
sets. Then p is a categorical fibration.

Proof. Consider a diagram

A ��
� �

i

��

X

p

��
B ��

f
���

�
�

� g �� S

of simplicial sets, where i is an inclusion and a categorical equivalence. We
must demonstrate the existence of the indicated dotted arrow. Choose a
categorical equivalence j : S → T , where T is an ∞-category. By Corollary
3.3.1.2, there exists a Cartesian fibration q : Y → T such that Y ×T S is
equivalent to X. Thus there exist maps

u : X → Y ×T S

v : Y ×T S → X

such that u ◦ v and v ◦ u are homotopic to the identity (over S).
Consider the induced diagram

A ��
� �

i

��

Y

B.

f ′

��	
	

	
	

Since Y is an ∞-category, there exists a dotted arrow f ′ making the diagram
commutative. Let g′ = q ◦ f ′ : B → T . We note that g′|A = (j ◦ g)|A.
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Since T is an ∞-category and i is a categorical equivalence, there exists a
homotopy B × ∆1 → T from g′ to j ◦ g which is fixed on A. Since q is a
Cartesian fibration, this homotopy lifts to a homotopy from f ′ to some map
f ′′ : B → Y , so that we have a commutative diagram

A ��
� �

i

��

Y

q

��
B ��

f ′′

��	
	

	
	

�� T.

Consider the composite map

f ′′′ : B
(f ′′,g)→ Y ×T S

v→ X.

Since f ′ is homotopic to f ′′ and v◦u is homotopic to the identity, we conclude
that f ′′′|A is homotopic to f0 (via a homotopy which is fixed over S). Since
p is a Cartesian fibration, we can extend h to a homotopy from f ′′′ to the
desired map f .

In general, the converse to Proposition 3.3.1.7 fails: a categorical fibration
of simplicial sets X → S need not be a Cartesian fibration. This is clear since
the property of being a categorical fibration is self-dual, while the condition
of being a Cartesian fibration is not. However, in the case where S is a Kan
complex, the theory of Cartesian fibrations is self-dual, and we have the
following result:

Proposition 3.3.1.8. Let p : X → S be a map of simplicial sets, where S
is a Kan complex. The following assertions are equivalent:

(1) The map p is a Cartesian fibration.

(2) The map p is a coCartesian fibration.

(3) The map p is a categorical fibration.

Proof. We will prove that (1) is equivalent to (3); the equivalence of (2) and
(3) follows from a dual argument. Proposition 3.3.1.7 shows that (1) implies
(3) (for this implication, the assumption that S is a Kan complex is not
needed).

Now suppose that (3) holds. Then X is an ∞-category. Since every edge of
S is an equivalence, the p-Cartesian edges of X are precisely the equivalences
in X. It therefore suffices to show that if y is a vertex of X and e : x → p(y)
is an edge of S, then e lifts to an equivalence e : x → y in S. Since S is a Kan
complex, we can find a contractible Kan complex K and a map q : K → S
such that e is the image of an edge e′ : x′ → y′ in K. The inclusion {y′} ⊆ K
is a categorical equivalence; since p is a categorical fibration, we can lift
q to a map q : K → X with q(y′) = y. Then e = q(e′) has the desired
properties.
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3.3.2 Universal Fibrations

In this section, we will apply Theorem 3.2.0.1 to construct a universal Carte-
sian fibration. Recall that Cat∞ is defined to be the nerve of the simplicial
category Cat∆∞ = (Set+∆)◦ of ∞-categories. In particular, we may regard the
inclusion Cat∆∞ ↪→ Set+∆ as a (projectively) fibrant object F ∈ (Set+∆)Cat∆∞ .
Applying the unstraightening functor Un+

Catop
∞

, we obtain a fibrant object of
(Set+∆)/Catop

∞ , which we may identify with Cartesian fibration q : Z → Catop∞.
We will refer to q as the universal Cartesian fibration. We observe that the
objects of Cat∞ can be identified with ∞-categories and that the fiber of q
over an ∞-category C can be identified with U(C), where U is the functor
described in Lemma 3.2.3.1. In particular, there is a canonical equivalence
of ∞-categories

C → U(C) = Z×Catop
∞{C}.

Thus we may think of q as a Cartesian fibration which associates to each
object of Cat∞ the associated ∞-category.

Remark 3.3.2.1. The ∞-categories Cat∞ and Z are large. However, the
universal Cartesian fibration q is small in the sense that for any small sim-
plicial set S and any map f : S → Catop∞, the fiber product S ×Catop

∞ Z is
small. This is because the fiber product can be identified with Un+

φ (F |C[S]),
where φ : C[S] → Set+∆ is the composition of C[f ] with the inclusion.

Definition 3.3.2.2. Let p : X → S be a Cartesian fibration of simplicial
sets. We will say that a functor f : S → Catop∞ classifies p if there is an
equivalence of Cartesian fibrations X → Z×Catop

∞S � Un+
S f .

Dually, if p : X → S is a coCartesian fibration, then we will say that a
functor f : S → Cat∞ classifies p if fop classifies the Cartesian fibration
pop : Xop → Sop.

Remark 3.3.2.3. Every Cartesian fibration X → S between small simpli-
cial sets admits a classifying map φ : S → Catop∞, which is uniquely deter-
mined up to equivalence. This is one expression of the idea that Z → Catop∞
is a universal Cartesian fibration. However, it is not immediately obvious
that this property characterizes Cat∞ up to equivalence because Cat∞ is not
itself small. To remedy the situation, let us consider an arbitrary uncount-
able regular cardinal κ, and let Cat∞(κ) denote the full subcategory of Cat∞
spanned by the κ-small ∞-categories. We then deduce the following:

(∗) Let p : X → S be a Cartesian fibration between small simplicial sets.
Then p is classified by a functor χ : S → Cat∞(κ)op if and only if, for
every vertex s ∈ S, the fiber Xs is essentially κ-small. In this case, χ
is determined uniquely up to homotopy.

Enlarging the universe and applying (∗) in the case where κ is the supremum
of all small cardinals, we deduce the following property:
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(∗′) Let p : X → S be a Cartesian fibration between simplicial sets which
are not necessarily small. Then p is classified by a functor χ : S → Catop∞
if and only if, for every vertex s ∈ S, the fiber Xs is essentially small.
In this case, χ is determined uniquely up to homotopy.

This property evidently determines the ∞-category Cat∞ (and the Cartesian
fibration q : Z → Catop∞) up to equivalence.

Warning 3.3.2.4. The terminology of Definition 3.3.2.2 has the potential
to cause confusion in the case where p : X → S is both a Cartesian fibration
and a coCartesian fibration. In this case, p is classified both by a functor
S → Catop∞ (as a Cartesian fibration) and by a functor S → Cat∞ (as a
coCartesian fibration).

The category Kan of Kan complexes can be identified with a full (sim-
plicial) subcategory of Cat∆∞. Consequently we may identify the ∞-category
S of spaces with the full simplicial subset of Cat∞, spanned by the vertices
which represent ∞-groupoids. We let Z0 = Z×Catop

∞ Sop be the restriction
of the universal Cartesian fibration. The fibers of q0 : Z0 → Sop are Kan
complexes (since they are equivalent to the ∞-categories represented by the
vertices of S). It follows from Proposition 2.4.2.4 that q0 is a right fibration.
We will refer to q0 as the universal right fibration.

Proposition 2.4.2.4 translates immediately into the following characteriza-
tion of right fibrations:

Proposition 3.3.2.5. Let p : X → S be a Cartesian fibration of simplicial
sets. The following conditions are equivalent:

(1) The map p is a right fibration.

(2) Every functor f : S → Catop∞ which classifies p factors through Sop ⊆
Catop∞.

(3) There exists a functor f : S → Sop which classifies p.

Consequently, we may speak of right fibrations X → S being classified by
functors S → Sop and left fibrations being classified by functors S → S.

The ∞-category ∆0 corresponds to a vertex of Cat∞ which we will denote
by ∗. The fiber of q over this point may be identified with U∆0 � ∆0;
consequently, there is a unique vertex ∗Z of Z lying over ∗. We note that
∗ and ∗Z belong to the subcategories S and Z0. Moreover, we have the
following:

Proposition 3.3.2.6. Let q0 : Z0 → Sop be the universal right fibration.
The vertex ∗Z is a final object of the ∞-category Z0.

Proof. Let n > 0 and let f0 : ∂∆n → Z0 have the property that f0 carries
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the final vertex of ∆n to ∗Z. We wish to show that there exists an extension

∂∆n
f0 ��

� �

��

Z

∆n

f

		�
�

�
�

(in which case the map f automatically factors through Z0).
Let D denote the simplicial category containing S

op
∆ as a full subcategory

together with one additional object X, with the morphisms given by

MapD(K,X) = K

MapD(X,X) = ∗

MapD(X,K) = ∅
for all K ∈ S

op
∆ . Let C = C[∆n ∆0] and let C0 denote the subcategory C0 =

C[∂∆n ∆0] ⊆ C. We will denote the objects of C by {v0, . . . , vn+1}. Giving
the map f0 is tantamount to giving a simplicial functor F0 : C0 → D with
F0(vn+1) = X, and constructing f amounts to giving a simplicial functor
F : C → D which extends F0.

We note that the inclusion MapC0
(vi, vj) → MapC(vi, vj) is an isomor-

phism unless i = 0 and j ∈ {n, n+ 1}. Consequently, to define F , it suffices
to find extensions

MapC0
(v0, vn) ��
� �

��

MapD(F0v0, F0vn)

MapC(v0, vn)

j


�������

MapC0
(v0, vn+1) ��

� �

��

MapD(F0v0, F0vn+1)

MapC(v0, vn+1)

j′


''''''''

such that the following diagram commutes:

MapC(v0, vn) × MapC(vn, vn+1) ��

��

MapC(v0, vn+1)

��
MapD(F0v0, F0vn) × MapD(F0vn, F0vn+1) �� MapD(F0v0, F0vn+1).

We note that MapC(vn, vn+1) is a point. In view of the assumption that
f0 carries the final vertex of ∆n to ∗Z, we see that MapD(Fvn, Fvn+1) is
a point. It follows that, for any fixed choice of j′, there is a unique choice
of j for which the above diagram commutes. It therefore suffices to show
that j′ exists. Since MapD(F0v0, X) is a Kan complex, it will suffice to show
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that the inclusion MapC0
(v0, vn+1) → MapC(v0, vn+1) is an anodyne map of

simplicial sets. In fact, it is isomorphic to the inclusion

({1} × (∆1)n−1)
∐

{1}×∂(∆1)n−1

(∆1 × ∂(∆1)n−1) ⊆ ∆1 × ∆n−1,

which is the smash product of the cofibration ∂(∆1)n−1 ⊆ (∆1)n−1 and the
anodyne inclusion {1} ⊆ ∆1.

Corollary 3.3.2.7. The universal right fibration q0 : Z0 → Sop is repre-
sented by a final object of S.

Proof. Combine Propositions 3.3.2.6 and 4.4.4.5.

Corollary 3.3.2.8. Let p : X → S be a left fibration between small simplicial
sets. Then there exists a map S → S and an equivalence of left fibrations
X � S ×S S∗/.

Proof. Combine Corollary 3.3.2.7 with Remark 3.3.2.3.

3.3.3 Limits of ∞-Categories

The ∞-category Cat∞ can be identified with the simplicial nerve of (Set+∆)◦.
It follows from Corollary 4.2.4.8 that Cat∞ admits (small) limits and co-
limits, which can be computed in terms of homotopy (co)limits in the model
category Set+∆. For many applications, it is convenient to be able to construct
limits and colimits while working entirely in the setting of ∞-categories. We
will describe the construction of limits in this section; the case of colimits
will be discussed in §3.3.4.

Let p : Sop → Cat∞ be a diagram in Cat∞. Then p classifies a Cartesian
fibration q : X → S. We will show (Corollary 3.3.3.2 below) that the limit
lim←−(p) ∈ Cat∞ can be identified with the ∞-category of Cartesian sections
of q. We begin by proving a more precise assertion:

Proposition 3.3.3.1. Let K be a simplicial set, p : K
 → Catop∞ a diagram
in the ∞-category of spaces, X → K
 a Cartesian fibration classified by p,
and X = X ×K
 K. The following conditions are equivalent:

(1) The diagram p is a colimit of p = p|K.

(2) The restriction map

θ : Map�K
((K
)�,X
�
) → Map�K(K�, X�)

is an equivalence of ∞-categories.

Proof. According to Proposition 4.2.3.14, there exists a small category C and
a cofinal map f : N(C) → K; let C = C [0] be the category obtained from C

by adjoining a new final object and let f : N(C) → K
 be the induced map
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(which is also cofinal). The maps f and f are contravariant equivalences in
(Set∆)/K
 and therefore induce Cartesian equivalences

N(C)� → K� N(C)� → (K
)�.

We have a commutative diagram

Map�K
((K
)�,X
�
)

θ ��

��

Map�K
(K�,X
�
)

��

Map�K
(N(C)�, X
�
)

θ′ �� Map�K
(N(C)�, X
�
).

The vertical arrows are categorical equivalences. Consequently, condition (2)
holds for p : K
 → Catop∞ if and only if condition (2) holds for the composition
N(C) → K
 → Catop∞. We may therefore assume without loss of generality
that K = N(C).

Using Corollary 4.2.4.7, we may further suppose that p is obtained as the
simplicial nerve of a functor F : C

op → (Set+∆)◦. Changing F if necessary, we
may suppose that it is a strongly fibrant diagram in Set+∆. Let F = F|Cop. Let
φ : C[K
]op → C

op
be the counit map and φ : C[K]op → Cop the restriction

of φ. We may assume without loss of generality that X = St+φF. We have a
(not strictly commutative) diagram of categories and functors

Set+∆

St+∗
��

×K�

�� (Set+∆)/K

St+φ
��

Set+∆
δ �� (Set+∆)Cop

,

where δ denotes the diagonal functor. This diagram commutes up to a nat-
ural transformation

St+φ (K� × Z) → St+φ (K�) � St+∗ (Z) → δ(St+∗ Z).

Here the first map is a weak equivalence by Proposition 3.2.1.13, and the sec-
ond map is a weak equivalence because LSt+φ is an equivalence of categories
(Theorem 3.2.0.1) and therefore carries the final object K� ∈ h(Set+∆)/K to
a final object of h(Set+∆)Cop

. We therefore obtain a diagram of right derived
functors

hSet+∆ h(Set+∆)/KΓ
��

hSet+∆

RUn+
∗

$$

h(Set+∆)Cop

,��

RUn+
φ

$$

which commutes up to natural isomorphism, where we regard (Set+∆)Cop

as
equipped with the injective model structure described in §A.3.3. Similarly,
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we have a commutative diagram

hSet+∆ h(Set+∆)/K


Γ′
��

hSet+∆

RUn+
∗

$$

h(Set+∆)C
op

.��

RUn+
φ

$$

Condition (2) is equivalent to the assertion that the restriction map

Γ′(X
�
) → Γ(X�)

is an isomorphism in hSet+∆. Since the vertical functors in both diagrams
are equivalences of categories (Theorem 3.2.0.1), this is equivalent to the
assertion that the map

lim←−F → lim←−F

is a weak equivalence in Set+∆. Since C has an initial object v, (2) is equivalent
to the assertion that F exhibits F(v) as a homotopy limit of F in (Set+∆)◦.
Using Theorem 4.2.4.1, we conclude that (1) ⇔ (2), as desired.

It follows from Proposition 3.3.3.1 that limits in Cat∞ are computed by
forming ∞-categories of Cartesian sections:

Corollary 3.3.3.2. Let p : K → Catop∞ be a diagram in the ∞-category Cat∞
of spaces and let X → K be a Cartesian fibration classified by p. There is a
natural isomorphism

lim←−(p) � Map�K(K�, X�)

in the homotopy category hCat∞.

Proof. Let p : (K
)op → Catop∞ be a limit of p and let X ′ → K
 be a
Cartesian fibration classified by p. Without loss of generality, we may suppose
X � X ′ ×K
 K. We have maps

Map�K(K�, X�) ← Map�K
((K
)�, X ′�) → Map�K
({v}�, X ′�),

where v denotes the cone point of K
. Proposition 3.3.3.1 implies that the
left map is an equivalence of ∞-categories. Since the inclusion {v}� ⊆ (K
)�

is marked anodyne, the map on the right is a trivial fibration. We now
conclude by observing that the space Map�K
({v}�, X ′�) � X ′ ×K
 {v} can
be identified with p(v) = lim←−(p).

Using Proposition 3.3.3.1, we can easily deduce an analogous characteri-
zation of limits in the ∞-category of spaces.

Corollary 3.3.3.3. Let K be a simplicial set, p : K	 → S a diagram in
the ∞-category of spaces and X → K	 a left fibration classified by p. The
following conditions are equivalent:

(1) The diagram p is a limit of p = p|K.
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(2) The restriction map

MapK�(K	, X) → MapK�(K,X)

is a homotopy equivalence of Kan complexes.

Proof. The usual model structure on Set∆ is a localization of the Joyal model
structure. It follows that the inclusion Kan ⊆ Cat∆∞ preserves homotopy lim-
its (of diagrams indexed by categories). Using Theorem 4.2.4.1, Proposition
4.2.3.14, and Corollary 4.2.4.7, we conclude that the inclusion S ⊆ Cat∞
preserves (small) limits. The desired equivalence now follows immediately
from Proposition 3.3.3.1.

Corollary 3.3.3.4. Let p : K → S be a diagram in the ∞-category S of
spaces, and let X → K be a left fibration classified by p. There is a natural
isomorphism

lim←−(p) � MapK(K,X)

in the homotopy category H of spaces.

Proof. Apply Corollary 3.3.3.2.

Remark 3.3.3.5. It is also possible to adapt the proof of Proposition 3.3.3.1
to give a direct proof of Corollary 3.3.3.3. We leave the details to the reader.

3.3.4 Colimits of ∞-Categories

In this section, we will address the problem of constructing colimits in the
∞-category Cat∞. Let p : Sop → Cat∞ be a diagram classifying a Cartesian
fibration f : X → S. In §3.3.3, we saw that lim←−(p) can be identified with
the ∞-category of Cartesian sections of f . To construct the colimit lim−→(p),
we need to find an ∞-category which admits a map from each fiber Xs. The
natural candidate, of course, is X itself. However, because X is generally not
an ∞-category, we must take some care to formulate a correct statement.

Lemma 3.3.4.1. Let

X ′ ��

��

X

p

��
S′ q �� S

be a pullback diagram of simplicial sets, where p is a Cartesian fibration and
qop is cofinal. The induced map X ′� → X� is a Cartesian equivalence (in
Set+∆).

Proof. Choose a cofibration S′ → K, whereK is a contractible Kan complex.
The map q factors as a composition

S′ q′→ S ×K
q′′→ S.
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It is obvious that the projection X� ×K� → X� is a Cartesian equivalence.
We may therefore replace S by S ×K and q by q′, thereby reducing to the
case where q is a cofibration. Proposition 4.1.1.3 now implies that q is left
anodyne. It is easy to see that the collection of cofibrations q : S′ → S for
which the desired conclusion holds is weakly saturated. We may therefore
reduce to the case where q is a horn inclusion Λni ⊆ ∆n, where 0 ≤ i < n.

We now apply Proposition 3.2.2.7 to choose a sequence of composable
maps

φ : A0 ← · · · ← An

and a quasi-equivalence M(φ) → X. We have a commutative diagram of
marked simplicial sets:

M �(φ) ×(∆n)� (Λni )
�

� �

i

��

�� X ′�
� �

��
M �(φ) �� X.

Using Proposition 3.2.2.14, we deduce that the horizontal maps are Carte-
sian equivalences. To complete the proof, it will suffice to show that i is a
Cartesian equivalence. We now observe that i is a pushout of the inclusion
i′′ : (Λni )

� × (An)� ⊆ (∆n)� × (An)�. It will therefore suffice to prove that
i′′ is a Cartesian equivalence. Using Proposition 3.1.4.2, we are reduced to
proving that the inclusion (Λni )

� ⊆ (∆n)� is a Cartesian equivalence. Accord-
ing to Proposition 3.1.5.7, this is equivalent to the assertion that the horn
inclusion Λni ⊆ ∆n is a weak homotopy equivalence, which is obvious.

Proposition 3.3.4.2. Let K be a simplicial set, p : K	 → Catop∞ be a
diagram in the ∞-category Cat∞, X → K	 a Cartesian fibration classified
by p, and X = X ×K� K. The following conditions are equivalent:

(1) The diagram p is a limit of p = p|K.

(2) The inclusion X� ⊆ X
�

is a Cartesian equivalence in (Set+∆)/K� .

(3) The inclusion X� ⊆ X
�

is a Cartesian equivalence in Set+∆.

Proof. Using the small object argument, we can construct a factorization

X
i→ Y

j→ K	,

where j is a Cartesian fibration, i induces a marked anodyne map X� → Y �,
and X � Y ×K� K. Since i is marked anodyne, we can solve the lifting
problem

X�
� �

i

��

��
X
�

��
Y � ��

q
		�

�
�

�
�

(K	)�.
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Since i is a Cartesian equivalence in (Set+∆)/K� , condition (2) is equivalent to
the assertion that q is an equivalence of Cartesian fibrations over K	. Since
q induces an isomorphism over each vertex of K, this is equivalent to the
following assertion:

(2′) The map qv : Yv → Xv is an equivalence of ∞-categories, where v
denotes the cone point of K	.

We have a commutative diagram

Y �v
qv ��

� �

��

X
�

v� �

��
Y �

q ��
X
�
.

Lemma 3.3.4.1 implies that the vertical maps are Cartesian equivalences. It
follows that (2′) ⇔ (3), so that (2) ⇔ (3).

To complete the proof, we will show that (1) ⇔ (2). According to Propo-
sition 4.2.3.14, there exists a small category C and a map p : N(C) → K such
that pop is cofinal. Let C = [0]  C be the category obtained by adjoining an
initial object to C. Consider the diagram

(X ×K N(C))� �
� ��

��

(X ×K� N(C))�

��
X� �

� ��
X
�
.

Lemma 3.3.4.1 implies that the vertical maps are Cartesian equivalences (in
Set+∆). It follows that the upper horizontal inclusion is a Cartesian equiva-
lence if and only if the lower horizontal inclusion is a Cartesian equivalence.
Consequently, it will suffice to prove the equivalence (1) ⇔ (2) after replacing
K by N(C).

Using Corollary 4.2.4.7, we may further suppose that p is the nerve of a
functor F : C → (Set+∆)◦. Let φ : C[K	] → C be the counit map and let
φ : C[K] → C be the restriction of φ. Without loss of generality, we may
suppose that X = Unφ F. We have a commutative diagram of homotopy
categories and right derived functors

h(Set+∆)C G ��

RUn+
φ

��

h(Set+∆)C

RUn+
φ

��
h(Set+∆)/(K�)

G′
�� h(Set+∆)/K ,

where G and G′ are restriction functors. Let F and F ′ be the left adjoints
to G and G′, respectively. According to Theorem 4.2.4.1, assumption (1) is
equivalent to the assertion that F lies in the essential image of F . Since each
of the vertical functors is an equivalence of categories (Theorem 3.2.0.1), this
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is equivalent to the assertion that X lies in the essential image of F ′. Since
F ′ is fully faithful, this is equivalent to the assertion that the counit map

F ′G′X → X

is an isomorphism in h(Set+∆)/K�), which is clearly a reformulation of (2).

Corollary 3.3.4.3. Let p : Kop → Cat∞ be a diagram classifying a Carte-
sian fibration X → K. Then there is a natural isomorphism lim−→(p) � X� in
the homotopy category in hCat∞.

Proof. Let p : (Kop)
 → Cat∞ be a colimit of p, which classifies a Cartesian
fibration X → K	. Let v denote the cone point of K	, so that lim−→(p) � Xv.
We now observe that the inclusions

X
�

v ↪→ X
� ←↩ X�

are both Cartesian equivalences (Lemma 3.3.4.1 and Proposition 3.3.4.2).

Warning 3.3.4.4. In the situation of Corollary 3.3.4.3, the marked sim-
plicial set X� is usually not a fibrant object of Set+∆ even when K is an
∞-category.

Using exactly the same argument, we can establish a version of Proposition
3.3.4.2 which describes colimits in the ∞-category of spaces:

Proposition 3.3.4.5. Let K be a simplicial set, p : K
 → S a diagram
in the ∞-category of spaces, X → K
 a left fibration classified by p, and
X = X ×K
 K. The following conditions are equivalent:

(1) The diagram p is a colimit of p = p|K.

(2) The inclusion X ⊆ X is a covariant equivalence in (Set∆)/K
 .

(3) The inclusion X ⊆ X is a weak homotopy equivalence of simplicial
sets.

Proof. Using the small object argument, we can construct a factorization

X
i
↪→ Y

j→ K
,

where i is left anodyne, j is a left fibration, and the inclusion X ⊆ Y ×K
 K
is an isomorphism. Choose a dotted arrow q as indicated in the diagram

X� �

i

��

�� X

��
Y ��

q
��%

%
%

%
K
.

Since i is a covariant equivalence in (Set∆)/K
 , condition (2) is equivalent
to the assertion that q is an equivalence of left fibrations over K
. Since
q induces an isomorphism over each vertex of K, this is equivalent to the
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assertion that qv : Yv → Xv is an equivalence, where v denotes the cone
point of K
. We have a commutative diagram

Yv
qv ��

��

Xv

��
Y

q �� X.
Proposition 4.1.2.15 implies that the vertical maps are right anodyne and
therefore weak homotopy equivalences. Consequently, qv is a weak homo-
topy equivalence if and only if q is a weak homotopy equivalence. Since the
inclusion X ⊆ Y is a weak homotopy equivalence, this proves that (2) ⇔ (3).

To complete the proof, we will show that (1) ⇔ (2). According to Propo-
sition 4.2.3.14, there exists a small category C and a cofinal map N(C) → K.
Let C = C [0] be the category obtained from C by adjoining a new final
object. Consider the diagram

X ×K N(C) � � ��

��

X ×K
 N(C)

��
X

� � �� X.

Proposition 4.1.2.15 implies that X → K
 is smooth, so that the vertical
arrows in the above diagram are cofinal. In particular, the vertical arrows
are weak homotopy equivalences, so that the upper horizontal inclusion is
a weak homotopy equivalence if and only if the lower horizontal inclusion
is a weak homotopy equivalence. Consequently, it will suffice to prove the
equivalence (1) ⇔ (2) after replacing K by N(C).

Using Corollary 4.2.4.7, we may further suppose that p is obtained as the
nerve of a functor F : C → Kan. Let φ : C[K
] → C be the counit map and
let φ : C[K] → C be the restriction of φ. Without loss of generality, we may
suppose that X

op
= Unφ F. We have a commutative diagram of homotopy

categories and right derived functors

h(Set∆)C G ��

RUnφ

��

h(Set∆)C

RUnφ

����
h(Set∆)/(K
)op

G′
�� h(Set∆)/K ,

where G and G′ are restriction functors. Let F and F ′ be the left adjoints
to G and G′, respectively. According to Theorem 4.2.4.1, assumption (1) is
equivalent to the assertion that F lies in the essential image of F . Since each
of the vertical functors is an equivalence of categories (Theorem 2.2.1.2), this
is equivalent to the assertion that X

op
lies in the essential image of F ′. Since

F ′ is fully faithful, this is equivalent to the assertion that the counit map
F ′G′X

op → X
op

is an isomorphism in h(Set∆)/(K
)op , which is clearly equivalent to (2). This
shows that (1) ⇔ (2) and completes the proof.
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Corollary 3.3.4.6. Let p : K → S be a diagram which classifies a left
fibration K̃ → K and let X ∈ S be a colimit of p. Then there is a natural
isomorphism

K̃ � X

in the homotopy category H.

Proof. Let p : K
 → S be a colimit diagram which extends p and let K̃ ′ →
K
 be a left fibration classified by p. Without loss of generality, we may
suppose that K̃ = K̃ ′ ×K
 K and X = K̃ ′ ×K
 {v}, where v denotes the
cone point of K
. Since the inclusion {v} ⊆ K
 is right anodyne and the map
K̃′ → K
 is a left fibration, Proposition 4.1.2.15 implies that the inclusion
X ⊆ K̃ ′ is right anodyne and therefore a weak homotopy equivalence. On
the other hand, Proposition 3.3.4.5 implies that the inclusion K̃ ⊆ K̃ ′ is a
weak homotopy equivalence. The composition

X � K̃ ′ � K̃

is the desired isomorphism in H.



Chapter Four

Limits and Colimits

This chapter is devoted to the study of limits and colimits in the setting of ∞-
categories. Our goal is to provide tools for proving the existence of limits and
colimits, for analyzing them, and for comparing them to the (perhaps more
familiar) notion of homotopy limits and colimits in simplicial categories. We
will generally confine our remarks to colimits; analogous results for limits
can be obtained by passing to the opposite ∞-categories.

We begin in §4.1 by introducing the notion of a cofinal map between
simplicial sets. If f : A → B is a cofinal map of simplicial sets, then we
can identify colimits of a diagram p : B → C with colimits of the induced
diagram p◦f : A → C. This is a basic maneuver which will appear repeatedly
in the later chapters of this book. Consequently, it is important to have a
good supply of cofinal maps. This is guaranteed by Theorem 4.1.3.1, which
can be regarded as an ∞-categorical generalization of Quillen’s Theorem A.

In §4.2, we introduce a battery of additional techniques for analyzing co-
limits. We will explain how to analyze colimits of complicated diagrams in
terms of colimits of simpler diagrams. Using these ideas, we can often reduce
questions about the behavior of arbitrary colimits to questions about a few
basic constructions, which we will analyze explicitly in §4.4. We will also
explain the relationship between the ∞-categorical theory of colimits and
the more classical theory of homotopy colimits, which can be studied very
effectively using the language of model categories.

The other major topic of this chapter is the theory of Kan extensions,
which can be viewed as relative versions of limits and colimits. We will
study the properties of Kan extensions in §4.3 and prove some fundamental
existence theorems which we will need throughout the later chapters of this
book.

4.1 COFINALITY

Let C be an ∞-category and let p : K → C be a diagram in C indexed
by a simplicial set K. In §1.2.13, we introduced the definition of a colimit
lim−→(p) for the diagram p. In practice, it is often possible to replace p by a
simpler diagram without changing the colimit lim−→(p). In this section, we will
introduce a general formalism which will allow us to make replacements of
this sort: the theory of cofinal maps between simplicial sets. We begin in
§4.1.1 with a definition of the class of cofinal maps and show (Proposition
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4.1.1.8) that, if a map q : K ′ → K is cofinal, then there is an equivalence
lim−→(p) � lim−→(p ◦ q) (provided that either colimit exists). In §4.1.2, we will
reformulate the definition of cofinality using the formalism of contravariant
model categories (§2.1.4). We conclude in §4.1.3 by establishing an important
recognition criterion for cofinal maps in the special case where K is an ∞-
category. This result can be regarded as a refinement of Quillen’s Theorem
A.

4.1.1 Cofinal Maps

The goal of this section is to introduce the definition of a cofinal map p :
S → T of simplicial sets and study the basic properties of this notion. Our
main result is Proposition 4.1.1.8, which characterizes cofinality in terms of
the behavior of T -indexed colimits.

Definition 4.1.1.1 (Joyal [44]). Let p : S → T be a map of simplicial sets.
We shall say that p is cofinal if, for any right fibration X → T , the induced
map of simplicial sets

MapT (T,X) → MapT (S,X)

is a homotopy equivalence.

Remark 4.1.1.2. The simplicial set MapT (S,X) parametrizes sections of
the right fibration X → T . It may be described as the fiber of the induced
map XS → TS over the vertex of TS corresponding to the map p. Since
XS → TS is a right fibration, the fiber MapT (S,X) is a Kan complex.
Similarly, MapT (T,X) is a Kan complex.

We begin by recording a few simple observations about the class of cofinal
maps:

Proposition 4.1.1.3. (1) Any isomorphism of simplicial sets is cofinal.

(2) Let f : K → K′ and g : K ′ → K ′′ be maps of simplicial sets. Suppose
that f is cofinal. Then g is cofinal if and only if g ◦ f is cofinal.

(3) If f : K → K ′ is a cofinal map between simplicial sets, then f is a
weak homotopy equivalence.

(4) An inclusion i : K ⊆ K ′ of simplicial sets is cofinal if and only if it is
right anodyne.

Proof. Assertions (1) and (2) are obvious. We prove (3). Let S be a Kan
complex. Since f is cofinal, the composition

MapSet∆(K ′, S) = MapK(K′, S×K) → MapK(K,S×K) = MapSet∆(K,S)

is a homotopy equivalence. Passing to connected components, we deduce
that K and K ′ corepresent the same functor in the homotopy category H

of spaces. It follows that f is a weak homotopy equivalence, as desired.
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We now prove (4). Suppose first that i is right anodyne. Let X → K′ be
a right fibration. Then the induced map HomK′(K′, X) → HomK′(K,X) is
a trivial fibration and, in particular, a homotopy equivalence.

Conversely, suppose that i is a cofinal inclusion of simplicial sets. We wish
to show that i has the left lifting property with respect to any right fibration.
In other words, we must show that given any diagram of solid arrows

K� �

��

s �� X

��
K ′

��%
%

%
%

K ′,

for which the right vertical map is a right fibration, there exists a dotted
arrow as indicated, rendering the diagram commutative. Since i is cofinal,
the map s is homotopic to a map which extends over K ′. In other words,
there exists a map

s′ : (K × ∆1)
∐

K×{1}
(K ′ × {1}) → X

compatible with the projection to K′, such that s′|K × {0} coincides with
s. Since the inclusion

(K × ∆1)
∐

K×{1}
(K ′ × {1}) ⊆ K ′ × ∆1

is right anodyne, there exists a map s′′ : K′ × ∆1 → X which extends s′

and is compatible with the projection to K ′. The map s′′|K × {0} has the
desired properties.

Warning 4.1.1.4. The class of cofinal maps does not satisfy the two-out-
of-three property. If f : K → K ′ and g : K ′ → K ′′ are such that g ◦ f and g
are cofinal, then f need not be cofinal.

Our next goal is to establish a characterization of cofinality in terms of
the behavior of colimits (Proposition 4.1.1.8). First, we need a lemma.

Lemma 4.1.1.5. Let C be an ∞-category and let p : K → C and q : K ′ → C

be diagrams. Define simplicial sets M and N by the formulas

Hom(X,M) = {f : (X ×K)  K ′ → C : f |(X ×K) = p ◦ πK , f |K ′ = q}
Hom(X,N) = {g : K  (X ×K′) → C : f |K = p, f |(X ×K ′) = q ◦ πK′}.

Here πK and πK′ denote the projection from a product to the factor indicated
by the subscript.

Then M and N are Kan complexes, which are (naturally) homotopy equiv-
alent to one another.

Proof. We define a simplicial set D as follows. For every finite nonempty
linearly ordered set J , to give a map ∆J → D is to supply the following
data:
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• A map ∆J → ∆1 corresponding to a decomposition of J as a disjoint
union J−

∐
J+, where J− ⊆ J is closed downward and J+ ⊆ J is closed

upward.

• A map e : (K×∆J−)  (K ′ ×∆J+) → C such that e|K×∆J− = p ◦πK
and e|K ′ × ∆J+ = q ◦ πK′ .

We first claim that D is an ∞-category. Fix a finite linearly ordered set
J as above and let j ∈ J be neither the largest nor the smallest element of
J . Let f0 : ΛJj → D be any map; we wish to show that there exists a map
f : ∆J → D which extends f0. We first observe that the induced projection
ΛJj → ∆1 extends uniquely to ∆J (since ∆1 is isomorphic to the nerve of
a category). Let J = J−

∐
J+ be the induced decomposition of J . Without

loss of generality, we may suppose that j ∈ J−. In this case, we may identify
f0 with a map

((K×ΛJ−j )(K ′×∆J+))
∐

(K×Λ
J−
j )�(K′×∂∆J+ )

((K×∆J−)(K ′×∂∆J+)) → C,

and our goal is to find an extension

f : (K × ∆J−)  (K ′ × ∆J+) → C .

Since C is an ∞-category, it will suffice to show that the inclusion

(K × ΛJ−j )  (K ′ × ∆J+)
∐

(K×Λ
J−
j )�(K′×∂∆J+ )

(K × ∆J−)  (K ′ × ∂∆J+)

��
(K × ∆J−)  (K ′ × ∆J+)

is inner anodyne. According to Lemma 2.1.2.3, it suffices to check that the
inclusion K×ΛJ−j ⊆ K×∆J− is right anodyne. This follows from Corollary
2.1.2.7 since ΛJ−j ⊆ ∆J− is right anodyne.

The ∞-category D has just two objects, which we will denote by x and y.
We observe that M = HomR

D(x, y) and N = HomL
D(x, y). Proposition 1.2.2.3

implies that M and N are Kan complexes. Propositions 2.2.2.7 and 2.2.4.1
imply that each of these Kan complexes is weakly homotopy equivalent to
MapC[D](x, y), so that M and N are homotopy equivalent to one another,
as desired.

Remark 4.1.1.6. In the situation of Lemma 4.1.1.5, the homotopy equiva-
lence between M and N is furnished by the composition of a chain of weak
homotopy equivalences

M ← |M |Q• → HomC[D](x, y) ← |N |Q• → N,

which is functorial in the triple (C, p : K → C, q : K′ → C).
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Proposition 4.1.1.7. Let v : K ′ → K be a cofinal map and p : K → C a
diagram in an ∞-category C. Then the map φ : Cp/ → Cpv/ is an equivalence
of left fibrations over C: in other words, it induces a homotopy equivalence
of Kan complexes after passing to the fiber over every object x of C.

Proof. We wish to prove that the map

Cp/×C{x} → Cpv/×C{x}
is a homotopy equivalence of Kan complexes. Lemma 4.1.1.5 implies that
the left hand side is homotopy equivalent to MapC(K,C/x). Similarly, the
right hand side can be identified with MapC(K ′,C/x). Using the functoriality
implicit in the proof of Lemma 4.1.1.5 (see Remark 4.1.1.6), it suffices to
show that the restriction map

MapC(K,C/x) → MapC(K′,C/x)

is a homotopy equivalence. Since v is cofinal, this follows immediately from
the fact that the projection C/x → C is a right fibration.

Proposition 4.1.1.8. Let v : K ′ → K be a map of (small) simplicial sets.
The following conditions are equivalent:

(1) The map v is cofinal.

(2) Given any ∞-category C and any diagram p : K → C, the induced map
Cp/ → Cp′/ is an equivalence of ∞-categories, where p′ = p ◦ v.

(3) For every ∞-category C and every diagram p : K
 → C which is a
colimit of p = p|K, the induced map p′ : K ′
 → C is a colimit of
p′ = p′|K′.

Proof. Suppose first that (1) is satisfied. Let p : K → C be as in (2). Propo-
sition 4.1.1.7 implies that the induced map Cp/ → Cp′/ induces a homotopy
equivalence of Kan complexes after passing to the fiber over any object of
C. Since both Cp/ and Cp′/ are left-fibered over C, Corollary 2.4.4.4 implies
that Cp/ → Cp′/ is a categorical equivalence. This proves that (1) ⇒ (2).

Now suppose that (2) is satisfied and let p : K
 → C be as in (3). Then
we may identify p with an initial object of the ∞-category Cp/. The induced
map Cp/ → Cp′/ is an equivalence and therefore carries the initial object p
to an initial object p′ of Cp′/; thus p′ is a colimit of p′. This proves that
(2) ⇒ (3).

It remains to prove that (3) ⇒ (1). For this, we make use of the the-
ory of classifying right fibrations (§3.3.2). Let X → K be a right fibration.
We wish to show that composition with v induces a homotopy equivalence
MapK(K,X) → MapK(K′, X). It will suffice to prove this result after re-
placing X by any equivalent right fibration. Let S denote the ∞-category of
spaces. According to Corollary 3.3.2.8, there is a classifying map p : K → Sop

and an equivalence of right fibrations between X and (S∗/)op×Sop K, where
∗ denotes a final object of S.



228 CHAPTER 4

The ∞-category S admits small limits (Corollary 4.2.4.8). It follows that
there exists a map p : K
 → Sop which is a colimit of p = p|K. Let x
denote the image in S of the cone point of K
. Let p′ : K ′
 → Sop be the
induced map. Then, by hypothesis, p′ is a colimit of p′ = p′|K′. According
to Lemma 4.1.1.5, there is a (natural) chain of weak homotopy equivalences
relating MapK(K,X) with (Sop)p/ ×Sop {y}. Similarly, there is a chain of
weak homotopy equivalences connecting MapK(K ′, X) with (Sop)p′/ ×Sop

{y}. Consequently, we are reduced to proving that the left vertical map in
the diagram

(Sop)p/ ×Sop {y}

��

(Sop)p/ ×Sop {y}�� ��

��

(Sop)x/ ×Sop {y}

��
(Sop)p′/ ×Sop {y} (Sop)p′/ ×Sop {y}�� �� (Sop)x/ ×Sop {y}

is a homotopy equivalence. Since p and q are colimits of p and q, the left
horizontal maps are trivial fibrations. Since the inclusions of the cone points
into K
 and K′
 are right anodyne, the right horizontal maps are also triv-
ial fibrations. It therefore suffices to prove that the right vertical map is a
homotopy equivalence. But this map is an isomorphism of simplicial sets.

Corollary 4.1.1.9. Let p : K → K ′ be a map of simplicial sets and q :
K ′ → K ′′ a categorical equivalence. Then p is cofinal if and only if q ◦ p is
cofinal. In particular (taking p = idS′), q itself is cofinal.

Proof. Let C be an ∞-category, let r′′ : K ′′ → C be a diagram, and set
r′ = r′′ ◦ q, r = r′ ◦ p. Since q is a categorical equivalence, Cr′′/ → Cr′/ is
a categorical equivalence. It follows that Cr/ → Cr′′/ is a categorical equiv-
alence if and only if Cr/ → Cr′/ is a categorical equivalence. We now apply
the characterization (2) of Proposition 4.1.1.8.

Corollary 4.1.1.10. The property of cofinality is homotopy invariant. In
other words, if two maps f, g : K → K ′ have the same image in the homotopy
category of Set∆ obtained by inverting all categorical equivalences, then f is
cofinal if and only if g is cofinal.

Proof. Choose a categorical equivalence K ′ → C, where C is an ∞-category.
In view of Corollary 4.1.1.9, we may replace K′ by C and thereby assume
that K ′ is itself an ∞-category. Since f and g are homotopic, there exists
a cylinder object S equipped with a trivial fibration p : S → K, a map
q : S → C, and two sections s, s′ : K → S of p, such that f = q ◦ s, g = q ◦ s′.
Since p is a categorical equivalence, so is every section of p. Consequently,
s and s′ are cofinal. We now apply Proposition 4.1.1.3 to deduce that f is
cofinal if and only if q is cofinal. Similarly, g is cofinal if and only if q is
cofinal.

Corollary 4.1.1.11. Let p : X → S be a map of simplicial sets. The fol-
lowing are equivalent:
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(1) The map p is a cofinal right fibration.

(2) The map p is a trivial fibration.

Proof. Clearly any trivial fibration is a right fibration. Furthermore, any triv-
ial fibration is a categorical equivalence, hence cofinal by Corollary 4.1.1.9.
Thus (2) implies (1). Conversely, suppose that p is a cofinal right fibra-
tion. Since p is cofinal, the natural map MapS(S,X) → MapS(X,X) is a
homotopy equivalence of Kan complexes. In particular, there exists a section
f : S → X of p such that f ◦ p is (fiberwise) homotopic to the identity map
of X. Consequently, for each vertex s of S, the fiber Xs = X ×S {s} is a
contractible Kan complex (since the identity map Xs → Xs is homotopic to
the constant map with value f(s)). The dual of Lemma 2.1.3.4 now shows
that p is a trivial fibration.

Corollary 4.1.1.12. A map X → Z of simplicial sets is cofinal if and only
if it admits a factorization

X
f→ Y

g→ Z,

where X → Y is right anodyne and Y → Z is a trivial fibration.

Proof. The “if” direction is clear: if such a factorization exists, then f is
cofinal (since it is right anodyne), g is cofinal (since it is a categorical equiv-
alence), and consequently g ◦ f is cofinal (since it is a composition of cofinal
maps).

For the “only if” direction, let us suppose that X → Z is a cofinal map.
By the small object argument (Proposition A.1.2.5), there is a factorization

X
f→ Y

g→ Z

where f is right anodyne and g is a right fibration. The map g is cofinal by
Proposition 4.1.1.3 and therefore a trivial fibration by Corollary 4.1.1.11.

Corollary 4.1.1.13. Let p : S → S′ be a cofinal map and K any simplicial
set. Then the induced map K × S → K × S′ is cofinal.

Proof. Using Corollary 4.1.1.12, we may suppose that p is either right ano-
dyne or a trivial fibration. Then the induced map K × S → K × S′ has the
same property.

4.1.2 Smoothness and Right Anodyne Maps

In this section, we explain how to characterize the classes of right anodyne
and cofinal morphisms in terms of the contravariant model structures studied
in §2.1.4. We also introduce a third class of maps between simplicial sets,
which we call smooth.

We begin with the following characterization of right anodyne maps:

Proposition 4.1.2.1. Let i : A → B be a map of simplicial sets. The
following conditions are equivalent:
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(1) The map i is right anodyne.

(2) For any map of simplicial sets j : B → C, the map i is a trivial cofi-
bration with respect to the contravariant model structure on (Set∆)/C .

(3) The map i is a trivial cofibration with respect to the contravariant model
structure on (Set∆)/B.

Proof. The implication (1) ⇒ (2) follows immediately from Proposition
2.1.4.9, and the implication (2) ⇒ (3) is obvious. Suppose that (3) holds. To
prove (1), it suffices to show that given any diagram

A� �

i

��

�� X

p

��
B ��

f
���

�
�

�
Y

such that p is a right fibration, one can supply the dotted arrow f as indi-
cated. Replacing p : X → Y by the pullback X ×Y B → B, we may reduce
to the case where Y = B. Corollary 2.2.3.12 implies that X is a fibrant
object of (Set∆)/B (with respect to contravariant model structure) so that
the desired map f can be found.

Corollary 4.1.2.2. Suppose we are given maps A i→ B
j→ C of simplicial

sets. If i and j ◦ i are right anodyne and j is a cofibration, then j is right
anodyne.

Proof. By Proposition 4.1.2.1, i and j ◦ i are contravariant equivalences in
the category (Set∆)/C . It follows that j is a trivial cofibration in (Set∆)/C ,
so that j is right anodyne (by Proposition 4.1.2.1 again).

Corollary 4.1.2.3. Let

A′

f ′

��

A ��
u

��

f

��

A′′

f ′′

��
B′ B ��

v
�� B′′

be a diagram of simplicial sets. Suppose that u and v are monomorphisms
and that f, f ′, and f ′′ are right anodyne. Then the induced map

A′ ∐
A

A′′ → B′ ∐
B

B′′

is right anodyne.

Proof. According to Proposition 4.1.2.1, each of the maps f , f ′, and f ′′ is a
contravariant equivalence in the category (Set∆)/B′ ‘

B B′′ . The assumption
on u and v guarantees that f ′

∐
f f

′′ is also a contravariant equivalence in
(Set∆)/B′ ‘

B B′′ , so that f ′ ∐
f f

′′ is right anodyne by Proposition 4.1.2.1
again.
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Corollary 4.1.2.4. The collection of right anodyne maps of simplicial sets
is stable under filtered colimits.

Proof. Let f : A → B be a filtered colimit of right anodyne morphisms
fα : Aα → Bα. According to Proposition 4.1.2.1, each fα is a contravariant
equivalence in (Set∆)/B. Since contravariant equivalences are stable under fil-
tered colimits, we conclude that f is a contravariant equivalence in (Set∆)/B ,
so that f is right anodyne by Proposition 4.1.2.1.

Proposition 4.1.2.1 has an analogue for cofinal maps:

Proposition 4.1.2.5. Let i : A → B be a map of simplicial sets. The
following conditions are equivalent:

(1) The map i is cofinal.

(2) For any map j : B → C, the inclusion i is a contravariant equivalence
in (Set∆)/C .

(3) The map i is a contravariant equivalence in (Set∆)/B.

Proof. Suppose (1) is satisfied. By Corollary 4.1.1.12, i admits a factorization
as a right anodyne map followed by a trivial fibration. Invoking Proposition
4.1.2.1, we conclude that (2) holds. The implication (2) ⇒ (3) is obvious. If
(3) holds, then we can choose a factorization

A
i′→ A′ i′′→ B

of i, where i′ is right anodyne and i′′ is a right fibration. Then i′′ is a
contravariant fibration (in Set∆/B) and a contravariant weak equivalence
and is therefore a trivial fibration of simplicial sets. We now apply Corollary
4.1.1.12 to conclude that i is cofinal.

Corollary 4.1.2.6. Let p : X → S be a map of simplicial sets, where S
is a Kan complex. Then p is cofinal if and only if it is a weak homotopy
equivalence.

Proof. By Proposition 4.1.2.5, p is cofinal if and only if it is a contravariant
equivalence in (Set∆)/S . If S is a Kan complex, then Proposition 3.1.5.7
asserts that the contravariant equivalences are precisely the weak homotopy
equivalences.

Corollary 4.1.2.7. Suppose we are given a pushout diagram

A

f

��

g �� A′

f ′

��
B �� B′

of simplicial sets. If f is cofinal and either f or g is a cofibration, then f ′ is
cofinal.
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Proof. Combine Proposition 4.1.2.5 with the left-properness of the contr-
variant model structure.

Let p : X → Y be an arbitrary map of simplicial sets. In §2.1.4, we showed
that p induces a Quillen adjunction (p!, p∗) between the contravariant model
categories (Set∆)/X and (Set∆)/Y . The functor p∗ itself has a right adjoint,
which we will denote by p∗; it is given by

p∗(M) = MapY (X,M).

The adjoint functors p∗ and p∗ are not Quillen adjoints in general. Instead
we have the following result:

Proposition 4.1.2.8. Let p : X → Y be a map of simplicial sets. The
following conditions are equivalent:

(1) For any right anodyne map i : A → B in (Set∆)/Y , the induced map
A×Y X → B ×Y X is right anodyne.

(2) For every Cartesian diagram

X ′ ��

p′

��

X

p

��
Y ′ �� Y,

the functor p′∗ : (Set∆)/Y ′ → (Set∆)/X′ preserves contravariant equiv-
alences.

(3) For every Cartesian diagram

X ′ ��

p′

��

X

p

��
Y ′ �� Y,

the adjoint functors (p′∗, p′∗) give rise to a Quillen adjunction between
the contravariant model categories (Set∆)/Y ′ and (Set∆)/X′ .

Proof. Suppose that (1) is satisfied; let us prove (2). Since property (1) is
clearly stable under base change, we may suppose that p′ = p. Let u : M →
N be a contravariant equivalence in (Set∆)/Y . If M and N are fibrant, then
u is a homotopy equivalence, so that p∗(u) : p∗M → p∗N is also a homotopy
equivalence. In the general case, we may select a diagram

M
i ��

u

��

M ′

��

v

!"..
...

...
..

N
i′ �� N

∐
M M ′ j �� N ′,
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where M ′ and N ′ are fibrant and the maps i and j are right anodyne (and
therefore i′ is also right anodyne). Then p∗(v) is a contravariant equivalence,
while the maps p∗(i), p∗(j), and p∗(i′) are all right anodyne; by Proposition
4.1.2.1 they are contravariant equivalences as well. It follows that p∗(u) is a
contravariant equivalence.

To prove (3), it suffices to show that p′∗ preserves cofibrations and trivial
cofibrations. The first statement is obvious, and the second follows imme-
diately from (2). Conversely, the existence of a Quillen adjunction (p′∗, p∗)
implies that p′∗ preserves contravariant equivalences between cofibrant ob-
jects. Since every object of (Set∆)/Y ′ is cofibrant, we deduce that (3) implies
(2).

Now suppose that (2) is satisfied and let i : A → B be a right anodyne
map in (Set∆)/Y as in (1). Then i is a contravariant equivalence in (Set∆)/B .
Let p′ : X ×Y B → B be base change of p; then (2) implies that the induced
map i′ : p′∗A → p′∗B is a contravariant equivalence in (Set∆)/B×Y X . By
Proposition 4.1.2.1, the map i′ is right anodyne. Now we simply note that
i′ may be identified with the map A ×Y X → B ×Y X in the statement of
(1).

Definition 4.1.2.9. We will say that a map p : X → Y of simplicial sets is
smooth if it satisfies the (equivalent) conditions of Proposition 4.1.2.8.

Remark 4.1.2.10. Let

X ′

��

f ′
�� X

p

��
S′ f �� S

be a pullback diagram of simplicial sets. Suppose that p is smooth and that f
is cofinal. Then f ′ is cofinal: this follows immediately from characterization
(2) of Proposition 4.1.2.8 and characterization (3) of Proposition 4.1.2.5.

We next give an alternative characterization of smoothness. Let

X ′

p′

��

q′ �� X

p

��
Y ′ q �� Y

be a Cartesian diagram of simplicial sets. Then we obtain an isomorphism
Rp′∗Rq∗ � Rq′∗Rp∗ of right derived functors, which induces a natural trans-
formation

ψp,q : Lq′!Rp
′∗ → Rp∗Lq!.

Proposition 4.1.2.11. Let p : X → Y be a map of simplicial sets. The
following conditions are equivalent:

(1) The map p is smooth.
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(2) For every Cartesian rectangle

X ′′

p′′

��

q′ �� X ′

p′

��

�� X

p

��
Y ′′ q �� Y ′ �� Y,

the natural transformation ψp′,q is an isomorphism of functors from the
homotopy category of (Set∆)/Y ′′ to the homotopy category of (Set∆)/X′

(here we regard all categories as endowed with the contravariant model
structure).

Proof. Suppose that (1) is satisfied and consider any Cartesian rectangle as
in (2). Since p is smooth, p′ and p′′ are also smooth. It follows that p′∗ and
p′′∗ preserve weak equivalences, so they may be identified with their right
derived functors. Similarly, q! and q′! preserve weak equivalences, so they
may be identified with their left derived functors. Consequently, the natural
transformation ψp′,q is simply obtained by passage to the homotopy category
from the natural transformation

q′!p
′′∗ → p′∗q!.

But this is an isomorphism of functors before passage to the homotopy cat-
egories.

Now suppose that (2) is satisfied. Let q : Y ′′ → Y ′ be a right anodyne map
in (Set∆)/Y and form the Cartesian square as in (2). Let us compute the
value of the functors Lq′!Rp

′′∗ and Rp′∗Lq! on the object Y ′′ of (Set∆)/Y ′′ .
The composite Lq′!Rp

′′∗ is easy: because Y ′′ is fibrant and X ′′ = p′′∗Y ′′ is
cofibrant, the result is X ′′, regarded as an object of (Set∆)/X′ . The other
composition is slightly trickier: Y ′′ is cofibrant, but q!Y ′′ is not fibrant when
viewed as an object of (Set∆)/Y ′ . However, in view of the assumption that q is
right anodyne, Proposition 4.1.2.1 ensures that Y ′ is a fibrant replacement for
q!Y

′; thus we may identify Rp′∗Lq! with the object p′∗Y ′ = X ′ of (Set∆)/X′ .
Condition (2) now implies that the natural map X ′′ → X ′ is a contravariant
equivalence in (Set∆)/X′ . Invoking Proposition 4.1.2.1, we deduce that q′ is
right anodyne, as desired.

Remark 4.1.2.12. The terminology “smooth” is suggested by the analogy
of Proposition 4.1.2.11 with the smooth base change theorem in the theory
of étale cohomology (see, for example, [28]).

Proposition 4.1.2.13. Suppose we are given a commutative diagram

X
i ��

p

��!
!!

!!
!!

!

��

X ′

p′

��
X ′′ p′′ �� S

of simplicial sets. Assume that i is a cofibration and that p, p′, and p′′ are
smooth. Then the induced map X ′ ∐

X X
′′ → S is smooth.
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Proof. This follows immediately from Corollary 4.1.2.3 and characterization
(1) of Proposition 4.1.2.8.

Proposition 4.1.2.14. The collection of smooth maps p : X → S is stable
under filtered colimits in (Set∆)/S .

Proof. Combine Corollary 4.1.2.4 with characterization (1) of Proposition
4.1.2.8.

Proposition 4.1.2.15. Let p : X → S be a coCartesian fibration of simpli-
cial sets. Then p is smooth.

Proof. Let i : B′ → B be a right anodyne map in (Set∆)/S ; we wish to show
that the induced map B′ ×S X → B ×S X is right anodyne. By general
nonsense, we may reduce ourselves to the case where i is an inclusion Λni ⊆
∆n, where 0 < i ≤ n. Making a base change, we may suppose that S = B.
By Proposition 3.2.2.7, there exists a composable sequence of maps

φ : A0 → · · · → An

and a quasi-equivalence Mop(φ) → X. Consider the diagram

Mop(φ) ×∆n Λni� �

��

��

f

����
���

���
���

���
X ×∆n Λni� �

h

��
Mop(φ)

g �� X.

The left vertical map is right anodyne since it is a pushout of the inclusion
A0 × Λni ⊆ A0 × ∆n. It follows that f is cofinal, being a composition of
a right anodyne map and a categorical equivalence. Since g is cofinal (be-
ing a categorical equivalence), we deduce from Proposition 4.1.1.3 that h is
cofinal. Since h is a monomorphism of simplicial sets, it is right anodyne by
Proposition 4.1.1.3.

Proposition 4.1.2.16. Let p : X → S × T be a bifibration. Then the com-
posite map πS ◦ p : X → S is smooth.

Proof. For every map T ′ → T , let XT ′ = X ×T T
′. We note that X is

a filtered colimit of XT ′ as T ′ ranges over the finite simplicial subsets of
T . Using Proposition 4.1.2.14, we can reduce to the case where T is finite.
Working by induction on the dimension and the number of nondegenerate
simplices of T , we may suppose that T = T ′ ∐

∂∆n ∆n, where the result is
known for T ′ and for ∂∆n. Applying Proposition 4.1.2.13, we can reduce
to the case T = ∆n. We now apply Lemma 2.4.7.5 to deduce that p is a
coCartesian fibration and therefore smooth (Proposition 4.1.2.15).

Lemma 4.1.2.17. Let C be an ∞-category containing an object C and let
f : X → Y be a covariant equivalence in (Set∆)/C. The induced map

X ×C C/C → Y ×C C/C

is also a covariant equivalence in C/C .
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Proof. It will suffice to prove that for every object Z → C of (Set∆)/C, the
fiber product Z ×C C/C is a homotopy product of Z with C/C in (Set∆)/C

(with respect to the covariant model structure). Choose a factorization

Z
i→ Z ′ j→ C,

where i is left anodyne and j is a left fibration. According to Corollary
2.2.3.12, we may regard Z ′ as a fibrant replacement for Z in (Set∆)/C. It
therefore suffices to prove that the map i′ : Z ×C C/C → Z ′ ×C C/C is
a covariant equivalence. According to Proposition 4.1.2.5, it will suffice to
prove that i′ is left anodyne. The map i′ is a base change of i by the projection
p : C/C → C; it therefore suffices to prove that pop is smooth. This follows
from Proposition 4.1.2.15 since p is a right fibration of simplicial sets.

Proposition 4.1.2.18. Let C be an ∞-category and

X
f ��

p

���
��

��
��

Y
q

����
��
��
�

C

a commutative diagram of simplicial sets. Suppose that p and q are smooth.
The following conditions are equivalent:

(1) The map f is a covariant equivalence in (Set∆)/C.

(2) For each object C ∈ C, the induced map of fibers XC → YC is a weak
homotopy equivalence.

Proof. Suppose that (1) is satisfied and let C be an object of C. We have a
commutative diagram of simplicial sets

XC
��

��

YC

��
X ×C C/C �� Y ×C C/C .

Lemma 4.1.2.17 implies that the bottom horizontal map is a covariant equiv-
alence. The vertical maps are both pullbacks of the right anodyne inclusion
{C} ⊆ C/C along smooth maps and are therefore right anodyne. In par-
ticular, the vertical arrows and the bottom horizontal arrow are all weak
homotopy equivalences; it follows that the map XC → YC is a weak homo-
topy equivalence as well.

Now suppose that (2) is satisfied. Choose a commutative diagram

X
f ��

��

Y

��
X ′ f ′

��

p′

���
��

��
��

� Y ′

q′����
��
��
��

C
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in (Set∆)/C, where the vertical arrows are left anodyne and the maps p′

and q′ are left fibrations. Using Proposition 4.1.2.15, we conclude that p′

and q′ are smooth. Applying (1), we deduce that for each object C ∈ C,
the maps XC → X ′

C and YC → Y ′
C are weak homotopy equivalences. It

follows that each fiber f ′C : X ′
C → Y ′

C is a homotopy equivalence of Kan
complexes, so that f ′ is an equivalence of left fibrations and therefore a
covariant equivalence. Inspecting the above diagram, we deduce that f is
also a covariant equivalence, as desired.

4.1.3 Quillen’s Theorem A for ∞-Categories

Suppose that f : C → D is a functor between ∞-categories and that we
wish to determine whether or not f is cofinal. According to Proposition
4.1.1.8, the cofinality of f is equivalent to the assertion that for any diagram
p : D → E, f induces an equivalence

lim−→(p) � lim−→(p ◦ f).

One can always define a morphism

φ : lim−→(p ◦ f) → lim−→(p)

(provided that both sides are defined); the question is whether or not we
can define an inverse ψ = φ−1. Roughly speaking, this involves defining a
compatible family of maps ψD : p(D) → lim−→(p ◦ f) indexed by D ∈ D. The
only reasonable candidate for ψD is a composition

p(D) → (p ◦ f)(C) → lim−→(p ◦ f),

where the first map arises from a morphism D → f(C) in C. Of course, the
existence of C is not automatic. Moreover, even if C exists, it is usually not
unique. The collection of candidates for C is parametrized by the ∞-category
CD/ = C×D DD/. In order to make the above construction work, we need
the ∞-category CD/ to be weakly contractible. More precisely, we will prove
the following result:

Theorem 4.1.3.1 (Joyal [44]). Let f : C → D be a map of simplicial sets,
where D is an ∞-category. The following conditions are equivalent:

(1) The functor f is cofinal.

(2) For every object D ∈ D, the simplicial set C×D DD/ is weakly con-
tractible.

We first need to establish the following lemma:

Lemma 4.1.3.2. Let p : U → S be a Cartesian fibration of simplicial
sets. Suppose that for every vertex s of S, the fiber Us = p−1{s} is weakly
contractible. Then p is cofinal.
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Proof. Let q : N → S be a right fibration. For every map of simplicial
sets T → S, let XT = MapS(T,N) and YT = MapS(T ×S U,N). Our
goal is to prove that the natural map XS → YS is a homotopy equivalence
of Kan complexes. We will prove, more generally, that for any map T →
S, the map φT : YT → ZT is a homotopy equivalence. The proof uses
induction on the (possibly infinite) dimension of T . Choose a transfinite
sequence of simplicial subsets T (α) ⊆ T , where each T (α) is obtained from
T (< α) =

⋃
β<α T (β) by adjoining a single nondegenerate simplex of T (if

such a simplex exists). We prove that φT (α) is a homotopy equivalence by
induction on α. Assuming that φT (β) is a homotopy equivalence for every
β < α, we deduce that φT (<α) is the homotopy inverse limit of a tower of
equivalences and therefore a homotopy equivalence. If T (α) = T (< α), we
are done. Otherwise, we may write T (α) = T (< α)

∐
∂∆n ∆n. Then φT (α)

can be written as a homotopy pullback of φT (<α) with φ∆n over φ∂∆n . The
third map is a homotopy equivalence by the inductive hypothesis. It therefore
suffices to prove that φ∆n is an equivalence. In other words, we may reduce
to the case T = ∆n.

By Proposition 3.2.2.7, there exists a composable sequence of maps

θ : A0 ← · · · ← An

and a quasi-equivalence f : M(θ) → X ×S T , where M(θ) denotes the
mapping simplex of the sequence θ. Given a map T ′ → T , we let ZT ′ =
MapS(M(θ) ×T T

′, N). Proposition 3.3.1.7 implies that q is a categorical
fibration. It follows that for any map T ′ → T , the categorical equivalence
M(θ)×T T

′ → U×ST
′ induces another categorical equivalence ψT ′ = YT ′ →

ZT ′ . Since YT ′ and ZT ′ are Kan complexes, the map ψT ′ is a homotopy
equivalence. Consequently, to prove that φT is an equivalence, it suffices to
show that the composite map

XT → YT → ZT

is an equivalence.
Consider the composition

u : X∆n−1
u′→ Z∆n−1

u′′→ MapS(∆n−1 ×An, N) u
′′′→ MapS({n− 1} ×An, N).

Using the fact that q is a right fibration and that An is weakly contractible,
we deduce that u and u′′′ are homotopy equivalences. The inductive hypoth-
esis implies that u′ is a homotopy equivalence. Consequently, u′′ is also a
homotopy equivalence. The space ZT fits into a homotopy Cartesian dia-
gram

ZT ��

v′′

��

Z∆n−1

u′′

��
MapS(∆n ×An, N) �� MapS(∆n−1 ×An, N).

It follows that v′′ is a homotopy equivalence. Now consider the composition

v : X∆n
v′→ Z∆n

v′′→ MapS(∆n ×An, N) v
′′′
→ MapS({n} ×An, N).
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Again, because q is a right fibration and An is weakly contractible, the maps
v and v′′′ are homotopy equivalences. Since v′′ is a homotopy equivalence,
we deduce that v′ is a homotopy equivalence, as desired.

Proof of Theorem 4.1.3.1. Using the small object argument, we can factor
f as a composition

C
f ′
→ C′ f ′′

→ D,

where f ′ is a categorical equivalence and f ′′ is an inner fibration. Then f ′′

is cofinal if and only if f is cofinal (Corollary 4.1.1.10). For every D ∈ D,
the map DD/ → D is a left fibration, so the induced map CD/ → C′

D/ is a
categorical equivalence (Proposition 3.3.1.3). Consequently, it will suffice to
prove that (1) ⇔ (2) for the morphism f ′′ : C′ → D. In other words, we may
assume that the simplicial set C is an ∞-category.

Suppose first that (1) is satisfied and choose D ∈ D. The projection
DD/ → D is a left fibration and therefore smooth (Proposition 4.1.2.15).
Applying Remark 4.1.2.10, we deduce that the projection C×D DD/ →
DD/ is cofinal and therefore a weak homotopy equivalence (Proposition
4.1.1.3). Since DD/ has an initial object, it is weakly contractible. There-
fore C×D DD/ is weakly contractible, as desired.

We now prove that (2) ⇒ (1). Let M = Fun(∆1,D) ×Fun({1},D) C. Then
the map f factors as a composition

C
f ′
→ M

f ′′
→ D,

where f ′ is the obvious map and f ′′ is given by evaluation at the vertex
{0} ⊆ ∆1. Note that there is a natural projection map π : M → C, that f ′

is a section of π, and that there is a simplicial homotopy h : ∆1 × M → M

from idM to f ′ ◦ π which is compatible with the projection to C. It follows
from Proposition 2.1.2.11 that f ′ is right anodyne.

Corollary 2.4.7.12 implies that f ′′ is a Cartesian fibration. The fiber of
f ′′ over an object D ∈ D is isomorphic to C×D DD/, which is equivalent
to C×D DD/ and therefore weakly contractible (Proposition 4.2.1.5). By
assumption, the fibers of f ′′ are weakly contractible. Lemma 4.1.3.2 asserts
that f ′′ is cofinal. It follows that f , as a composition of cofinal maps, is also
cofinal.

Using Theorem 4.1.3.1, we can easily deduce the following classical result
of Quillen:

Corollary 4.1.3.3 (Quillen’s Theorem A). Let f : C → D be a functor
between ordinary categories. Suppose that for every object D ∈ D, the fiber
product category C×D DD/ has a weakly contractible nerve. Then f induces
a weak homotopy equivalence of simplicial sets N(C) → N(D).

Proof. The assumption implies that N(f) : N(C) → N(D) satisfies the hy-
potheses of Theorem 4.1.3.1. It follows that N(f) is a cofinal map of simplicial
sets and therefore a weak homotopy equivalence (Proposition 4.1.1.3).
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4.2 TECHNIQUES FOR COMPUTING COLIMITS

In this section, we will introduce various techniques for computing, analyz-
ing, and manipulating colimits. We begin in §4.2.1 by introducing a variant
on the join construction of §1.2. The new join construction is (categori-
cally) equivalent to the version we are already familiar with but has better
formal behavior in some contexts. For example, it permits us to define a
parametrized version of overcategories and undercategories, which we will
analyze in §4.2.2.

In §4.2.3, we address the following question: given a diagram p : K → C

and a decomposition of K into “pieces,” how is the colimit lim−→(p) related
to the colimits of those pieces? For example, if K = A ∪ B, then it seems
reasonable to expect an equation of the form

lim−→(p) = (lim−→ p|A)
∐

lim−→(p|A∩B)

(lim−→ p|B).

Of course there are many variations on this theme; we will lay out a general
framework in §4.2.3 and apply it to specific situations in §4.4.

Although the ∞-categorical theory of colimits is elegant and powerful, it
can be be difficult to work with because the colimit lim−→(p) of a diagram
p is well-defined only up to equivalence. This problem can sometimes be
remedied by working in the more rigid theory of model categories, where
the notion of an ∞-categorical colimit should be replaced by the notion of a
homotopy colimit (see §A.3.3). In order to pass smoothly between these two
settings, we need to know that the ∞-categorical theory of colimits agrees
with the more classical theory of homotopy colimits. A precise statement of
this result (Theorem 4.2.4.1) will be formulated and proved in §4.2.4.

4.2.1 Alternative Join and Slice Constructions

In §1.2.8, we introduced the join functor  on simplicial sets. In [44], Joyal
introduces a closely related operation � on simplicial sets. This operation is
equivalent to  (Proposition 4.2.1.2) but is technically more convenient in
certain contexts. In this section we will review the definition of the operation
� and establish some of its basic properties (see also [44] for a discussion).

Definition 4.2.1.1 ([44]). Let X and Y be simplicial sets. The simplicial
set X � Y is defined to be pushout

X
∐

X×Y×{0}
(X × Y × ∆1)

∐
X×Y×{1}

Y.

We note that since X×Y ×(∂∆1) → X×Y ×∆1 is a monomorphism, the
pushout diagram defining X�Y is a homotopy pushout in Set∆ (with respect
to the Joyal model structure). Consequently, we deduce that categorical
equivalences X → X ′, Y → Y ′ induce a categorical equivalence X � Y →
X ′ � Y ′.
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The simplicial set X � Y admits a map p : X � Y → ∆1 with X � p−1{0}
and Y � p−1{1}. Consequently, there is a unique map X �Y → X Y which
is compatible with the projection to ∆1 and induces the identity maps on
X and Y .

Proposition 4.2.1.2. For any simplicial sets X and Y , the natural map
φ : X � Y → X  Y is a categorical equivalence.

Proof. Since both sides are compatible with the formation of filtered colimits
inX, we may suppose thatX contains only finitely many nondegenerate sim-
plices. If X is empty, then φ is an isomorphism and the result is obvious.
Working by induction on the dimension of X and the number of nondegen-
erate simplices in X, we may write

X = X′ ∐
∂∆n

∆n,

and we may assume that the statement is known for the pairs (X ′, Y ) and
(∂∆n, Y ). Since the Joyal model structure on Set∆ is left proper, we have a
map of homotopy pushouts

(X ′ � Y )
∐

∂∆n�Y
(∆n � Y ) → (X ′  Y )

∐
∂∆n�Y

(∆n  Y ),

and we are therefore reduced to proving the assertion in the case where
X = ∆n. The inclusion

∆{0,1} ∐
{1}

· · ·
∐

{n−1}
∆{n−1,n} ⊆ ∆n

is inner anodyne. Thus if n > 1, we can conclude by induction. Thus we may
suppose that X = ∆0 or X = ∆1. By a similar argument, we may reduce to
the case where Y = ∆0 or Y = ∆1. The desired result now follows from an
explicit calculation.

Corollary 4.2.1.3. Let S → T and S′ → T ′ be categorical equivalences of
simplicial sets. Then the induced map

S  S′ → T  T ′

is a categorical equivalence.

Proof. This follows immediately from Proposition 4.2.1.2 since the operation
� has the desired property.

Corollary 4.2.1.4. Let X and Y be simplicial sets. Then the natural map

C[X  Y ] → C[X]  C[Y ]

is an equivalence of simplicial categories.

Proof. Using Corollary 4.2.1.3, we may reduce to the case where X and Y
are ∞-categories. We note that C[X  Y ] is a correspondence from C[X]
to C[Y ]. To complete the proof, it suffices to show that MapC[X�Y ](x, y) is
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weakly contractible for any pair of objects x ∈ X, y ∈ Y . Since X  Y
is an ∞-category, we can apply Theorem 1.1.5.13 to deduce that the map-
ping space MapC[X�Y ](x, y) is weakly homotopy equivalent to HomR

X�Y (x, y),
which consists of a single point.

For fixed X, the functor

Y �→ X � Y
Set∆ → (Set∆)X/

preserves all colimits. By the adjoint functor theorem (or by direct con-
struction), this functor has a right adjoint. In other words, for every map of
simplicial sets p : X → C, there exists a simplicial set Cp/ with the following
universal property: for every simplicial set Y , there is a canonical bijection

HomSet∆(Y,Cp/) � Hom(Set∆)X/
(X � Y,C).

Since the functor Y �→ X � Y preserves cofibrations and categorical equiva-
lences, we deduce that the passage from C to Cp/ preserves categorical fibra-
tions and categorical equivalences between ∞-categories. Moreover, Propo-
sition 4.2.1.2 has the following consequence:

Proposition 4.2.1.5. Let C be an ∞-category and let p : X → C be a
diagram. Then the natural map

Cp/ → Cp/

is an equivalence of ∞-categories.

According to Definition 1.2.13.4, a colimit for a diagram p : X → C is an
initial object of the ∞-category Cp/. In view of the above remarks, an object
of Cp/ is a colimit for p if and only if its image in Cp/ is an initial object; in
other words, we can replace Cp/ by Cp/ (and  by �) in Definition 1.2.13.4.

By Proposition 2.1.2.1, for any ∞-category C and any map p : X → C,
the induced map Cp/ → C is a left fibration. We now show that Cp/ has the
same property:

Proposition 4.2.1.6. Suppose we are given a diagram of simplicial sets

K0 ⊆ K
p→ X

q→ S,

where q is a categorical fibration. Let r = q ◦ p : K → S, p0 = p|K0, and
r0 = r|K0. Then the induced map

φ : Xp/ → Xp0/ ×Sr0/ Sr/

is a left fibration.

Proof. We must show that q has the right lifting property with respect to
every left anodyne inclusion A0 ⊆ A. Unwinding the definition, this amounts
to proving that q has the right lifting property with respect to the inclusion

i : (A0 �K)
∐

A0�K0

(A �K0) ⊆ A �K.
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Since q is a categorical fibration, it suffices to show that i is a categorical
equivalence. The above pushout is a homotopy pushout, so it will suffice to
prove the analogous statement for the weakly equivalent inclusion

(A0  K)
∐

A0�K0

(A  K0) ⊆ A  K.

But this map is inner anodyne (Lemma 2.1.2.3).

Corollary 4.2.1.7. Let C be an ∞-category and let p : K → C be any
diagram. For every vertex v of C, the map Cp/×C{v} → Cp/×C{v} is a
homotopy equivalence of Kan complexes.

Proof. The map Cp/ → Cp/ is a categorical equivalence of left fibrations over
C; now apply Proposition 3.3.1.5.

Corollary 4.2.1.8. Let C be an ∞-category containing vertices x and y.
The maps

HomR
C(x, y) → HomC(x, y) ← HomL

C(x, y)

are homotopy equivalences of Kan complexes (see §1.2.2 for an explanation
of this notation).

Proof. Apply Corollary 4.2.1.7 (the dual of Corollary 4.2.1.7) to the case
where p is the inclusion {x} ⊆ C (the inclusion {y} ⊆ C).

Remark 4.2.1.9. The above ideas dualize in an evident way; given a map
of simplicial sets p : K → X, we can define a simplicial set X/p with the
universal mapping property

HomSet∆(K′, X/p) = Hom(Set∆)K/
(K ′ �K,X).

4.2.2 Parametrized Colimits

Let p : K → C be a diagram in an ∞-category C. The goal of this section
is to make precise the idea that the colimit lim−→(p) depends functorially on
p (provided that lim−→(p) exists). We will prove this in a very general context
where not only the diagram p but also the simplicial set K is allowed to vary.
We begin by introducing a relative version of the �-operation.

Definition 4.2.2.1. Let S be a simplicial set and let X,Y ∈ (Set∆)/S . We
define

X �S Y = X
∐

X×SY×{0}
(X ×S Y × ∆1)

∐
X×SY×{1}

Y ∈ (Set∆)/S .
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We observe that the operation �S is compatible with base change in the
following sense: for any map T → S of simplicial sets and any objects X,Y ∈
(Set∆)/S , there is a natural isomorphism

(XT �T YT ) � (X �S Y )T ,

where we let ZT denote the fiber product Z ×S T . We also note that in the
case where S is a point, the operation �S coincides with the operation �
introduced in §4.2.1.

Fix K ∈ (Set∆)/S . We note that functor (Set∆)/S → ((Set∆)/S)K/ defined
by

X �→ K �S S
has a right adjoint; this right adjoint associates to a diagram

K

���
��

��
��

pS �� Y

����
��
��
�

S

the simplicial set Y pS/, defined by the property that HomS(X,Y pS/) classi-
fies commutative diagrams

K
pS ��

� �

��

Y

��
K �S X

�����������
�� S.

The base change properties of the operation �S imply similar base change
properties for the relative slice construction: given a map pS : K → Y in
(Set∆)/S and any map T → S, we have a natural isomorphism

Y pS/ ×S T � (Y ×S T )pT /,

where pT denotes the induced map KT → YT . In particular, the fiber of Y pS/

over a vertex s of S can be identified with the absolute slice construction
Y
ps/
s studied in §4.2.1.

Remark 4.2.2.2. Our notation is somewhat abusive: the simplicial set Y pS/

depends not only on the map pS : K → Y but also on the simplicial set S.
We will attempt to avoid confusion by always indicating the simplicial set
S by a subscript in the notation for the map in question; we will omit this
subscript only in the case S = ∆0, in which case the functor described above
coincides with the functor defined in §4.2.1.

Lemma 4.2.2.3. Let n > 0 and let

B = (Λnn × ∆1)
∐

Λn
n×∂∆1

(∆n × ∂∆1) ⊆ ∆n × ∆1.
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Suppose we are given a diagram of simplicial sets

A×B
f0 ��

� �

��

Y

q

��
A× ∆n × ∆1 ��

f

� ,,,,,,
S

in which q is a Cartesian fibration, and that f0 carries {a}×∆{n−1,n}×{1} to
a q-Cartesian edge of Y for each vertex a of A. Then there exists a morphism
f rendering the diagram commutative.

Proof. Invoking Proposition 3.1.2.1, we may replace q : Y → S by the in-
duced map Y A → SA and thereby reduce to the case where A = ∆0. We
now recall the notation introduced in the proof of Proposition 2.1.2.6: more
specifically, the family {σi}0≤i≤n of nondegenerate simplices of ∆n×∆1. Let
B(0) = B and more generally set B(n) = B ∪ σn ∪ · · · ∪ σn+1−i so that we
have a filtration

B(0) ⊆ · · · ⊆ B(n+ 1) = ∆n × ∆1.

A map f0 : B(0) → Y has been prescribed for us already; we construct
extensions fi : B(i) → Y by induction on i. For i < n, there is a pushout
diagram

Λn+1
n−i ��

� �

��

B(i)� �

��
∆n+1 �� B(i+ 1).

Thus the extension fi+1 can be found by virtue of the assumption that q is
an inner fibration. For i = n, we obtain instead a pushout diagram

Λn+1
n+1

��
� �

��

B(n)� �

��
∆n+1 �� B(n+ 1),

and the desired extension can be found by virtue of the assumption that f0
carries the edge ∆{n−1,n} × {1} to a q-Cartesian edge of Y .

Proposition 4.2.2.4. Suppose we are given a diagram of simplicial sets

K

t
����

���
���

���
���
pS �� X

q ��

��












Y

��
S.

Let p′S = q ◦ pS, and assume that the following conditions are satisfied:

(1) The map q is a Cartesian fibration.
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(2) The map t is a coCartesian fibration.

Then the induced map r : XpS/ → Y p
′
S/ is a Cartesian fibration; moreover,

an edge of XpS/ is r-Cartesian if and only if its image in X is q-Cartesian.

Proof. We first show that r is an inner fibration. Suppose we are given
0 < i < n and a diagram

Λni ��
� �

��

XpS/

��
∆n ��

		�
�

�
�

�
Y p

′
S/,

we must show that it is possible to provide the dotted arrow. Unwinding
the definitions, we see that it suffices to produce the indicated arrow in the
diagram

K �S Λni ��
� �

��

X

q

��
K �S ∆n ��

���
�

�
�

�
Y.

Since q is a Cartesian fibration, it is a categorical fibration by Proposition
3.3.1.7. Consequently, it suffices to show that the inclusion

K �S Λni ⊆ K �S ∆n

is a categorical equivalence. In view of the definition of K �SM as a pushout

K
∐

K×SM×{0}
(K ×S M × ∆1)

∐
K×SM×{1}

M,

it suffices to verify that the inclusions

Λni ⊆ ∆n

K ×S Λni ⊆ K ×S ∆n

are categorical equivalences. The first statement is obvious; the second fol-
lows from (the dual of) Proposition 3.3.1.3.

Let us say that an edge of XpS/ is special if its image in X is q-Cartesian.
To complete the proof, it will suffice to show that every special edge of XpS/

is r-Cartesian and that there are sufficiently many special edges of XpS/.
More precisely, consider any n ≥ 1 and any diagram

Λnn
h ��

� �

��

XpS/

��
∆n ��

		�
�

�
�

�
Y p

′
S/.

We must verify the following assertions:
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• If n = 1, then there exists a dotted arrow rendering the diagram com-
mutative, classifying a special edge of XpS/.

• If n > 1 and h|∆{n−1,n} classifies a special edge of XpS/, then there
exists a dotted arrow rendering the diagram commutative.

Unwinding the definitions, we have a diagram

K �S Λnn
f0 ��

� �

��

X

q

��
K �S ∆n ��

f

���
�

�
�

�
Y,

and we wish to prove the existence of the indicated arrow f . As a first step,
we consider the restricted diagram

Λnn
f0|Λn

n ��
� �

��

X

q

��
∆n ��

f1

���
�

�
�

Y.

By assumption, f0|Λnn carries ∆{n−1,n} to a q-Cartesian edge of X (if n > 1),
so there exists a map f1 rendering the diagram commutative (and classifying
a q-Cartesian edge of X if n = 1). It now suffices to produce the dotted arrow
in the diagram

(K �S Λnn)
∐

Λn
n

∆n ��
� �

i

��

X

q

��
K �S ∆n ��

f

��&&&&&&&
Y,

where the top horizontal arrow is the result of amalgamating f0 and f1.
Without loss of generality, we may replace S by ∆n. By (the dual of)

Proposition 3.2.2.7, there exists a composable sequence of maps

φ : A0 → · · · → An

and a quasi-equivalence Mop(φ) → K. We have a commutative diagram

(Mop(φ) �S Λnn)
∐

Λn
n

∆n

� �

i′

��

�� (K �S Λnn)
∐

Λn
n

∆n

i

��
Mop(φ) �S ∆n �� K �S ∆n.

Since q is a categorical fibration, Proposition A.2.3.1 shows that it suffices
to produce a dotted arrow f ′ in the induced diagram

(Mop(φ) �S Λnn)
∐

Λn
n

∆n ��
� �

i

��

X

q

��
Mop(φ) �S ∆n ��

f ′
���������
Y.
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Let B be as in the statement of Lemma 4.2.2.3; then we have a pushout
diagram

A0 ×B ��
� �

i′′

��

(Mop(φ) �S Λnn)
∐

Λn
n

∆n

��
A0 × ∆n × ∆1 �� Mop(φ) �S ∆n.

Consequently, it suffices to prove the existence of the map f ′′ in the diagram

A0 ×B
g ��

� �

i′′

��

X

q

��
A0 × ∆n × ∆1 ��

f ′′
��,,,,,,
Y.

Here the map g carries {a} × ∆{n−1,n} × {1} to a q-Cartesian edge of Y for
each vertex a of A0. The existence of f ′′ now follows from Lemma 4.2.2.3.

Remark 4.2.2.5. In most applications of Proposition 4.2.2.4, we will have
Y = S. In that case, Y p

′
S/ can be identified with S, and the conclusion is

that the projection XpS/ → S is a Cartesian fibration.

Remark 4.2.2.6. The hypothesis on s in Proposition 4.2.2.4 can be weak-
ened: all we need in the proof is the existence of maps Mop(φ) → K ×S

∆n which are universal categorical equivalences (that is, induce categorical
equivalences Mop(φ) ×∆n T → K ×S T for any T → ∆n). Consequently,
Proposition 4.2.2.4 remains valid when K � S × K0 for any simplicial set
K0 (not necessarily an ∞-category). It seems likely that Proposition 4.2.2.4
remains valid whenever s is a smooth map of simplicial sets, but we have
not been able to prove this.

We can now express the idea that the colimit of a diagram should depend
functorially on the diagram (at least for “smoothly parametrized” families
of diagrams):

Proposition 4.2.2.7. Let q : Y → S be a Cartesian fibration and let pS :
K → Y be a diagram. Suppose that the following conditions are satisfied:

(1) For each vertex s of S, the restricted diagram ps : Ks → Ys has a
colimit in the ∞-category Ys.

(2) The composition q ◦ pS is a coCartesian fibration.

There exists a map p′S rendering the diagram

K� �

��

pS �� Y

q

��
K �S S

p′S
�����������
�� S
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commutative and having the property that for each vertex s of S, the restric-
tion p′s : Ks �{s} → Ys is a colimit of ps. Moreover, the collection of all such
maps is parametrized by a contractible Kan complex.

Proof. Apply Proposition 2.4.4.9 to the Cartesian fibration Y pS/ and observe
that the collection of sections of a trivial fibration constitutes a contractible
Kan complex.

4.2.3 Decomposition of Diagrams

Let C be an ∞-category and p : K → C a diagram indexed by a simplicial
set K. In this section, we will try to analyze the colimit lim−→(p) (if it exists)
in terms of the colimits {lim−→(p|KI)}, where {KI} is some family of simplicial
subsets of K. In fact, it will be useful to work in slightly more generality:
we will allow each KI to be an arbitrary simplicial set mapping to K (not
necessarily via a monomorphism).

Throughout this section, we will fix a simplicial set K, an ordinary cate-
gory I, and a functor F : I → (Set∆)/K . It may be helpful to imagine that
I is a partially ordered set and that F is an order-preserving map from I to
the collection of simplicial subsets of K; this will suffice for many but not
all of our applications. We will denote F (I) by KI and the tautological map
KI → K by πI .

Our goal is to show that, under appropriate hypotheses, we can recover the
colimit of a diagram p : K → C in terms of the colimits of diagrams p ◦ πI :
KI → C. Our first goal is to show that the construction of these colimits is
suitably functorial in I. For this, we need an auxiliary construction.

Notation 4.2.3.1. We define a simplicial set KF as follows. A map ∆n →
KF is determined by the following data:

(i) A map ∆n → ∆1 corresponding to a decomposition [n] = {0, . . . , i} ∪
{i+ 1, . . . , n}.

(ii) A map e− : ∆{0,...,i} → K.

(iii) A map e+ : ∆{i+1,...,n} → N(I) which we may view as a chain of
composable morphisms

I(i+ 1) → · · · → I(n)

in the category I.

(iv) For each j ∈ {i + 1, . . . , n}, a map ej which fits into a commutative
diagram

KI(j)

πI(j)

��
∆{0,...,i} e− ��

ej

��/////////
K.
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Moreover, for j ≤ k, we require that ek is given by the composition

∆{0,...,i} ej→ KI(j) → KI(k).

Remark 4.2.3.2. In the case where i < n, the maps e− and {ej}j>i are
completely determined by ei+1, which can be arbitrary.

The simplicial set KF is equipped with a map KF → ∆1. Under this map,
the preimage of the vertex {0} is K ⊆ KF and the preimage of the vertex
{1} is N(I) ⊆ KF . For I ∈ I, we will denote the corresponding vertex of
N(I) ⊆ KF by XI . We note that, for each I ∈ I, there is a commutative
diagram

KI
πI ��

��

K

��
K

I

π′
I �� KF ,

where π′
I carries the cone point of K


I to the vertex XI of KF .
Let us now suppose that p : K → C is a diagram in an ∞-category C.

Our next goal is to prove Proposition 4.2.3.4, which will allow us to extend
p to a larger diagram KF → C which carries each vertex XI to a colimit of
p ◦ πI : KI → C. First, we need a lemma.

Lemma 4.2.3.3. Let C be an ∞-category and let σ : ∆n → C be a simplex
having the property that σ(0) is an initial object of C. Let ∂ σ = σ| ∂∆n. The
natural map Cσ/ → C∂ σ/ is a trivial fibration.

Proof. Unwinding the definition, we are reduced to solving the extension
problem depicted in the diagram

(∂∆n ∆m)
∐
∂∆n�∂∆m(∆n  ∂∆m)

f0 ��
� �

��

C

∆n ∆m.

f

������������

We can identify the domain of f0 with ∂∆n+m+1. Our hypothesis guarantees
that f0(0) is an initial object of C, which in turn guarantees the existence of
f .

Proposition 4.2.3.4. Let p : K → C be a diagram in an ∞-category C, let
I be an ordinary category, and let F : I → (Set∆)/K be a functor. Suppose
that, for each I ∈ I, the induced diagram pI = p ◦ πI : KI → C has a colimit
qI : K


I → C.
There exists a map q : KF → C such that q ◦ π′

I = qI and q|K = p.
Furthermore, for any such q, the induced map Cq/ → Cp/ is a trivial fibration.

Proof. For each X ⊆ N(I), we let KX denote the simplicial subset of KF

consisting of all simplices σ ∈ KF such that σ ∩ N(I) ⊆ X. We note that
K∅ = K and that KN(I) = KF .



LIMITS AND COLIMITS 251

Define a transfinite sequence Yα of simplicial subsets of N(I) as follows. Let
Y0 = ∅ and let Yλ =

⋃
γ<λ Yγ when λ is a limit ordinal. Finally, let Yα+1 be

obtained from Yα by adjoining a single nondegenerate simplex provided that
such a simplex exists. We note that for α sufficiently large, such a simplex
will not exist, and we set Yβ = Yα for all β > α.

We define a sequence of maps qβ : KYβ
→ C so that the following condi-

tions are satisfied:

(1) We have q0 = p : K∅ = K → C.

(2) If α < β, then qα = qβ |KYα
.

(3) If {XI} ⊆ Yα, then qα ◦ π′
I = qI : K


I → C.

Provided that such a sequence can be constructed, we may conclude the
proof by setting q = qα for α sufficiently large.

The construction of qα goes by induction on α. If α = 0, then qα is
determined by condition (1); if α is a (nonzero) limit ordinal, then qα is
determined by condition (2). Suppose that qα has been constructed; we give
a construction of qα+1.

There are two cases to consider. Suppose first that Yα+1 is obtained from
Yα by adjoining a vertex XI . In this case, qα+1 is uniquely determined by
conditions (2) and (3).

Now suppose thatXα+1 is obtained fromXα by adjoining a nondegenerate
simplex σ of positive dimension corresponding to a sequence of composable
maps

I0 → · · · → In

in the category I. We note that the inclusion KYα
⊆ KYα+1 is a pushout of

the inclusion

KI0  ∂ σ ⊆ KI0  σ.

Consequently, constructing the map qα+1 is tantamount to finding an ex-
tension of a certain map s0 : ∂ σ → CpI/ to the whole of the simplex σ. By
assumption, s0 carries the initial vertex of σ to an initial object of CpI/, so
that the desired extension s can be found. For use below, we record a further
property of our construction: the projection Cqα+1/ → Cqα/ is a pullback of
the map (CpI/)s/ → (CpI/)s0/, which is a trivial fibration.

We now wish to prove that, for any extension q with the above properties,
the induced map Cq/ → Cp/ is a trivial fibration. We first observe that the
map q can be obtained by the inductive construction given above: namely, we
take qα to be the restriction of q to KYα

. It will therefore suffice to show that,
for every pair of ordinals α ≤ β, the induced map Cqβ/ → Cqα/ is a trivial
fibration. The proof proceeds by induction on β: the case β = 0 is clear, and
if β is a limit ordinal, we observe that the inverse limit of a transfinite tower
of trivial fibrations is itself a trivial fibration. We may therefore suppose that
β = γ + 1 is a successor ordinal. Using the factorization

Cqβ/ → Cqγ/ → Cqα/
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and the inductive hypothesis, we are reduced to proving this in the case
where β is the successor of α, which was treated above.

Let us now suppose that we are given diagrams p : K → C, F : I →
(Set∆)/K as in the statement of Proposition 4.2.3.4 and let q : KF → C be
a map which satisfies its conclusions. Since Cq/ → Cp/ is a trivial fibration,
we may identify colimits of the diagram q with colimits of the diagram p
(up to equivalence). Of course, this is not useful in itself since the diagram
q is more complicated than p. Our objective now is to show that, under the
appropriate hypotheses, we may identify the colimits of q with the colimits
of q|N(I). First, we need a few lemmas.

Lemma 4.2.3.5 (Joyal [44]). Let f : A0 ⊆ A and g : B0 ⊆ B be inclusions
of simplicial sets and suppose that g is a weak homotopy equivalence. Then
the induced map

h : (A0  B)
∐

A0�B0

(A  B0) ⊆ A  B

is right anodyne.

Proof. Our proof follows the pattern of Lemma 2.1.2.3. The collection of all
maps f which satisfy the conclusion (for any choice of g) forms a weakly
saturated class of morphisms. It will therefore suffice to prove that the h is
right anodyne when f is the inclusion ∂∆n ⊆ ∆n. Similarly, the collection of
all maps g which satisfy the conclusion (for fixed f) forms a weakly saturated
class. We may therefore reduce to the case where g is a horn inclusion Λmi ⊆
∆m. In this case, we may identify h with the horn inclusion Λm+n+1

i+n+1 ⊆
∆m+n+1, which is clearly right anodyne.

Lemma 4.2.3.6. Let A0 ⊆ A be an inclusion of simplicial sets and let B
be weakly contractible. Then the inclusion A0  B ⊆ A  B is right anodyne.

Proof. As above, we may suppose that the inclusion A0 ⊆ A is identified
with ∂∆n ⊆ ∆n. If K is a point, then the inclusion A0 × B ⊆ A × B is
isomorphic to Λn+1

n+1 ⊆ ∆n+1, which is clearly right anodyne.
In the general case, B is nonempty, so we may choose a vertex b of B.

Since B is weakly contractible, the inclusion {b} ⊆ B is a weak homotopy
equivalence. We have already shown that A0{b} ⊆ A{b} is right anodyne.
It follows that the pushout inclusion

A0  B ⊆ (A  {b})
∐

A0�{b}
(A0  B)

is right anodyne. To complete the proof, we apply Lemma 4.2.3.5 to deduce
that the inclusion

(A  {b})
∐

A0�{b}
(A0  B) ⊆ A  B

is right anodyne.
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Notation 4.2.3.7. Let σ ∈ Kn be a simplex of K. We define a category
Iσ as follows. The objects of Iz are pairs (I, σ′), where I ∈ I, σ′ ∈ (KI)n,
and πI(σ′) = σ. A morphism from (I ′, σ′) to (I ′′, σ′′) in Iσ consists of a
morphism α : I ′ → I ′′ in I with the property that F (α)(σ′) = σ′′. We let
I′σ ⊆ Iσ denote the full subcategory consisting of pairs (I, σ′), where σ′ is a
degenerate simplex in KI . Note that if σ is nondegenerate, I′σ is empty.

Proposition 4.2.3.8. Let K be a simplicial set, I an ordinary category,
and F : I → (Set∆)/K a functor. Suppose that the following conditions are
satisfied:

(1) For each nondegenerate simplex σ of K, the category Iσ is acyclic (fthat
is, the simplicial set N(Iσ) is weakly contractible).

(2) For each degenerate simplex σ of K, the inclusion N(I′σ) ⊆ N(Iσ) is a
weak homotopy equivalence.

Then the inclusion N(I) ⊆ KF is right anodyne.

Proof. Consider any family of subsets {Ln ⊆ Kn} which is stable under
the “face maps” di on K (but not necessarily the degeneracy maps si, so
that the family {Ln} does not necessarily have the structure of a simplicial
set). We define a simplicial subset LF ⊆ KF as follows: a nondegenerate
simplex ∆n → KF belongs to LF if and only if the corresponding (possibly
degenerate) simplex ∆{0,...,i} → K belongs to Li ⊆ Ki (see Notation 4.2.3.1).

We note that if L = ∅, then LF = N(I). If L = K, then LF = KF (so that
our notation is unambiguous). Consequently, it will suffice to prove that, for
any L ⊆ L′, the inclusion LF ⊆ L′

F is right anodyne. By general nonsense,
we may reduce to the case where L′ is obtained from L by adding a single
simplex σ ∈ Kn.

We now have two cases to consider. Suppose first that the simplex σ
is nondegenerate. In this case, it is not difficult to see that the inclusion
LF ⊆ L′

F is a pushout of ∂ σ  N(Iσ) ⊆ σ  N(Iσ). By hypothesis, N Iz
is weakly contractible, so that the inclusion LF ⊆ L′

F is right anodyne by
Lemma 4.2.3.6.

In the case where σ is degenerate, we observe that LF ⊆ L′
F is a pushout

of the inclusion

(∂ σ N(Iσ))
∐

∂ σ�N(I′
σ)

(σ N(I′σ)) ⊆ σ N(Iσ),

which is right anodyne by Lemma 4.2.3.5.

Remark 4.2.3.9. Suppose that I is a partially ordered set and that F is an
order-preserving map from I to the collection of simplicial subsets of K. In
this case, we observe that I′σ = Iσ whenever σ is a degenerate simplex of K
and that Iσ = {I ∈ I : σ ∈ KI} for any σ. Consequently, the conditions of
Proposition 4.2.3.8 hold if and only if each of the partially ordered subsets
Iσ ⊆ I has a contractible nerve. This holds automatically if I is directed and
K =

⋃
I∈IKI .
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Corollary 4.2.3.10. Let K be a simplicial set, I a category, and F : I →
(Set∆)/K a functor which satisfies the hypotheses of Proposition 4.2.3.8. Let
C be an ∞-category, let p : K → C be any diagram, and let q : KF → C be
an extension of p which satisfies the conclusions of Proposition 4.2.3.4. The
natural maps

Cp/ ← Cq/ → Cq|N(I)/

are trivial fibrations. In particular, we may identify colimits of p with colimits
of q|N(I).

Proof. This follows immediately from Proposition 4.2.3.8 since the right an-
odyne inclusion N I ⊆ KF is cofinal and therefore induces a trivial fibration
Cq/ → Cq|N(I)/ by Proposition 4.1.1.8.

We now illustrate the usefulness of Corollary 4.2.3.10 by giving a sample
application. First, a bit of terminology. If κ and τ are regular cardinals, we
will write τ � κ if, for any cardinals τ0 < τ , κ0 < κ, we have κτ00 < κ (we
refer the reader to Definition 5.4.2.8 and the surrounding discussion for more
details concerning this condition).

Corollary 4.2.3.11. Let C be an ∞-category and τ � κ regular cardinals.
Then C admits κ-small colimits if and only if C admits τ -small colimits and
colimits indexed by (the nerves of) κ-small τ -filtered partially ordered sets.

Proof. The “only if” direction is obvious. Conversely, let p : K → C be any
κ-small diagram. Let I denote the partially ordered set of τ -small simplicial
subsets of K. Then I is directed and

⋃
I∈IKI = K, so that the hypotheses

of Proposition 4.2.3.8 are satisfied. Since each pI = p ◦ πI has a colimit in
C, there exists a map q : KF → C satisfying the conclusions of Proposition
4.2.3.4. Because Cq/ → Cp/ is an equivalence of ∞-categories, p has a colimit
if and only if q has a colimit. By Corollary 4.2.3.10, q has a colimit if and
only if q|N(I) has a colimit. It is clear that I is a τ -filtered partially ordered
set. Furthermore, it is κ-small provided that τ � κ.

The following result can be proven by the same argument:

Corollary 4.2.3.12. Let f : C → C′ be a functor between ∞-categories and
let τ � κ be regular cardinals. Suppose that C admits κ-small colimits. Then
f preserves κ-small colimits if and only if it preserves τ -small colimits and
all colimits indexed by (the nerves of) κ-small τ -filtered partially ordered sets.

We will conclude this section with another application of Proposition
4.2.3.8 in which I is not a partially ordered set and the maps πI : KI → K are
not (necessarily) injective. Instead, we take I to be the category of simplices
of K. In other words, an object of I ∈ I consists of a map σI : ∆n → K,
and a morphism from I to I ′ is given by a commutative diagram

∆n

σI

���
��

��
��

�
�� ∆n′

σ′
I′

&&%%
%%
%%
%%

K.
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For each I ∈ I, we let KI denote the domain ∆n of σI , and we let πI = σI :
KI → K.

Lemma 4.2.3.13. Let K be a simplicial set and let I denote the category
of simplices of K (as defined above). Then there is a retraction r : KF → K
which fixes K ⊆ KF .

Proof. Given a map e : ∆n → KF , we will describe the composite map
r ◦ e : ∆n → K. The map e classifies the following data:

(i) A decomposition [n] = {0, . . . , i} ∪ {i+ 1, . . . , n}.
(ii) A map e− : ∆i → K.

(iii) A string of morphisms

∆mi+1 → · · · → ∆mn → K.

(iv) A compatible family of maps {ej : ∆i → ∆mj}j>i having the property
that each composition ∆i ej→ ∆mj → K coincides with e−.

If i = n, we set r ◦ e = e−. Otherwise, we let r ◦ e denote the composition

∆n f→ ∆mn → K

where f : ∆n → ∆mn is defined as follows:

• The restriction f |∆i coincides with en.

• For i < j ≤ n, we let f(j) denote the image in ∆mn of the final vertex
of ∆mj .

Proposition 4.2.3.14. For every simplicial set K, there exists a category
I and a cofinal map f : N(I) → K.

Proof. We take I to be the category of simplices of K, as defined above, and
f to be the composition of the inclusion N(I) ⊆ KF with the retraction r
of Lemma 4.2.3.13. To prove that f is cofinal, it suffices to show that the
inclusion N(I) ⊆ KF is right anodyne and that the retraction r is cofinal.

To show that N(I) ⊆ KF is right anodyne, it suffices to show that the
hypotheses of Proposition 4.2.3.8 are satisfied. Let σ : ∆J → K be a simplex
ofK. We observe that the category Iσ may be described as follows: its objects
consist of pairs of maps (s : ∆J → ∆M , t : ∆M → K) with t ◦ s = σ. A
morphism from (s, t) to (s′, t′) consists of a map

α : ∆M → ∆M ′

with s′ = α ◦ s and t = t′ ◦ α. In particular, we note that Iσ has an initial
object (id∆J , σ). It follows that N(Iσ) is weakly contractible for any simplex
σ of K. It will therefore suffice to show that N(I′σ) is weakly contractible
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whenever σ is degenerate. Let I′′σ denote the full subcategory of I′σ spanned
by those objects for which the map s is surjective. The inclusion I′′σ ⊆ I′σ
has a right adjoint, so that N(I′′σ) is a deformation retract of N(I′σ). It will
therefore suffice to prove that N(I′′σ) is weakly contractible. For this, we
simply observe that N(I′′σ) has a final object ∆J s→ ∆M t→ K, characterized
by the property that t is a nondegenerate simplex of K.

We now show that r is cofinal. According to Proposition 4.1.1.8, it suffices
to show that for any ∞-category C and any map p : K → C, the induced
map Cq/ → Cp/ is a categorical equivalence, where q = p ◦ r. This follows
from Proposition 4.2.3.4.

Variant 4.2.3.15. Proposition 4.2.3.14 can be strengthened as follows:

(∗) For every simplicial set K, there exists a cofinal map φ : K′ → K,
where K ′ is the nerve of a partially ordered set.

Moreover, the map φ can be chosen to depend functorially on K. We will
construct φ as a composition of four cofinal maps

K ′ = K(5) φ4→ K(4) φ3→ K(3) φ2→ K(2) φ2→ K(1) φ1→ K,

which are defined as follows:

(1) The simplicial set K(1) is the nerve N(I1), where I1 denotes the cat-
egory of simplices of K, and the morphism φ1 is the cofinal map de-
scribed in Proposition 4.2.3.14.

(2) The simplicial set K(2) is the nerve N(I2)op, where I2 denotes the
category of simplices of K(1). The map φ2 is induced by the functor
I2 → I1 which carries a chain of morphisms C0 → C1 → · · · → Cn in I1

to the object C0. We claim that φ2 is cofinal. To prove this, it will suffice
(by virtue of Theorem 4.1.3.1) to prove that for every object C ∈ I1,
the category I

op
2 ×I1(I1)C/ has weakly contractible nerve. Indeed, this

is the opposite of the category J of simplices of N(I1)C/. Proposition
4.2.3.14 supplies a cofinal map N(J) → N(I1)C/, so that N(J) is weakly
homotopy equivalent to N(I1)C/, which is weakly contractible (since it
has an initial object).

(3) Let I3 denote the subcategory of I2 consisting of injective maps be-
tween simplices of K(1), and let K(3) = N(I3)op ⊆ N(I2)op. We have a
pullback diagram

N(I3)op ��

��

N(I2)op

��
N(∆s)op �� N(∆)op

where lower horizontal map is the cofinal inclusion of Lemma 6.5.3.7.
The vertical maps are left fibrations and therefore smooth (Proposition
4.1.2.15), so that the inclusion φ3 : K(3) ⊆ K(2) is cofinal.
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(4) Let K(4) denote the nerve N(I4), where I4) is the category of simplices
of K(3), and let φ4 denote the cofinal map described in Proposition
4.2.3.14.

(5) Let K(5) denote the nerve N(I5) ⊆ N(I4), where I5 is the full sub-
category spanned by the nondegenerate simplices of K(3). We observe
that the category I3 has the following property: the collection of non-
identity morphisms in I3 is stable under composition. It follows that
every face of a nondegenerate simplex of K(3) is again nondegenerate.
Consequently, the inclusion I5 ⊆ I4 admits a left adjoint, so that the in-
clusion φ5 : N(I5) ⊆ N(I4) is cofinal (this follows easily from Theorem
4.1.3.1). We conclude by observing that the category I5 is equivalent
to a partially ordered set, because if σ is a simplex of K(3), then any
face of σ is uniquely determined by the vertices that it contains.

Variant 4.2.3.16. If K is a finite simplicial set, then the we can arrange
that the simplicial set K ′ K′ → K appearing in Variant 4.2.3.15 is again
finite (though our construction is not functorial in K). First suppose that K
satisfies the following condition:

(∗) Every nondegenerate simplex σ : ∆n → K is a monomorphism of
simplicial sets.

Let I denote the category of simplices ofK, and let I0 denote the full subcate-
gory spanned by the nondegenerate simplices. Condition (∗) guarantees that
the inclusion I0 ⊆ I admits a left adjoint, so that Theorem 4.1.3.1 implies
that the inclusion N(I0) ⊆ N(I) is cofinal. Combining this with Proposition
4.2.3.14, we deduce that the map N(I0) → K is cofinal. Moreover, N(I0) can
be identified with the nerve of the partially ordered set of simplicial subsets
K0 ⊆ K such that K0 is isomorphic to a simplex. In particular, this partially
ordered set is finite.

To handle the general case, it will suffice to establish the following claim:

(∗′) For every finite simplicial set K, there exists a cofinal map K̃ → K,
where K̃ is a finite simplicial set satisfying (∗).

The proof proceeds by induction on the number of nondegenerate simplices
of K. If K is empty, the result is obvious; otherwise, we have a pushout
diagram

∂∆n ��

��

∆n

��
K0

�� K.

The inductive hypothesis guarantees the existence of a map K̃0 → K0 sat-
isfying (∗). Now define K̃ = (K̃0 × ∆n)

∐
∂∆n ∆n. It follows from Corollary

4.1.2.7 (and the weak contractibility of ∆n) that the map K̃ → K is cofinal.
Moreover, since the map ∂∆n → K̃0 ×∆n is a monomorphism, we conclude
that K̃ satisfies condition (∗), as desired.
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4.2.4 Homotopy Colimits

Our goal in this section is to compare the ∞-categorical theory of colimits
with the more classical theory of homotopy colimits in simplicial categories
(see Remark A.3.3.13). Our main result is the following:

Theorem 4.2.4.1. Let C and I be fibrant simplicial categories and F : I → C

a simplicial functor. Suppose we are given an object C ∈ C and a compatible
family of maps {ηI : F (I) → C}I∈I. The following conditions are equivalent:

(1) The maps ηI exhibit C as a homotopy colimit of the diagram F .

(2) Let f : N(I) → N(C) be the simplicial nerve of F and f : N(I)
 → N(C)
the extension of f determined by the maps {ηI}. Then f is a colimit
diagram in N(C).

Remark 4.2.4.2. For an analogous result (in a slightly different setting),
we refer the reader to [39].

The proof of Theorem 4.2.4.1 will occupy the remainder of this section.
We begin with a convenient criterion for detecting colimits in ∞-categories:

Lemma 4.2.4.3. Let C be an ∞-category, K a simplicial set, and p : K
 →
C a diagram. The following conditions are equivalent:

(i) The diagram p is a colimit of p = p|K.

(ii) Let X ∈ C denote the image under p of the cone point of K
, let
δ : C → Fun(K,C) denote the diagonal embedding, and let α : p → δ(X)
denote the natural transformation determined by p. Then, for every
object Y ∈ C, composition with α induces a homotopy equivalence

φY : MapC(X,Y ) → MapFun(K,C)(p, δ(Y )).

Proof. Using Corollary 4.2.1.8, we can identify MapFun(K,C)(p, δ(Y )) with
the fiber Cp/×C{Y } for each object Y ∈ C. Under this identification, the
map φY can be identified with the fiber over Y of the composition

CX/
φ′
→ Cp/

φ′′
→ Cp/,

where φ′ is a section to the trivial fibration Cp/ → CX/. The map φ′′ is a left
fibration (Proposition 4.2.1.6). Condition (i) is equivalent to the requirement
that φ′′ be a trivial Kan fibration, and condition (ii) is equivalent to the
requirement that each of the maps

φ′′
Y : Cp/×C{Y } → Cp/×C{Y }

is a homotopy equivalence of Kan compexes (which, in view of Lemma
2.1.3.3, is equivalent to the requirement that φ′′Y be a trivial Kan fibration).
The equivalence of these two conditions now follows from Lemma 2.1.3.4.



LIMITS AND COLIMITS 259

The key to Theorem 4.2.4.1 is the following result, which compares the
construction of diagram categories in the ∞-categorical and simplicial set-
tings:

Proposition 4.2.4.4. Let S be a small simplicial set, C a small simplicial
category, and u : C[S] → C an equivalence. Suppose that A is a combinato-
rial simplicial model category and let U be a C-chunk of A (see Definition
A.3.4.9). Then the induced map

N((UC)◦) → Fun(S,N(U◦))

is a categorical equivalence of simplicial sets.

Remark 4.2.4.5. In the statement of Proposition 4.2.4.4, it makes no dif-
ference whether we regard AC as endowed with the projective or the injective
model structure.

Remark 4.2.4.6. An analogous result was proved by Hirschowitz and Simp-
son; see [39].

Proof. Choose a regular cardinal κ such that S and C are κ-small. Using
Lemma A.3.4.15, we can write U as a κ-filtered colimit of small C-chunks
U′ contained in U. Since the collection of categorical equivalences is stable
under filtered colimits, it will suffice to prove the result after replacing U by
each U′; in other words, we may suppose that U is small.

According to Theorem 2.2.5.1, we may identify the homotopy category
of Set∆ (with respect to the Joyal model structure) with the homotopy
category of Cat∆. We now observe that because N(U◦) is an ∞-category, the
simplicial set Fun(S,N(U◦)) can be identified with an exponential [N(U◦)][S]

in the homotopy category hSet∆. We now conclude by applying Corollary
A.3.4.14.

One consequence of Proposition 4.2.4.4 is that every homotopy coherent
diagram in a suitable model category A can be “straightened,” as we indi-
cated in Remark 1.2.6.2.

Corollary 4.2.4.7. Let I be a fibrant simplicial category, S a simplicial set,
and p : N(I) → S a map. Then it is possible to find the following:

(1) A fibrant simplicial category C.

(2) A simplicial functor P : I → C.

(3) A categorical equivalence of simplicial sets j : S → N(C).

(4) An equivalence between j ◦ p and N(P ) as objects of the ∞-category
Fun(N(I),N(C)).

Proof. Choose an equivalence i : C[S] → C0, where C0 is fibrant; let A denote
the model category of simplicial presheaves on C0 (endowed with the injective
model structure). Composing i with the Yoneda embedding of C0, we obtain
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a fully faithful simplicial functor C[S] → A◦, which we may alternatively
view as a morphism j0 : S → N(A◦).

We now apply Proposition 4.2.4.4 to the case where u is the counit map
C[N(I)] → I. We deduce that the natural map

N((AI)◦) → Fun(N(I),N(A◦))

is an equivalence. From the essential surjectivity, we deduce that j0 ◦ p is
equivalent to N(P0), where P0 : I → A◦ is a simplicial functor.

We now take C to be the essential image of C[S] in A◦ and note that j0
and P0 factor uniquely through maps j : S → N(C), P : I → C which possess
the desired properties.

We now return to our main result.

Proof of Theorem 4.2.4.1: Let A denote the category SetC
∆ endowed with

the projective model structure. Let j : Cop → A denote the Yoneda embed-
ding and let U denote the full subcategory of A spanned by those objects
which are weakly equivalent to j(C) for some C ∈ C, so that j induces an
equivalence of simplicial categories Cop → U◦. Choose a trivial injective cofi-
bration j ◦ F → F ′, where F ′ is a injectively fibrant object of AIop

. Let
f ′ : N(I)op → N(U◦) be the nerve of F ′ and let C′ = j(C), so that the maps
{ηI : F (I) → C}I∈I induce a natural transformation α : δ(C ′) → f ′, where
δ : N(U◦) → Fun(N(I)op,N(U◦)) denotes the diagonal embedding. In view
of Lemma 4.2.4.3, condition (1) admits the following reformulation:

(1′) For every object A ∈ U◦, composition with α induces a homotopy
equivalence

MapN(U◦)(A,C
′) → MapFun(N(I)op,N(U◦))(δ(A), f ′).

Using Proposition 4.2.4.4, we can reformulate this condition again:

(1′′) For every object A ∈ U◦, the canonical map

MapA(A,C ′) → MapAIop (δ′(A), F ′)

is a homotopy equivalence, where δ′ : A → AIop

denotes the diagonal
embedding.

Let B ∈ A be a limit of the diagram F ′, so we have a canonical map
β : C ′ → B between fibrant objects of A. Condition (2) is equivalent to the
assertion that β is a weak equivalence in A, while condition (1′′) is equivalent
to the assertion that composition with β induces a homotopy equivalence

MapA(A,C ′) → MapA(A,B)

for each A ∈ U◦. The implication (2) ⇒ (1′′) is clear. Conversely, suppose
that (1′′) is satisfied. For each X ∈ C, the object j(X) belongs to U◦, so that
β induces a homotopy equivalence

C ′(X) � MapA(j(X), C′) → MapA(j(X), B) � B(X).

It follows that β is a weak equivalence in A, as desired.
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Corollary 4.2.4.8. Let A be a combinatorial simplicial model category. The
associated ∞-category S = N(A◦) admits (small) limits and colimits.

Proof. We give the argument for colimits; the case of limits follows by a
dual argument. Let p : K → S be a (small) diagram in S. By Proposition
4.2.3.14, there exists a (small) category I and a cofinal map q : N(I) → K.
Since q is cofinal, p has a colimit in S if and only if p ◦ q has a colimit in S;
thus we may reduce to the case where K = N(I).

Using Proposition 4.2.4.4, we may suppose that p is the nerve of a injec-
tively fibrant diagram p′ : I → A◦. Let p′ : I {x} → AI be a limit of p′,
so that p′ is a homotopy limit diagram in A. Now choose a trivial fibration
p′′ → p′ in AI, where p′′ is cofibrant. The simplicial nerve of p′′ determines
a colimit diagram f : N(I)
 → S by Theorem 4.2.4.1. We now observe that
f = f |N(I) is equivalent to p, so that p also admits a colimit in S.

4.3 KAN EXTENSIONS

Let C and I be ordinary categories. There is an obvious “diagonal” functor
δ : C → CI, which carries an object C ∈ C to the constant diagram I → C

taking the value C. If C admits small colimits, then the functor δ has a left
adjoint CI → C. This left adjoint admits an explicit description: it carries
an arbitrary diagram f : I → C to the colimit lim−→(f). Consequently, we
can think of the theory of colimits as the study of left adjoints to diagonal
functors.

More generally, if one is given a functor i : I → I′ between diagram
categories, then composition with i induces a functor i∗ : CI′ → CI. Assuming
that C has a sufficient supply of colimits, one can construct a left adjoint to
i∗. We then refer to this left adjoint as the left Kan extension along i.

In this section, we will study the ∞-categorical analogue of the theory of
left Kan extensions. In the extreme case where I′ is the one-object category
∗, this theory simply reduces to the theory of colimits introduced in §1.2.13.
Our primary interest will be at the opposite extreme, when i is a fully faithful
embedding; this is the subject of §4.3.2. We will treat the general case in
§4.3.3.

With a view toward later applications, we will treat not only the theory
of absolute left Kan extensions but also a relative notion which works over a
base simplicial set S. The most basic example is the case of a relative colimit
which we study in §4.3.1.

4.3.1 Relative Colimits

In §1.2.13, we introduced the notions of limit and colimit for a diagram
p : K → C in an ∞-category C. For many applications, it is convenient to
have a relative version of these notions, which makes reference not to an
∞-category C but to an arbitrary inner fibration of simplicial sets.
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Definition 4.3.1.1. Let f : C → D be an inner fibration of simplicial sets,
let p : K
 → C be a diagram, and let p = p|K. We will say that p is an
f-colimit of p if the map

Cp/ → Cp/×Dfp/
Dfp/

is a trivial fibration of simplicial sets. In this case, we will also say that p is
an f-colimit diagram.

Remark 4.3.1.2. Let f : C → D and p : K
 → C be as in Definition 4.3.1.1.
Then p is an f -colimit of p = p|K if and only if the map

φ : Cp/ → Cp/×Dfp/
Dfp/

is a categorical equivalence. The “only if” direction is clear. The converse
follows from Proposition 2.1.2.1 (which implies that φ is a left fibration),
Proposition 3.3.1.7 (which implies that φ is a categorical fibration), and the
fact that a categorical fibration which is a categorical equivalence is a trivial
Kan fibration.

Observe that Proposition 2.1.2.1 also implies that the map

Dfp/ → Dfp/

is a left fibration. Using Propositions 3.3.1.3 and 3.3.1.7, we conclude that
the fiber product Cp/×Dfp/

Dfp/ is also a homotopy fiber product of Cp/
with Dfp/ over Dfp/ (with respect to the Joyal model structure on Set∆).
Consequently, we deduce that p is an f -colimit diagram if and only if the
diagram of simplicial sets

Cp/ ��

��

Dfp/

��
Cp/ �� Dfp/

is homotopy Cartesian.

Example 4.3.1.3. Let C be an ∞-category and f : C → ∗ the projection of
C to a point. Then a diagram p : K
 → C is an f -colimit if and only if it is
a colimit in the sense of Definition 1.2.13.4.

Example 4.3.1.4. Let f : C → D be an inner fibration of simplicial sets
and let e : ∆1 = (∆0)
 → C be an edge of C. Then e is an f -colimit if and
only if it is f -coCartesian.

The following basic stability properties follow immediately from the defi-
nition:

Proposition 4.3.1.5. (1) Let f : C → D be a trivial fibration of simplicial
sets. Then every diagram p : K
 → C is an f-colimit.

(2) Let f : C → D and g : D → E be inner fibrations of simplicial sets and
let p : K
 → C be a diagram. Suppose that f ◦ p is a g-colimit. Then p
is an f-colimit if and only if p is a (g ◦ f)-colimit.
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(3) Let f : C → D be an inner fibration of ∞-categories and let p, q :
K
 → C be diagrams which are equivalent when viewed as objects of
the ∞-category Fun(K
,C). Then p is an f-colimit if and only if q is
an f-colimit.

(4) Suppose we are given a Cartesian diagram

C′

f ′

��

g �� C

f

��
D′ �� D

of simplicial sets, where f (and therefore also f ′) is an inner fibration.
Let p : K
 → C′ be a diagram. If g ◦ p is an f-colimit, then p is an
f ′-colimit.

Proposition 4.3.1.6. Suppose we are given a commutative diagram of ∞-
categories

C
f ��

p

��

C′

p′

��
D �� D′,

where the horizontal arrows are categorical equivalences and the vertical ar-
rows are inner fibrations. Let q : K
 → C be a diagram and let q = q|K.
Then q is a p-colimit of q if and only if f ◦ q is a p′-colimit of f ◦ q.
Proof. Consider the diagram

Cq/ ��

��

C′
fq/

��
Cq/×Dpq/

Dpq/ �� C′
fq/×D′

p′fq/
D′
p′fq/

.

According to Remark 4.3.1.2, it will suffice to show that the left vertical map
is a categorical equivalence if and only if the right vertical map is a cate-
gorical equivalence. For this, it suffices to show that both of the horizontal
maps are categorical equivalences. Proposition 1.2.9.3 implies that the maps
Cq/ → C′

fq/, Cq/ → C′
fq/, Dpq/ → D′

p′fq/, and Dpq/ → D′
p′fq/ are categorical

equivalences. It will therefore suffice to show that the diagrams

Cq/×Dpq/
Dpq/ ��

��

Cq/

��

C′
fq/×D′

p′fq/
D′
p′fq/ ��

��

C′
fq/

��
Dpq/

ψ �� Dpq/ D′
p′fq/

ψ′
�� D′

p′fq/

are homotopy Cartesian (with respect to the Joyal model structure). This
follows from Proposition 3.3.1.3 because ψ and ψ′ are coCartesian fibrations.
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The next pair of results can be regarded as a generalization of Proposition
4.1.1.8. They assert that, when computing relative colimits, we are free to
replace any diagram by a cofinal subdiagram.

Proposition 4.3.1.7. Let p : C → D be an inner fibration of ∞-categories,
let i : A → B be a cofinal map, and let q : B
 → C be a diagram. Then q is
a p-colimit if and only if q ◦ i
 is a p-colimit.

Proof. Recall (Remark 4.3.1.2) that q is a relative colimit diagram if and
only if the diagram

Cq/ ��

��

Cq/

��
Dq0/

�� Dq0/

is homotopy Cartesian with respect to the Joyal model structure. Since i
and i
 are both cofinal, this is equivalent to the assertion that the diagram

Cqi
/ ��

��

Cqi/

��
Dq0i


/ �� Dq0i/

is homotopy Cartesian, which (by Remark 4.3.1.2) is equivalent to the as-
sertion that q ◦ i
 is a relative colimit diagram.

Proposition 4.3.1.8. Let p : C → D be a coCartesian fibration of ∞-
categories, let i : A → B be a cofinal map, and let

B
q ��

��

C

p

��
B


q0 �� D

be a diagram. Suppose that q ◦ i has a relative colimit lifting q0 ◦ i
. Then q
has a relative colimit lifting q0.

Proof. Let q0 = q0|B. We have a commutative diagram

Cq/
f ��

��

Cqi/×Dpqi/
Dpq/ ��

��

Cqi/

��
Dq0/

�� Dq0/
�� Dq0i/,

where the horizontal maps are categorical equivalences (this follows from
the fact that i is cofinal and Proposition 3.3.1.3). Proposition 2.4.3.2 implies
that the vertical maps are coCartesian fibrations and that f preserves co-
Cartesian edges. Applying Proposition 3.3.1.5 to f , we deduce that the map
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φ : Cq/×Dq0/
{q0} → Cqi/×Dq0i/

{q0i
} is a categorical equivalence. Since φ is
essentially surjective, we conclude that there exists an extension q : B
 → C

of q which covers q0, such that q ◦ i
 is a p-colimit diagram. We now apply
Proposition 4.3.1.7 to conclude that q is itself a p-colimit diagram.

Let p : X → S be a coCartesian fibration. The following results will allow
us to reduce the theory of p-colimits to the theory of ordinary colimits in
the fibers of p.

Proposition 4.3.1.9. Let p : X → S be an inner fibration of ∞-categories,
K a simplicial set, and h : ∆1 × K
 → X a natural transformation from
h0 = h|{0} ×K
 to h1 = h|{1} ×K
. Suppose that

(1) For every vertex x of K
, the restriction h|∆1×{x} is a p-coCartesian
edge of X.

(2) The composition

∆1 × {∞} ⊆ ∆1 ×K
 h→ X
p→ S

is a degenerate edge of S, where ∞ denotes the cone point of K
.

Then h0 is a p-colimit diagram if and only if h1 is a p-colimit diagram.

Proof. Let h = h|∆1 ×K, h0 = h|{0} ×K, and h1 = h|{1} ×K. Consider
the diagram

Xh0/

��

Xh/
φ�� ��

��

Xh1/

��
Xh0/ ×Sph0/

Sph0/
Xh/ ×Sph/

Sph/ ��ψ�� Xh1/ ×Sph1/
Sph1/

.

According to Remark 4.3.1.2, it will suffice to show that the left vertical map
is a categorical equivalence if and only if the right vertical map is a categorical
equivalence. For this, it will suffice to show that each of the horizontal arrows
is a categorical equivalence. Because the inclusions {1} ×K ⊆ ∆1 ×K and
{1} × K
 ⊆ ∆1 × K
 are right anodyne, the horizontal maps on the right
are trivial fibrations. We are therefore reduced to proving that φ and ψ are
categorical equivalences.

Let f : x → y denote the edge of X obtained by restricting h to the cone
point of K
. The map φ fits into a commutative diagram

Xh/
φ ��

��

Xh0/

��
Xf/ �� Xx/.

Since the inclusion of the cone point into K
 is right anodyne, the vertical
arrows are trivial fibrations. Moreover, hypotheses (1) and (2) guarantee that
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f is an equivalence in X, so that the map Xf/ → Xx/ is a trivial fibration.
This proves that φ is a categorical equivalence.

The map ψ admits a factorization

Xh/ ×Sph/
Sph/

ψ′
→ Xh0/ ×Sph0/

Sph/
ψ′′
→ Xh0 ×Sph0/

Sph0/
.

To complete the proof, it will suffice to show that ψ′ and ψ′′ are trivial
fibrations of simplicial sets. We first observe that ψ′ is a pullback of the map

Xh/ → Xh0/ ×Sph0/
Sph/,

which is a trivial fibration (Proposition 3.1.1.12). The map ψ′′ is a pullback
of the left fibration ψ′′

0 : Sph/ → Sph0/
. It therefore suffices to show that ψ′′

0

is a categorical equivalence. To prove this, we consider the diagram

Sph/
ψ′′

0 ��

��

Sph0/

��
Sp(f)/

ψ′′
1 �� Sp(x)/.

As above, we observe that the vertical arrows are trivial fibrations and that
ψ′′

1 is a trivial fibration (because the morphism p(f) is an equivalence in S).
It follows that ψ′′

0 is a categorical equivalence, as desired.

Proposition 4.3.1.10. Let q : X → S be a locally coCartesian fibration of
∞-categories, let s be an object of S, and let p : K
 → Xs be a diagram.
The following conditions are equivalent:

(1) The map p is a q-colimit diagram.

(2) For every morphism e : s → s′ in S, the associated functor e! : Xs →
Xs′ has the property that e! ◦ p is a colimit diagram in the ∞-category
Xs′ .

Proof. Assertion (1) is equivalent to the statement that the map

θ : Xp/ → Xp/ ×Sqp/
Sqp/

is a trivial fibration of simplicial sets. Since θ is a left fibration, it will suffice
to show that the fibers of θ are contractible. Consider an arbitrary vertex
of Sqp/ corresponding to a morphism t : K  ∆1 → S. Since K  ∆1 is
categorically equivalent to (K  {0}) ∐

{0} ∆1 and t|K  {0} is constant, we
may assume without loss of generality that t factors as a composition

K ∆1 → ∆1 e→ S.

Here e : s → s′ is an edge of S. Pulling back by the map e, we can reduce
to the problem of proving the following analogue of (1) in the case where
S = ∆1:

(1′) The projection h0 : Xp/ ×S {s′} → Xp/ ×S {s′} is a trivial fibration of
simplicial sets.
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Choose a coCartesian transformation α : K
 × ∆1 → X from p to p′,
which covers the projection

K
 × ∆1 → ∆1 � S.

Consider the diagram

Xp/ ×S {s′}
h0

��

Xα/ ×S {s′}�� ��

h

��

Xp′/ ×S {s′}
h1

��
Xp/ ×S {s′} Xα/ ×S {s′} ���� Xp′/ ×S {s′}.

Note that the vertical maps are left fibrations (Proposition 2.1.2.1). Since the
inclusion K
 × {1} ⊆ K
 × ∆1 is right anodyne, the upper right horizontal
map is a trivial fibration. Similarly, the lower right horizontal map is a trivial
fibration. Since α is a coCartesian transformation, we deduce that the left
horizontal maps are also trivial fibrations (Proposition 3.1.1.12). Condition
(2) is equivalent to the assertion that h1 is a trivial fibration (for each edge
e : s → s′ of the original simplicial set S). Since h1 is a left fibration and
therefore a categorical fibration (Proposition 3.3.1.7), this is equivalent to the
assertion that h1 is a categorical equivalence. Chasing through the diagram,
we deduce that (2) is equivalent to the assertion that h0 is a categorical
equivalence, which (by the same argument) is equivalent to the assertion
that h0 is a trivial fibration.

Corollary 4.3.1.11. Let p : X → S be a coCartesian fibration of ∞-
categories and let K be a simplicial set. Suppose that

(1) For each vertex s of S, the fiber Xs = X×S {s} admits colimits for all
diagrams indexed by K.

(2) For each edge f : s → s′, the associated functor Xs → Xs′ preserves
colimits of K-indexed diagrams.

Then for every diagram

K
q ��

� �

��

X

p

��
K


f ��

q
��%

%
%

%
S

there exists a map q as indicated, which is a p-colimit.

Proof. Consider the map K × ∆1 → K
 which is the identity on K × {0}
and carries K × {1} to the cone point of K
. Let F denote the composition

K × ∆1 → K
 f→ S

and let Q : K × ∆1 → X be a coCartesian lifting of F to X, so that Q is a
natural transformation from q to a map q′ : K → Xs, where s is the image
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under f of the cone point of K
. In view of assumption (1), there exists a
map q′ : K
 → Xs which is a colimit of q′. Assumption (2) and Proposition
4.3.1.10 guarantee that q′ is also a p-colimit diagram when regarded as a
map from K
 to X.

We have a commutative diagram

(K × ∆1)
∐
K×{1}(K


 × {1}) (Q,q′) ��
� �

��

X

p

��
(K × ∆1)


r

��0000000000
�� S.

The left vertical map is an inner fibration, so there exists a morphism r as
indicated, rendering the diagram commutative. We now consider the map
K
 × ∆1 → (K × ∆1)
 which is the identity on K × ∆1 and carries the
other vertices of K
 × ∆1 to the cone point of (K × ∆1)
. Let Q denote the
composition

K
 × ∆1 → (K × ∆1)
 r→ X

and let q = Q|K
×{0}. Then Q can be regarded as a natural transformation
q → q′ of diagrams K
 → X. Since q′ is a p-colimit diagram, Proposition
4.3.1.9 implies that q is a p-colimit diagram as well.

Proposition 4.3.1.12. Let p : X → S be a coCartesian fibration of ∞-
categories and let q : K
 → X be a diagram. Assume that the following
conditions are satisfied:

(1) The map q carries each edge of K to a p-coCartesian edge of K.

(2) The simplicial set K is weakly contractible.

Then q is a p-colimit diagram if and only if it carries every edge of K
 to
a p-coCartesian edge of X.

Proof. Let s denote the image under p ◦ q of the cone point of K
. Consider
the map K
 × ∆1 → K
 which is the identity on K
 × {0} and collapses
K
 × {1} to the cone point of K
. Let h denote the composition

K
 × ∆1 → K
 q→ X
p→ S,

which we regard as a natural transformation from p ◦ q to the constant map
with value s. Let H : q → q′ be a coCartesian transformation from q to
a diagram q′ : K
 → Xs. Using Proposition 2.4.1.7, we conclude that q′

carries each edge of K to a p-coCartesian edge of X, which is therefore an
equivalence in Xs.

Let us now suppose that q carries every edge of K
 to a p-coCartesian
edge of X. Arguing as above, we conclude that q′ carries each edge of K
 to
an equivalence in Xs. Let e : s → s′ be an edge of S and e! : Xs → Xs′ an
associated functor. The composition

K
 q′→ Xs
e!→ Xs′



LIMITS AND COLIMITS 269

carries each edge of K
 to an equivalence in Xs, and is therefore a colimit
diagram in Xs′ (Corollary 4.4.4.10). Proposition 4.3.1.10 implies that q′ is
a p-colimit diagram, so that Proposition 4.3.1.9 implies that q is a p-colimit
diagram as well.

For the converse, let us suppose that q is a p-colimit diagram. Applying
Proposition 4.3.1.9, we conclude that q′ is a p-colimit diagram. In particular,
q′ is a colimit diagram in the ∞-category Xs. Applying Corollary 4.4.4.10,
we conclude that q′ carries each edge of K
 to an equivalence in Xs. Now
consider an arbitrary edge f : x → y of K
. If f belongs to K, then q(f) is
p-coCartesian by assumption. Otherwise, we may suppose that y is the cone
point of K. The map H gives rise to a diagram

q(x)
q(f) ��

φ

��

q(y)

φ′

��
q′(x)

q′(f) �� q′(y)

in the ∞-category X ×S ∆1. Here q′(f) and φ′ are equivalences in Xs, so
that q(f) and φ are equivalent as morphisms ∆1 → X ×S ∆1. Since φ is
p-coCartesian, we conclude that q(f) is p-coCartesian, as desired.

Lemma 4.3.1.13. Let p : C → D be an inner fibration of ∞-categories, let
C ∈ C be an object, and let D = p(C). Then C is a p-initial object of C if
and only if (C, idD) is an initial object of C×D DD/.

Proof. We have a commutative diagram

CC/×DD/
DidD /

ψ ��

φ

��

CC/

φ′

��
C×D DD/ C×D DD/,

where the vertical arrows are left fibrations and therefore categorical fibra-
tions (Proposition 3.3.1.7). We wish to show that φ is a trivial fibration if
and only if φ′ is a trivial fibration. This is equivalent to proving that φ is
a categorical equivalence if and only if φ′ is a categorical equivalence. For
this, it will suffice to show that ψ is a categorical equivalence. But ψ is a
pullback of the trivial fibration DidD / → DD/ and therefore itself a trivial
fibration.

Proposition 4.3.1.14. Suppose we are given a diagram of ∞-categories

C
q

���
��

��
��

p �� D
r

����
��
��
�

E,
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where p and r are inner fibrations, q is a Cartesian fibration, and p carries
q-Cartesian morphisms to r-Cartesian morphisms.

Let C ∈ C be an object, D = p(C), and E = q(C). Let CE = C×E{E},
DE = D×E{E}, and pE : CE → DE be the induced map. Suppose that C is
a pE-initial object of CE . Then C is a p-initial object of C.

Proof. Our hypothesis, together with Lemma 4.3.1.13, implies that (C, idD)
is an initial object of

CE ×DE
(DE)D/ � (C×D DD/) ×EE/

{idE}.
We will prove that the map φ : C×D DD/ → EE/ is a Cartesian fibration.
Since idE is an initial object of EE/, Lemma 2.4.4.7 will allow us to conclude
that (C, idD) is an initial object of C×D DD/. We can then conclude the
proof by applying Lemma 4.3.1.13 once more.

It remains to prove that φ is a Cartesian fibration. Let us say that a
morphism of C×D DD/ is special if its image in C is q-Cartesian. Since φ is
obviously an inner fibration, it will suffice to prove the following assertions:

(1) Given an object X of C×D DD/ and a morphism f : Y → φ(X) in EE/,
we can write f = φ(f), where f is a special morphism of C×D DD/.

(2) Every special morphism in C×D DD/ is φ-Cartesian.

To prove (1), we first identify X with a pair consisting of an object C′′ ∈ C

and a morphism D → p(C ′′) in D, and f with a 2-simplex σ : ∆2 → E which
we depict as a diagram:

E′
g

��*
**

**
**

*

E

����������
�� q(C ′′).

Since q is a Cartesian fibration, the morphism g can be written as q(g) for
some morphism g : C ′ → C′′ in C. We now have a diagram

p(C ′)
p(g)

�� 
  

  
  

  

D �� p(C ′′)

in D. Since p carries q-Cartesian morphisms to r-Cartesian morphisms, we
conclude that p(g) is r-Cartesian, so that the above diagram can be com-
pleted to a 2-simplex σ : ∆2 → D such that r(σ) = σ.

We now prove (2). Suppose that n ≥ 2 and that we have a commutative
diagram

Λnn
σ0 ��

� �

��

C×D DD/

��
∆n ��

σ

���
�

�
�

�
EE/,
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where σ0 carries the final edge of Λnn to a special morphism of C×D DD/.
We wish to prove the existence of the morphism σ indicated in the diagram.
We first let τ0 denote the composite map

Λnn
σ0→ C×D DD/ → C .

Consider the diagram

Λnn
τ0 ��

� �

��

C

q

��
∆n ��

τ

���
�

�
�

E .

Since τ0(∆{n−1,n}) is q-Cartesian, there exists an extension τ as indicated in
the diagram. The morphisms τ and σ0 together determine a map θ0 which
fits into a diagram

Λn+1
n+1

θ0 ��
� �

��

D

r

��
∆n+1 ��

θ

���
�

�
�

�
E .

To complete the proof, it suffices to prove the existence of the indicated
arrow θ. This follows from the fact that θ0(∆{n,n+1}) = (p ◦ τ0)(∆{n−1,n})
is an r-Cartesian morphism of D.

Proposition 4.3.1.14 immediately implies the following slightly stronger
statement:

Corollary 4.3.1.15. Suppose we are given a diagram of ∞-categories

C
q

���
��

��
��

p �� D
r

����
��
��
�

E,

where q and r are Cartesian fibrations, p is an inner fibration, and p carries
q-Cartesian morphisms to r-Cartesian morphisms.

Suppose we are given another ∞-category E0 equipped with a functor s :
E0 → E. Set C0 = C×E E0, set D0 = D×E E0, and let p0 : C0 → D0 be the
functor induced by p. Let f0 : K
 → C0 be a diagram, and let f denote the

composition K
 f0→ C0 → C. Then f0 is a p0-colimit diagram if and only if
f is a p-colimit diagram.

Proof. Let f0 = f0|K and f = f |K. Replacing our diagram by

Cf/ ��

���
��

��
��

�
Dpf/

"���
��
��
��

Eqf/,
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we can reduce to the case where K = ∅. Then f0 determines an object
C ∈ C0. Let E denote the image of C in E0. We have a commutative diagram

{E} s′ ��

s′′

��!
!!

!!
!!

!
E0

s
��		
		
		
		

E .

Consequently, to prove Corollary 4.3.1.15 for the map s, it will suffice to
prove the analogous assertions for s′ and s′′; these follow from Proposition
4.3.1.14.

Corollary 4.3.1.16. Let p : C → E be a Cartesian fibration of ∞-categories,
E ∈ E an object, and f : K
 → CE a diagram. Then f is a colimit diagram
in CE if and only if it is a p-colimit diagram in C.

Proof. Apply Corollary 4.3.1.15 in the case where D = E.

4.3.2 Kan Extensions along Inclusions

In this section, we introduce the theory of left Kan extensions. Let F : C → D

be a functor between ∞-categories and let C0 be a full subcategory of C.
Roughly speaking, the functor F is a left Kan extension of its restriction
F0 = F |C0 if the values of F are as “small” as possible given the values of
F0. In order to make this precise, we need to introduce a bit of terminology.

Notation 4.3.2.1. Let C be an ∞-category and let C0 be a full subcategory.
If p : K → C is a diagram, we let C0

/p denote the fiber product C/p×C C0. In
particular, if C is an object of C, then C0

/C denotes the full subcategory of
C/C spanned by the morphisms C ′ → C where C′ ∈ C0.

Definition 4.3.2.2. Suppose we are given a commutative diagram of ∞-
categories

C0
� �

��

F0 �� D

p

��
C ��

F

��									
D′,

where p is an inner fibration and the left vertical map is the inclusion of a
full subcategory C0 ⊆ C.

We will say that F is a p-left Kan extension of F0 at C ∈ C if the induced
diagram

(C0
/C)
� �

��

FC �� D

p

��
(C0
/C)


��%%%%%%%%%
�� D′
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exhibits F (C) as a p-colimit of FC .
We will say that F is a p-left Kan extension of F0 if it is a p-left Kan

extension of F0 at C for every object C ∈ C.
In the case where D′ = ∆0, we will omit mention of p and simply say that

F is a left Kan extension of F0 if the above condition is satisfied.

Remark 4.3.2.3. Consider a diagram

C0
� �

��

F0 �� D

p

��
C ��

F

��								
D′

as in Definition 4.3.2.2. If C is an object of C0, then the functor FC :
(C0
/C)
 → D is automatically a p-colimit. To see this, we observe that idC :

C → C is a final object of C0
/C . Consequently, the inclusion {idC} → (C0

/C)
is cofinal, and we are reduced to proving that F (idC) : ∆1 → D is a colimit
of its restriction to {0}, which is obvious.

Example 4.3.2.4. Consider a diagram

C� �

��

q �� D

p

��
C
 ��

q
��%%%%%%%%
D′ .

The map q is a p-left Kan extension of q if and only if it is a p-colimit of q.
The “only if” direction is clear from the definition, and the converse follows
immediately from Remark 4.3.2.3.

We first note a few basic stability properties for the class of left Kan
extensions.

Lemma 4.3.2.5. Consider a commutative diagram of ∞-categories

C0
� �

��

F0 �� D

p

��
C ��

F

��								
D′

as in Definition 4.3.2.2. Let C and C′ be equivalent objects of C. Then F is
a p-left Kan extension of F0 at C if and only if F is a p-left Kan extension
of F0 at C ′.

Proof. Let f : C → C′ be an equivalence, so that the restriction maps

C/C ← C/f → C/C′

are trivial fibrations of simplicial sets. Let C0
/f = C0 ×C C/f , so that we have

trivial fibrations

C0
/C

g← C0
/f

g′→ C0
/C′ .
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Consider the associated diagram

(C0
/C)


FC

���
��

��
��

��

(C0
/f )




G

�����������

G′

 ! 
  

  
  

  
D

(C0
/C′)
.

FC′

		���������

This diagram does not commute, but the functors FC ◦G and FC′ ◦G′ are
equivalent in the ∞-category D(C0

/f )


. Consequently, FC ◦ G is a p-colimit
diagram if and only if FC′ ◦G′ is a p-colimit diagram (Proposition 4.3.1.5).
Since g and g′ are cofinal, we conclude that FC is a p-colimit diagram if and
only if FC′ is a p-colimit diagram (Proposition 4.3.1.7).

Lemma 4.3.2.6. (1) Let C be an ∞-category, let p : D → D′ be an inner
fibration of ∞-categories, and let F, F ′ : C → D be two functors which
are equivalent in DC. Let C0 be a full subcategory of C. Then F is a
p-left Kan extension of F |C0 if and only if F ′ is a p-left Kan extension
of F ′|C0.

(2) Suppose we are given a commutative diagram of ∞-categories

C0

G0

��

�� C
F ��

G

��

D

��

p �� E

��
C′0 �� C′ F ′

�� D′ p′ �� E′,

where the left horizontal maps are inclusions of full subcategories, the
right horizontal maps are inner fibrations, and the vertical maps are
categorical equivalences. Then F is a p-left Kan extension of F |C0 if
and only if F ′ is a p′-left Kan extension of F ′|C′0.

Proof. Assertion (1) follows immediately from Proposition 4.3.1.5. Let us
prove (2). Choose an object C ∈ C and consider the diagram

(C0
/C)
 ��

��

D

��

p �� E

��
(C′0

/G(C))

 �� D′ p′ �� E′ .

We claim that the upper left horizontal map is a p-colimit diagram if and
only if the bottom left horizontal map is a p′-colimit diagram. In view of
Proposition 4.3.1.6, it will suffice to show that each of the vertical maps is
an equivalence of ∞-categories. For the middle and right vertical maps, this
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holds by assumption. To prove that the left vertical map is a categorical
equivalence, we consider the diagram

C0
/C

��

��

C′0
/G(C)

��
C/C �� C′

/G(C) .

The bottom horizontal map is a categorical equivalence (Proposition 1.2.9.3),
and the vertical maps are inclusions of full subcategories. It follows that the
top horizontal map is fully faithful, and its essential image consists of those
morphisms C′ → G(C) where C′ is equivalent (in C′) to the image of an
object of C0. Since G0 is essentially surjective, this is the whole of C′0

/G(C).

It follows that if F ′ is a p′-left Kan extension of F ′|C′0, then F is a p-left
Kan extension of F |C0. Conversely, if F is a p-left Kan extension of F |C0,
then F ′ is a p′-left Kan extension of F ′|C′0 at G(C) for every object C ∈ C.
Since G is essentially surjective, Lemma 4.3.2.5 implies that F ′ is a p′-left
Kan extension of F ′|C′0 at every object of C′. This completes the proof of
(2).

Lemma 4.3.2.7. Suppose we are given a diagram of ∞-categories

C0
� �

��

F0 �� D

p

��
C ��

F

��								
D′

as in Definition 4.3.2.2, where p is a categorical fibration and F is a left
Kan extension of F0 relative to p. Then the induced map

DF/ → D′
pF/×D′

pF0/
DF0/

is a trivial fibration of simplicial sets. In particular, we may identify p-
colimits of F with p-colimits of F0.

Proof. Using Lemma 4.3.2.6, Proposition 2.3.3.9, and Proposition A.2.3.1,
we can reduce to the case where C is minimal. Let us call a simplicial subset
E ⊆ C complete if it has the following property: for any simplex σ : ∆n → C,
if σ|∆{0,...,i} factors through C0 and σ|∆{i+1,...,n} factors through E, then σ
factors through E. Note that if E is complete, then C0 ⊆ E. We next define
a transfinite sequence of complete simplicial subsets of C

C0 ⊆ C1 ⊆ · · ·
as follows: if λ is a limit ordinal, we let Cλ =

⋃
α<λ Cα. If Cα = C, then we

set Cα+1 = C. Otherwise, we choose some simplex σ : ∆n → C which does
not belong to Cα, where the dimension n of σ is chosen as small as possible,
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and let Cα+1 be the smallest complete simplicial subset of C containing Cα

and the simplex σ.
Let Fα = F |Cα. We will prove that for every β ≤ α the projection

φα,β : DFα/ → D′
pFα/

×D′
pFβ/

DFβ/

is a trivial fibration of simplicial sets. Taking α � β = 0, we will have
Cα = C, and the proof will be complete.

Our proof proceeds by induction on α. If α = β, then φα,β is an iso-
morphism and there is nothing to prove. If α > β is a limit ordinal, then
the inductive hypothesis implies that φα,β is the inverse limit of a transfinite
tower of trivial fibrations and therefore a trivial fibration. It therefore suffices
to prove that if φα,β is a trivial fibration, then φα+1,β is a trivial fibration.
We observe that φα+1,β = φ′α,β ◦ φα+1,α, where φ′α,β is a pullback of φα,β
and therefore a trivial fibration by the inductive hypothesis. Consequently,
it will suffice to prove that φα+1,α is a trivial fibration. The result is obvious
if Cα+1 = Cα, so we may assume without loss of generality that Cα+1 is
the smallest complete simplicial subset of C containing Cα together with a
simplex σ : ∆n → C, where σ does not belong to Cα. Since n is chosen to be
minimal, we may suppose that σ is nondegenerate and that the boundary of
σ already belongs to Cα.

Form a pushout diagram

C0
/σ  ∂∆n ��

��

Cα

��
C0
/σ ∆

n �� C′ .

By construction there is an induced map C′ → C, which is easily shown to
be a monomorphism of simplicial sets; we may therefore identify E′ with its
image in C. Since C is minimal, we can apply Proposition 2.3.3.9 to deduce
that C′ is complete, so that C′ = Cα+1. Let G denote the composition

C0
/σ ∆

n → C
F→ D

and G∂ = G|C0
/σ  ∂∆n. It follows that φα+1,α is a pullback of the induced

map

ψ : DG/ → D′
pG/×D′

pG∂ /
DG∂/ .

To complete the proof, it will suffice to show that ψ is a trivial fibration of
simplicial sets.

Let G0 = G|C0
/σ. Let E = DG0/, let E′ = D′

p◦G0/, and let q : E → E′ be the
induced map. We can identify G with a map σ′ : ∆n → E. Let σ′

0 = σ′| ∂∆n.
Then we wish to prove that the map

ψ′ : Eσ′/ → E′
qσ′/×E′

qσ′
0/

Eqσ′
0/

is a trivial fibration. Let C = σ(0).
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The projection C0
/σ → C0

/C is a trivial fibration of simplicial sets and
therefore cofinal. Since F is a p-left Kan extension of F0 at C, we conclude
that σ′(0) is a q-initial object of E.

To prove that ψ is a trivial fibration, it will suffice to prove that ψ has
the right lifting property with respect to the inclusion ∂∆m ⊆ ∆m for each
m ≥ 0. Unwinding the definitions, this amounts to the existence of a dotted
arrow as indicated in the diagram

∂∆n+m+1 s ��
� �

��

E

q

��
∆n+m+1

� //////
�� E′ .

However, the map s carries the initial vertex of ∆n+m+1 to a vertex of E

which is q-initial, so that the desired extension can be found.

Proposition 4.3.2.8. Let F : C → D be a functor between ∞-categories,
p : D → D′ a categorical fibration of ∞-categories, and C0 ⊆ C1 ⊆ C full
subcategories. Suppose that F |C1 is a p-left Kan extension of F |C0. Then F
is a p-left Kan extension of F |C1 if and only if F is a p-left Kan extension
of F |C0.

Proof. Let C be an object of C; we will show that F is a p-left Kan extension
of F |C0 at C if and only if F is a p-left Kan extension of F |C1 at C. Consider
the composition

F 0
C : (C0

/C)
 ⊆ (C1
/C)


F 1
C→ D .

We wish to show that F 0
C is a p-colimit diagram if and only if F 1

C is a p-
colimit diagram. According to Lemma 4.3.2.7, it will suffice to show that
F 1
C |C1

/C is a left Kan extension of F 0
C . Let f : C′ → C be an object of C1

/C .
We wish to show that the composite map

(C0
/f )


 → (C0
/C′)


F0
C′→ D

is a p-colimit diagram. Since the projection C0
/f → C0

/C′ is cofinal (in fact,
a trivial fibration), it will suffice to show that F 0

C′ is a p-colimit diagram
(Proposition 4.3.1.7). This follows from our hypothesis that F |C1 is a p-left
Kan extension of F |C0.

Proposition 4.3.2.9. Let F : C×C′ → D denote a functor between ∞-
categories, p : D → D′ a categorical fibration of ∞-categories, and C0 ⊆ C a
full subcategory. The following conditions are equivalent:

(1) The functor F is a p-left Kan extension of F |C0 ×C′.

(2) For each object C ′ ∈ C′, the induced functor FC′ : C×{C ′} → D is a
p-left Kan extension of FC′ |C0 ×{C ′}.
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Proof. It suffices to show that F is a p-left Kan extension of F |C0 ×C′

at an object (C,C ′) ∈ C×C′ if and only if FC′ is a p-left Kan extension
of FD|C0 ×{D} at C. This follows from the observation that the inclusion
C0
/C ×{idC′} ⊆ C0

/C ×C′
/C′ is cofinal (because idC′ is a final object of C′

/C′).

Lemma 4.3.2.10. Let m ≥ 0, n ≥ 1 be integers and let

(∂∆m × ∆n)
∐
∂∆m×∂∆n(∆m × ∂∆n)

� �

��

f0 �� X

p

��
∆m × ∆n ��

f

���������������
S

be a diagram of simplicial sets, where p is an inner fibration and f0(0, 0) is
a p-initial vertex of X. Then there exists a morphism f : ∆m × ∆n → X
rendering the diagram commutative.

Proof. Choose a sequence of simplicial sets

(∂∆m × ∆n)
∐

∂∆m×∂∆n

(∆m × ∂∆n) = Y (0) ⊆ · · · ⊆ Y (k) = ∆m × ∆n,

where each Y (i+1) is obtained from Y (i) by adjoining a single nondegenerate
simplex whose boundary already lies in Y (i). We prove by induction on i
that f0 can be extended to a map fi such that the diagram

Y (i)� �

��

fi �� X

p

��
∆m × ∆n �� S

is commutative. Having done so, we can then complete the proof by choosing
i = k.

If i = 0, there is nothing to prove. Let us therefore suppose that fi has been
constructed and consider the problem of constructing fi+1 which extends fi.
This is equivalent to the lifting problem

∂∆r
� �

��

σ0 �� X

p

��
∆r

σ

		�
�

�
�

�� S.

It now suffices to observe that where r > 0 and σ0(0) = f0(0, 0) is a p-initial
vertex of X (since every simplex of ∆m × ∆n which violates one of these
conditions already belongs to Y (0)).

Lemma 4.3.2.11. Suppose we are given a diagram of simplicial sets

X
p ��

���
��

��
��

Y

����
��
��
�

S,
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where p is an inner fibration. Let K be a simplicial set, let qS ∈ MapS(K ×
S,X), and let q′S = p ◦ qS. Then the induced map

p′ : XqS/ → Y q
′
S/

is an inner fibration (where the above simplicial sets are defined as in §4.2.2).

Proof. Unwinding the definitions, we see that every lifting problem

A� �

i

��

�� XqS/

��
B ��

��%
%

%
%

Y qS/

is equivalent to a lifting problem

(A× (K � ∆0))
∐
A×K(B ×K) ��

� �

i′

��

X

p

��
B × (K � ∆0)



��������
�� Y.

We wish to show that this lifting problem has a solution provided that i is
inner anodyne. Since p is an inner fibration, it will suffice to prove that i′ is
inner anodyne, which follows from Corollary 2.3.2.4.

Lemma 4.3.2.12. Consider a diagram of ∞-categories

C → D′ p← D,

where p is an categorical fibration. Let C0 ⊆ C be a full subcategory. Suppose
we are given n > 0 and a commutative diagram

∂∆n
� �

��

f0 �� MapD′(C,D)

��
∆n

g ��

f

��
MapD′(C0,D)

with the property that the functor F : C → D, determined by evaluating f0 at
the vertex {0} ⊆ ∂∆n, is a p-left Kan extension of F |C0. Then there exists
a dotted arrow f rendering the diagram commutative.

Proof. The proof uses the same strategy as that of Lemma 4.3.2.7. Using
Lemma 4.3.2.6 and Proposition A.2.3.1, we may replace C by a minimal
model and thereby assume that C is minimal. As in the proof of Lemma
4.3.2.7, let us call a simplicial subset E ⊆ C complete if it has the following
property: for any simplex σ : ∆n → C, if σ|∆{0,...,i} factors through C0 and
σ|∆{i+1,...,n} factors through E, then σ factors through E. Let P denote the
partially ordered set of pairs (E, fE), where E ⊆ C is complete and fE is a
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map rendering commutative the diagram

∂∆n
� �

��

f0 �� MapD′(C,D)

��
∆n

fE �� MapD′(E,D)

��
∆n

g �� MapD′(C0,D).

We partially order P as follows: (E, fE) ≤ (E′, fE′) if E ⊆ E′ and fE = fE′ |E.
Using Zorn’s lemma, we deduce that P has a maximal element (E, fE). If
E = C, we may take f = fE, and the proof is complete. Otherwise, choose
a simplex σ : ∆m → C which does not belong to E, where m is as small
as possible. It follows that σ is nondegenerate and that the boundary of σ
belongs to E. Form a pushout diagram

C0
/σ  ∂∆m ��

� �

��

E

��
C0
/σ ∆

m �� E′ .

As in the proof of Lemma 4.3.2.7, we may identify E′ with a complete sim-
plicial subset of C, which strictly contains E. Since (E, fE) is maximal, we
conclude that fE does not extend to E′. Consequently, we deduce that there
does not exist a dotted arrow rendering the diagram

C0
/σ  ∂∆m

� �

��

�� Fun(∆n,D)

��
C0
/σ ∆

m ��

��0000000000
Fun(∆n,D′) ×Fun(∂∆n,D′) Fun(∂∆n,D)

commutative. Let q : C0
/σ → Fun(∆n,D) be the restriction of the upper

horizontal map and let q′ : C0
/σ → Fun(∆n,D′), q∂ : C0

/σ → Fun(∂∆n,D),
and q′∂ : C0

/σ → Fun(∂∆n,D′) be defined by composition with q. It follows
that there exists no solution to the associated lifting problem

∂∆m ��
� �

��

Fun(∆n,D)q/

��

∆m ��

�������������� Fun(∆n,D′)q′/ ×Fun(∂∆n,D′)q′
∂

/
Fun(∂∆n,D)q∂/.

Applying Proposition A.2.3.1, we deduce also the insolubility of the equiva-
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lent lifting problem

∂∆m ��

��

Fun(∆n,D)q/

��

∆m ��

�������������� Fun(∆n,D′)q
′/ ×

Fun(∂∆n,D′)q′
∂

/ Fun(∂∆n,D)q∂/.

Let q∆n denote the map C0
/σ ×∆n → D×∆n determined by q and let

X = (D×∆n)q∆n/ be the simplicial set constructed in §4.2.2. Let q′∆n :
C0
/σ ×∆n → D′ ×∆n and X′ = (D′ ×∆n)q

′
∆n/ be defined similarly. We have

natural isomorphisms

Fun(∆n,D)q/ � Map∆n(∆n,X)

Fun(∂∆n,D)q∂/ � Map∆n(∂∆n,X)

Fun(∆n,D′)q
′/ � Map∆n(∆n,X′)

Fun(∂∆n,D′)q
′
∂/ � Map∆n(∂∆n,X′).

These identifications allow us to reformulate our insoluble lifting problem
once more:

(∂∆m × ∆n)
∐
∂∆m×∂∆n(∆m × ∂∆n)

g0 ��
� �

��

X

ψ

��
∆m × ∆n

g

���������������
�� X′ .

We have a commutative diagram

X
ψ ��

r

���
��

��
��

� X′

r′

&&%%
%%
%%
%%

∆n.

Proposition 4.2.2.4 implies that r and r′ are Cartesian fibrations and that ψ
carries r-Cartesian edges to r′-Cartesian edges. Lemma 4.3.2.11 implies that
ψ is an inner fibration. Let ψ0 : X{0} → X′

{0} be the diagram induced by
taking the fibers over the vertex {0} ⊆ ∆n. We have a commutative diagram

DC0
/σ(0) /

θ

��

DC0
/σ

��

��

�� X{0}

ψ0

��
D′

C0
/σ(0) /

D′
C0

/σ
/

���� X′
{0}

in which the horizontal arrows are categorical equivalences. We can lift
g0(0, 0) ∈ X′

{0} to a vertex of DC0
/σ
/ whose image in DC0

/σ(0) /
is θ-initial
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(by virtue of our assumption that F is a p-left Kan extension of F |C0). It
follows that g0(0, 0) is ψ0-initial when regarded as a vertex of X{0}. Applying
Proposition 4.3.1.14, we deduce that g0(0, 0) is ψ-initial when regarded as
a vertex of X. Lemma 4.3.2.10 now guarantees the existence of the dotted
arrow g, contradicting the maximality of (E, fE).

The following result addresses the existence problem for left Kan exten-
sions:

Lemma 4.3.2.13. Suppose we are given a diagram of ∞-categories

C0
� �

��

F0 �� D

p

��
C ��

F

��	
	

	
	

	
D′,

where p is a categorical fibration and the left vertical arrow is the inclusion
of a full subcategory. The following conditions are equivalent:

(1) There exists a functor F : C → D rendering the diagram commutative,
such that F is a p-left Kan extension of F0.

(2) For every object C ∈ C, the diagram given by the composition

C0
/C → C0 F0→ D

admits a p-colimit.

Proof. It is clear that (1) implies (2). Let us therefore suppose that (2) is
satisfied; we wish to prove that F0 admits a left Kan extension. We will
follow the basic strategy used in the proofs of Lemmas 4.3.2.7 and 4.3.2.12.
Using Proposition A.2.3.1 and Lemma 4.3.2.6, we can replace the inclusion
C0 ⊆ C by any categorically equivalent inclusion C′0 ⊆ C′. Using Proposition
2.3.3.8, we can choose C′ to be a minimal model for C; we thereby reduce to
the case where C is itself a minimal ∞-category.

We will say that a simplicial subset E ⊆ C is complete if it has the following
property: for any simplex σ : ∆n → C, if σ|∆{0,...,i} factors through C0 and
σ|∆{i+1,...,n} factors through E, then σ factors through E. Note that if E is
complete, then C0 ⊆ E. Let P be the set of all pairs (E, fE) such that E ⊆ C

is complete, fE is a map of simplicial sets which fits into a commutative
diagram

C0
� �

��

F0 �� D

E ��
� �

��

fE �� D

p

��
C �� D′,
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and every object C ∈ E, the composite map

(C0
/C)
 ⊆ (E/C)
 → E

fE→ D

is a p-colimit diagram. We view P as a partially ordered set, with (E, fE) ≤
(E′, fE′) if E ⊆ E′ and fE′ |E = fE. This partially ordered set satisfies the
hypotheses of Zorn’s lemma and therefore contains a maximal element which
we will denote by (E, fE). If E = C, then fE is a p-left Kan extension of F0,
and the proof is complete.

Suppose that E �= C. Then there is a simplex σ : ∆n → C which does not
factor through E; we choose such a simplex where n is as small as possible.
The minimality of n guarantees that σ is nondegenerate, that σ| ∂∆n factors
through E, and (if n > 0) that σ(0) /∈ C0. We now form a pushout diagram

C0
/σ  ∂∆n ��

� �

��

E

��
C0
/σ ∆

n �� E′ .

This diagram induces a map E′ → C, which is easily shown to be a monomor-
phism of simplicial sets; we may therefore identify E′ with its image in C.
Since C is minimal, we can apply Proposition 2.3.3.9 to deduce that E′ ⊆ C

is complete. Since (E, FE) ∈ P is maximal, it follows that we cannot extend
FE to a functor FE′ : E′ → D such that (E′, FE′) ∈ P .

Let q denote the composition

C0
/σ → C0 F0→ D .

The map fE determines a commutative diagram

∂∆n
� �

��

g0 �� Dq/

p′

��
∆n ��

g
���

�
�

�
�

D′
pq/ .

Extending fE to a map fE′ such that (E′, fE′) ∈ P is equivalent to producing
a morphism g : ∆n → Dq/, rendering the above diagram commutative. which
is a p-colimit of q if n = 0. In the case where n = 0, the existence of such
an extension follows from assumption (2). If n > 0, let C = σ(0); then the
projection C0

/σ → C0
/C is a trivial fibration of ∞-categories and q factors as

a composition

C0
/σ → C0

/C
q′→ D .

We obtain therefore a commutative diagram

Dq/
r ��

p′

��

Dq′/

p′′

��
D′
pq/

�� D′
pq′/,
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where the horizontal arrows are categorical equivalences. Since (E, fE) ∈ P ,
(r ◦ g0)(0) is a p′′-initial vertex of Dq′/. Applying Proposition 4.3.1.6, we
conclude that g0(0) is a p′-initial vertex of Dq/, which guarantees the exis-
tence of the desired extension g. This contradicts the maximality of (E, fE)
and completes the proof.

Corollary 4.3.2.14. Let p : D → E be a coCartesian fibration of ∞-
categories. Suppose that each fiber of p admits small colimits and that for
every morphism E → E′ in E the associated functor DE → DE′ preserves
small colimits. Let C be a small ∞-category and C0 ⊆ C a full subcategory.
Then every functor F0 : C0 → D admits a left Kan extension relative to p.

Proof. This follows easily from Lemma 4.3.2.13 and Corollary 4.3.1.11.

Combining Lemmas 4.3.2.12 and 4.3.2.13, we deduce the following result:

Proposition 4.3.2.15. Suppose we are given a diagram of ∞-categories

C → D′ p← D,

where p is a categorical fibration. Let C0 be a full subcategory of C. Let K ⊆
MapD′(C,D) be the full subcategory spanned by those functors F : C → D

which are p-left Kan extensions of F |C0. Let K′ ⊆ MapD′(C0,D) be the full
subcategory spanned by those functors F0 : C0 → D with the property that,
for each object C ∈ C, the induced diagram C0

/C → D has a p-colimit. Then
the restriction functor K → K′ is a trivial fibration of simplicial sets.

Corollary 4.3.2.16. Suppose we are given a diagram of ∞-categories

C → D′ p← D,

where p is a categorical fibration. Let C0 be a full subcategory of C. Suppose
further that, for every functor F0 ∈ MapD′(C0,D), there exists a functor F ∈
MapD′(C,D) which is a p-left Kan extension of F0. Then the restriction map
i∗ : MapD′(C,D) → MapD′(C0,D) admits a section i! whose essential image
consists of of precisely those functors F which are p-left Kan extensions of
F |C0.

In the situation of Corollary 4.3.2.16, we will refer to i! as a left Kan
extension functor. We note that Proposition 4.3.2.15 proves not only the
existence of i! but also its uniqueness up to homotopy (the collection of all
such functors is parametrized by a contractible Kan complex). The following
characterization of i! gives a second explanation for its uniqueness:

Proposition 4.3.2.17. Suppose we are given a diagram of ∞-categories

C → D′ p← D,

where p is a categorical fibration. Let i : C0 ⊆ C be the inclusion of a full
subcategory and suppose that every functor F0 ∈ MapD′(C0,D) admits a p-
left Kan extension. Then the left Kan extension functor i! : MapD′(C0,D) →
MapD′(C,D) is a left adjoint to the restriction functor i∗ : MapD′(C,D) →
MapD′(C0,D).



LIMITS AND COLIMITS 285

Proof. Since i∗ ◦ i! is the identity functor on MapD′(C0,D), there is an ob-
vious candidate for the unit

u : id → i∗ ◦ i!
of the adjunction: namely, the identity. According to Proposition 5.2.2.8, it
will suffice to prove that for every F ∈ MapD′(C0,D) and G ∈ MapD′(C,D),
the composite map

MapMapD′ (C,D)(i!F,G)→MapMapD′ (C0,D)(i
∗i!F, i∗G)

u→MapMapD′ (C0,D)(F, i
∗G)

is an isomorphism in the homotopy category H. This morphism in H is
represented by the restriction map

HomR
MapD′ (C,D)(i!F,G) → HomR

MapD′ (C0,D)(F, i
∗G),

which is a trivial fibration by Lemma 4.3.2.12.

Remark 4.3.2.18. Throughout this section we have focused our attention
on the theory of (relative) left Kan extensions. There is an entirely dual
theory of right Kan extensions in the ∞-categorical setting, which can be
obtained from the theory of left Kan extensions by passing to opposite ∞-
categories.

4.3.3 Kan Extensions along General Functors

Our goal in this section is to generalize the theory of Kan extensions to the
case where the change of diagram category is not necessarily given by a fully
faithful inclusion C0 ⊆ C. As in §4.3.2, we will discuss only the theory of left
Kan extensions; a dual theory of right Kan extensions can be obtained by
passing to opposite ∞-categories.

The ideas introduced in this section are relatively elementary extensions
of the ideas of §4.3.2. However, we will encounter a new complication. Let
δ : C → C′ be a map of diagram ∞-categories, f : C → D a functor,
and δ!(f) : C′ → D its left Kan extension along δ (to be defined below).
Then one does not generally expect δ∗δ!(f) to be equivalent to the original
functor f . Instead, one has only a unit transformation f → δ∗δ!(f). To
set up the theory, this unit transformation must be taken as part of the
data. Consequently, the theory of Kan extensions in general requires more
elaborate notation and terminology than the special case treated in §4.3.2.
We will compensate for this by considering only the case of absolute left Kan
extensions. It is straightforward to set up a relative theory as in §4.3.2, but
we will not need such a theory in this book.

Definition 4.3.3.1. Let δ : K → K ′ be a map of simplicial sets, let D be an
∞-category and let f : K → D be a diagram. A left extension of f along δ
consists of a map f ′ : K ′ → D and a morphism f → f ′ ◦δ in the ∞-category
Fun(K,D).
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Equivalently, we may view a left extension of f : K → D along δ : K → K ′

as a map F : Mop(δ) → D such that F |K = f , where Mop(δ) = M(δop)op =
(K × ∆1)

∐
K×{1}K

′ denotes the mapping cylinder of δ.

Definition 4.3.3.2. Let δ : K → K ′ be a map of simplicial sets, and let
F : Mop(δ) → D be a diagram in an ∞-category D (which we view as a left
extension of f = F |K along δ). We will say that F is a left Kan extension
of f along δ if there exists a commutative diagram

Mop(δ) F ′′
��

���
��

��
��

��
K

F ′
��

p

��

D

∆1

where F ′′ is a categorical equivalence, K is an ∞-category, F = F ′ ◦F ′′, and
F ′ is a left Kan extension of F ′|K×∆1{0}.
Remark 4.3.3.3. In the situation of Definition 4.3.3.2, the map p : K → ∆1

is automatically a coCartesian fibration. To prove this, choose a factorization

M(δop)� i→ (K′)� → (∆1)�,

where i is marked anodyne and K′ → ∆1 is a Cartesian fibration. Then i is
a quasi-equivalence, so that Proposition 3.2.2.7 implies that M(δop) → K′

is a categorical equivalence. It follows that K is equivalent to (K′)op (via an
equivalence which respects the projection to ∆1), so that the projection p is
a coCartesian fibration.

The following result asserts that the condition of Definition 4.3.3.2 is es-
sentially independent of the choice of K.

Proposition 4.3.3.4. Let δ : K → K ′ be a map of simplicial sets and let
F : Mop(δ) → D be a diagram in an ∞-category D which is a left Kan
extension along δ. Let

Mop F ′′
��

��#
##

##
##

# K

p

��
∆1

be a diagram where F ′′ is both a cofibration and a categorical equivalence of
simplicial sets. Then F = F ′ ◦ F ′′ for some map F ′ : K → D which is a left
Kan extension of F ′|K×∆1{0}.
Proof. By hypothesis, there exists a commutative diagram

Mop(δ) G′′
��

F ′′

��

K′ G′
��

q

��

D

K
p ��

r

���
�

�
�

�
∆1,
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where K′ is an ∞-category, F = G′ ◦ G′′, G′′ is a categorical equivalence,
and G′ is a left Kan extension of G′|K′ ×∆1{0}. Since K′ is an ∞-category,
there exists a map r as indicated in the diagram such that G′′ = r ◦F ′′. We
note that r is a categorical equivalence, so that the commutativity of the
lower triangle p = q ◦ r follows automatically. We now define F ′ = G′ ◦ r and
note that part (2) of Lemma 4.3.2.6 implies that F ′ is a left Kan extension
of F ′|K×∆1{0}.

We have now introduced two different definitions of left Kan extensions:
Definition 4.3.2.2 which applies in the situation of an inclusion C0 ⊆ C of a
full subcategory into an ∞-category C, and Definition 4.3.3.2 which applies
in the case of a general map δ : K → K′ of simplicial sets. These two
definitions are essentially the same. More precisely, we have the following
assertion:

Proposition 4.3.3.5. Let C and D be ∞-categories and let δ : C0 → C

denote the inclusion of a full subcategory.

(1) Let f : C → D be a functor and f0 its restriction to C0, so that (f, idf0)
can be viewed as a left extension of f0 along δ. Then (f, idf0) is a left
Kan extension of f0 along δ if and only if f is a left Kan extension of
f0.

(2) A functor f0 : C0 → D has a left Kan extension if and only if it has a
left Kan extension along δ.

Proof. Let K denote the full subcategory of C×∆1 spanned by the objects
(C, {i}), where either C ∈ C0 or i = 1, so that we have inclusions

Mop(δ) ⊆ K ⊆ C×∆1.

To prove (1), suppose that f : C → D is a left Kan extension of f0 = f |C0

and let F denote the composite map

K ⊆ C×∆1 → C
f→ D .

It follows immediately that F is a left Kan extension of F |C0 ×{0}, so that
F |Mop(δ) is a left Kan extension of f0 along δ.

To prove (2), we observe that the “only if” direction follows from (1); the
converse follows from the existence criterion of Lemma 4.3.2.13.

Suppose that δ : K0 → K1 is a map of simplicial sets, that D is an ∞-
category, and that every diagram K0 → D admits a left Kan extension along
δ. Choose a diagram

Mop(δ)
j ��

���
��

��
��

��
K

����
��
��
��

∆1,
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where j is inner anodyne and K is an ∞-category, which we regard as a
correspondence from K0 = K×∆1{0} to K1 = K×∆1{1}. Let C denote
the full subcategory of Fun(K,D) spanned by those functors F : K → D

such that F is a left Kan extension of F0 = F |K0. The restriction map
p : C → Fun(K0,D) can be written as a composition of C → DK0

(a trivial
fibration by Proposition 4.3.2.15) and Fun(K0,D) → Fun(K0,D) (a trivial
fibration sinceK0 → K0 is inner anodyne) and is therefore a trivial fibration.
Let δ! be the composition of a section of p with the restriction map C ⊆
Fun(K,D) → Fun(Mop(δ),D) and let δ! denote the composition of δ! with
the restriction map Fun(M op(δ),D) → Fun(K1,D). Then δ! and δ! are well-
defined up to equivalence, at least once K has been fixed (independence of
the choice of K will follow from the characterization given in Proposition
4.3.3.7). We will abuse terminology by referring to both δ! and δ! as left
Kan extensions along δ (it should be clear from the context which of these
functors is meant in a given situation). We observe that δ! assigns to each
object f0 : K0 → D a left Kan extension of f0 along δ.

Example 4.3.3.6. Let C and D be ∞-categories and let i : C0 → C be the
inclusion of a full subcategory. Suppose that i! : Fun(C0,D) → Fun(C,D) is
a section of i∗, which satisfies the conclusion of Corollary 4.3.2.16. Then i!
is a left Kan extension along i in the sense defined above; this follows easily
from Proposition 4.3.3.5.

Left Kan extension functors admit the following characterization:

Proposition 4.3.3.7. Let δ : K0 → K1 be a map of simplicial sets, let D be
an ∞-category, let δ∗ : Fun(K1,D) → Fun(K0,D) be the restriction functor,
and let δ! : Fun(K0,D) → Fun(K1,D) be a functor of left Kan extension
along δ. Then δ! is a left adjoint of δ∗.

Proof. The map δ can be factored as a composition

K0 i→ Mop(δ) r→ K1

where r denotes the natural retraction of Mop(δ) onto K1. Consequently,
δ∗ = i∗◦r∗. Proposition 4.3.2.17 implies that the left Kan extension functor δ!
is a left adjoint to i∗. By Proposition 5.2.2.6, it will suffice to prove that r∗ is
a right adjoint to the restriction functor j∗ : Fun(Mop(δ),D) → Fun(K1,D).
Using Corollary 2.4.7.12, we deduce that j∗ is a coCartesian fibration. More-
over, there is a simplicial homotopy Fun(Mop(δ),D)×∆1 → Fun(Mop(δ),D)
from the identity to r∗ ◦ j∗, which is a fiberwise homotopy over Fun(K1,D).
It follows that for every object F of Fun(K1,D), r∗F is a final object of the
∞-category Fun(Mop(δ),D) ×Fun(K1,D) {F}. Applying Proposition 5.2.4.3,
we deduce that r∗ is right adjoint to j∗, as desired.

Let δ : K0 → K1 be a map of simplicial sets and D an ∞-category for
which the left Kan extension δ! : Fun(K0,D) → δ! Fun(K1,D) is defined. In
general, the terminology “Kan extension” is perhaps somewhat unfortunate:
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if F : K0 → D is a diagram, then δ∗δ!F need not be equivalent to F .
If δ is fully faithful, then the unit map F → δ∗δ!F is an equivalence: this
follows from Proposition 4.3.3.5. We will later need the following more precise
assertion:

Proposition 4.3.3.8. Let δ : C0 → C1 and f0 : C0 → D be functors between
∞-categories and let f1 : C1 → D, α : f0 → δ∗f1 = f1 ◦ δ be a left Kan
extension of f0 along δ. Let C be an object of C0 such that, for every C ′ ∈ C0,
the functor δ induces an isomorphism

MapC0(C ′, C) → MapC1(δC ′, δC)

in the homotopy category H. Then the morphism α(C) : f0(C) → f1(δC) is
an equivalence in D.

Proof. Choose a diagram

Mop(δ) G ��

���
��

��
��

��
M

��

F �� D

∆1,

where M is a correspondence from C0 to C1 associated to δ, F is a left Kan
extension of f0 = F |C0, and F ◦G is the map Mop(δ) → D determined by
f0, f1, and α. Let u : C → δC be the morphism in M given by the image of
{C} × ∆1 ⊆ Mop(δ) under G. Then α(C) = F (u), so it will suffice to prove
that F (u) is an equivalence. Since F is a left Kan extension of f0 at δC, the
composition

(C0
/δC)
 → M

F→ D

is a colimit diagram. Consequently, it will suffice to prove that u : C → δC
is a final object of C0

/δC . Consider the diagram

C0
/C ← C0

/u
q→ C0

/δC .

The ∞-category on the left has a final object idC , and the map on the left is
a trivial fibration of simplicial sets. We deduce that s0u is a final object of
C0
/u. Since q(s0u) = u ∈ C0

/δC , it will suffice to show that q is an equivalence
of ∞-categories. We observe that q is a map of right fibrations over C0.
According to Proposition 3.3.1.5, it will suffice to show that, for each object
C′ in C0, the map q induces a homotopy equivalence of Kan complexes

C0
/u×C0{C ′} → C0

/δC ×C0{C ′}.
This map can be identified with the map

MapC0(C′, C) → MapM(C ′, δC) � MapC1(δC ′, δC)

in the homotopy category H and is therefore a homotopy equivalence by
assumption.
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We conclude this section by proving that the construction of left Kan
extensions behaves well in families.

Lemma 4.3.3.9. Suppose we are given a commutative diagram

C0
q ��

i

���
��

��
��

C

p

��

F �� D

E

of ∞-categories, where p and q are coCartesian fibrations, i is the inclusion
of a full subcategory, and i carries q-coCartesian morphisms of C0 to p-
coCartesian morphisms of C. The following conditions are equivalent:

(1) The functor F is a left Kan extension of F |C0.

(2) For each object E ∈ E, the induced functor FE : CE → D is a left Kan
extension of FE |C0

E.

Proof. Let C be an object of C and let E = p(C). Consider the composition

(C0
E)
/C

G
→ (C0
/C)
 FC→ D .

We will show that FC is a colimit diagram if and only if FC ◦G
 is a colimit
diagram. For this, it suffices to show that the inclusion G : (C0

E)/C ⊆ C0
/C is

cofinal. According to Proposition 2.4.3.3, the projection p′ : C/C → E/E is a
coCartesian fibration, and a morphism

C′ f ��

��












C ′′

����
��
��
��

C

in C/C is p′-coCartesian if and only if f is p-coCartesian. It follows that p′

restricts to a coCartesian fibration C′
/C → E/E . We have a pullback diagram

of simplicial sets

(C0
E)/C

G ��

��

C0
/C

��
{idE} G0 �� E/E .

The right vertical map is smooth (Proposition 4.1.2.15) and G0 is right
anodyne, so that G is right anodyne, as desired.

Proposition 4.3.3.10. Let

X
p

���
��

��
��

δ �� Y

q
����
��
��
�

S
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be a commutative diagram of simplicial sets, where p and q are coCartesian
fibrations and δ carries p-coCartesian edges to q-coCartesian edges. Let f0 :
X → C be a diagram in an ∞-category C and let f1 : Y → C, α : f0 → f1 ◦ δ
be a left extension of f0. The following conditions are equivalent:

(1) The transformation α exhibits f1 as a left Kan extension of f0 along
δ.

(2) For each vertex s ∈ S, the restriction αs : f0|Xs → (f1 ◦ δ)|Xs exhibits
f1|Ys as a left Kan extension of f0|Xs along δs : Xs → Ys.

Proof. Choose an equivalence of simplicial categories C(S) → E, where E

is fibrant, and let [1] denote the linearly ordered set {0, 1} regarded as a
category. Let φ′ denote the induced map C(S×∆1) → E×[1]. Let M denote
the marked simplicial set

((Xop)� × (∆1)�)
∐

(Xop)�×{0}
(Y op)�.

Let St+φ : (Set+∆)(S×∆1)op → (Set+∆)E×[1] denote the straightening functor
defined in §3.2.1 and choose a fibrant replacement

St+φM → Z

in (Set+∆)E×[1]. Let S′ = N(E), so that S′ × ∆1 � N(E×[1]), and let ψ :
C(S′ × ∆1) → E×[1] be the counit map. Then

Un+
ψ (Z)

is a fibrant object of (Set+∆)/(S′×∆1)op , which we may identify with a co-
Cartesian fibration of simplicial sets M → S ′ × ∆1.

We may regard M as a correspondence from M0 = M×∆1{0} to M1 =
M×∆1{1}. By construction, we have a unit map

u : Mop(δ) → M×S′S.

Theorem 3.2.0.1 implies that the induced maps u0 : X → M0 ×S′S, u1 :
Y → M1 ×S′S are equivalences of coCartesian fibrations. Proposition 3.3.1.3
implies that the maps M0 ×S′S → M0, M1 ×S′S → M1 are categorical
equivalences.

Let u′ denote the composition
Mop(δ) u→ M×S′S → M

and let u′0 : X → M0, u′1 : Y → M1 be defined similarly. The above argument
shows that u′0 and u′1 are categorical equivalences. Consequently, the map
u′ is a quasi-equivalence of coCartesian fibrations over ∆1 and therefore a
categorical equivalence (Proposition 3.2.2.7). Replacing M by the product
M×K if necessary, where K is a contractible Kan complex, we may suppose
that u′ is a cofibration of simplicial sets. Since D is an ∞-category, there
exists a functor F : M → D as indicated in the diagram below:

Mop(δ)
(f0,f1,α) ��

��

D

M .

F

���������
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Consequently, we may reformulate condition (1) as follows:

(1′) The functor F is a left Kan extension of F |M0.

Proposition 3.3.1.5 now implies that, for each vertex s of S, the map
Xs → M0

s is a categorical equivalence. Similarly, for each vertex s of S, the
inclusion Ys → M1

s is a categorical equivalence. It follows that the inclusion
Mop(δ)s → Ms is a quasi-equivalence and therefore a categorical equivalence
(Proposition 3.2.2.7). Consequently, we may reformulate condition (2) as
follows:

(2′) For each vertex s ∈ S, the functor F |Ms is a left Kan extension of
F |M0

s.

Using Lemma 4.3.2.6, it is easy to see that the collection of objects s ∈ S′

such that F |Ms is a left Kan extension of F |M0
s is stable under equivalence.

Since the inclusion S ⊆ S′ is a categorical equivalence, we conclude that (2′)
is equivalent to the following apparently stronger condition:

(2′′) For every object s ∈ S′, the functor F |Ms is a left Kan extension of
F |M0

s.

The equivalence of (1′) and (2′′) follows from Lemma 4.3.3.9.

4.4 EXAMPLES OF COLIMITS

In this section, we will analyze in detail the colimits of some very simple di-
agrams. Our first three examples are familiar from classical category theory:
coproducts (§4.4.1), pushouts (§4.4.2), and coequalizers (§4.4.3).

Our fourth example is slightly more unfamiliar. Let C be an ordinary
category which admits coproducts. Then C is naturally tensored over the
category of sets. Namely, for each C ∈ C and S ∈ Set, we can define C ⊗ S
to be the coproduct of a collection of copies of C indexed by the set S. The
object C ⊗ S is characterized by the following universal mapping property:

HomC(C ⊗ S,D) � HomSet(S,HomC(C,D)).

In the ∞-categorical setting, it is natural to try to generalize this definition
by allowing S to be an object of S. In this case, C ⊗ S can again be viewed
as a kind of colimit but cannot be written as a coproduct unless S is discrete.
We will study the situation in §4.4.4.

Our final objective in this section is to study the theory of retracts in
an ∞-category C. In §4.4.5, we will see that there is a close relationship
between retracts in C and idempotent endomorphisms, just as in classical
homotopy theory. Namely, any retract of an object C ∈ C determines an
idempotent endomorphism of C; conversely, if C is idempotent complete,
then every idempotent endomorphism of C determines a retract of C. We
will return to this idea in §5.1.4.
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4.4.1 Coproducts

In this section, we discuss the simplest type of colimit: namely, coproducts.
Let A be a set; we may regard A as a category with

HomA(I, J) =

{
∗ if I = J

∅ if I �= J.

We will also identify A with the (constant) simplicial set which is the nerve
of this category. We note that a functor G : A → Set∆ is injectively fibrant
if and only if it takes values in the category Kan of Kan complexes. If this
condition is satisfied, then the product

∏
α∈AG(α) is a homotopy limit for

G.
Let F : A → C be a functor from A to a fibrant simplicial category; in

other words, F specifies a collection {Xα}α∈A of objects in C. A homotopy
colimit for F will be referred to as a homotopy coproduct of the objects
{Xα}α∈A. Unwinding the definition, we see that a homotopy coproduct is
an object X ∈ C equipped with morphisms φα : Xα → X such that the
induced map

MapC(X,Y ) →
∏
α∈A

MapC(Xα, Y )

is a homotopy equivalence for every object Y ∈ C. Consequently, we recover
the description given in Example 1.2.13.1. As we noted earlier, this character-
ization can be stated entirely in terms of the enriched homotopy category hC:
the maps {φα} exhibit X as a homotopy coproduct of the family {Xα}α∈A
if and only if the induced map

MapC(X,Y ) →
∏
α∈A

MapC(Xα, Y )

is an isomorphism in the homotopy category H of spaces for each Y ∈ C.
Now suppose that C is an ∞-category and let p : A → C be a map. As

above, we may identify this with a collection of objects {Xα}α∈A of C. To
specify an object of Cp/ is to give an object X ∈ C together with morphisms
φα : Xα → X for each α ∈ A. Using Theorem 4.2.4.1, we deduce that X is
a colimit of the diagram p if and only if the induced map

MapC(X,Y ) →
∏
α∈A

MapC(Xα, Y )

is an isomorphism in H for each object Y ∈ C. In this case, we say that X
is a coproduct of the family {Xα}α∈A.

In either setting, we will denote the (homotopy) coproduct of a family of
objects {Xα}α∈A by ∐

α∈A
XI .

It is well-defined up to (essentially unique) equivalence.
Using Corollary 4.2.3.10, we deduce the following:
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Proposition 4.4.1.1. Let C be an ∞-category and let {pα : Kα → C}α∈A
be a family of diagrams in C indexed by a set A. Suppose that each pα has
a colimit Xα in C. Let K =

∐
Kα and let p : K → C be the result of

amalgamating the maps pα. Then p has a colimit in C if and only if the
family {Xα}α∈A has a coproduct in C; in this case, one may identify colimits
of p with coproducts

∐
α∈AXα.

4.4.2 Pushouts

Let C be an ∞-category. A square in C is a map ∆1 × ∆1 → C. We will
typically denote squares in C by diagrams

X ′ p′ ��

q′

��

X

q

��
Y ′ p �� Y,

with the “diagonal” morphism r : X ′ → Y and homotopies r � q ◦ p′,
r � p ◦ q′ being implicit.

We have isomorphisms of simplicial sets

(Λ2
0)

 � ∆1 × ∆1 � (Λ2

2)
	.

Consequently, given a square σ : ∆1×∆1 → C, it makes sense to ask whether
or not σ is a limit or colimit diagram. If σ is a limit diagram, we will also
say that σ is a pullback square or a Cartesian square and we will informally
write X ′ = X ×Y Y

′. Dually, if σ is a colimit diagram, we will say that σ is
a pushout square or a coCartesian square, and write Y = X

∐
X′ Y ′.

Now suppose that C is a (fibrant) simplicial category. By definition, a
commutative diagram

X ′ p′ ��

q′

��

X

q

��
Y ′ p �� Y

is a homotopy pushout square if, for every object Z ∈ C, the diagram

MapC(Y,Z) ��

��

MapC(Y ′, Z)

��
MapC(X,Z) �� MapC(X ′, Z)

is a homotopy pullback square in Kan. Using Theorem 4.2.4.1, we can reduce
questions about pushout diagrams in an arbitrary ∞-category to questions
about homotopy pullback squares in Kan.

The following basic transitivity property for pushout squares will be used
repeatedly throughout this book:
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Lemma 4.4.2.1. Let C be an ∞-category and suppose we are given a map
σ : ∆2 × ∆1 → C which we will depict as a diagram

X ��

��

Y

��

�� Z

��
X ′ �� Y ′ �� Z ′.

Suppose that the left square is a pushout in C. Then the right square is a
pushout if and only if the outer square is a pushout.

Proof. For every subset A of {x, y, z, x′, y′, z′}, let D(A) denote the corre-
sponding full subcategory of ∆2 × ∆1 and let σ(A) denote the restriction of
σ to D(A). We may regard σ as determining an object σ̃ ∈ Cσ({y,z,x′,y′,z′})/.
Consider the maps

Cσ({z,x′,z′})/
φ← Cσ({y,z,x′,y′,z′})/

ψ→ Cσ({y,x′,y′})/ .

The map φ is the composition of the trivial fibration

Cσ({z,x′,y′,z′})/ → Cσ({z,x′,z′})/

with a pullback of

Cσ({y,z,y′,z′})/ → Cσ({z,y′,z′})/,

also a trivial fibration by virtue of our assumption that the square

Y

��

�� Z

��
Y ′ �� Z ′

is a pullback in C. The map ψ is a trivial fibration because the inclusion
D({y, x′, y′}) ⊆ D({y, z, x′, y′, z′}) is left anodyne. It follows that φ(σ̃) is
an initial object of Cσ({z,x′,z′})/ if and only if ψ(σ̃) is an initial object of
Cσ({y,x′,y′})/, as desired.

Our next objective is to apply Proposition 4.2.3.8 to show that in many
cases complicated colimits may be decomposed as pushouts of simpler co-
limits. Suppose we are given a pushout diagram of simplicial sets

L′ i ��

��

L

��
K ′ �� K

and a diagram p : K → C, where C is an ∞-category. Suppose furthermore
that p|K ′, p|L′, and p|L admit colimits in C, which we will denote by X, Y ,
and Z, respectively. If we suppose further that the map i is a cofibration of
simplicial sets, then the hypotheses of Proposition 4.2.3.4 are satisfied and
we can deduce the following:
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Proposition 4.4.2.2. Let C be an ∞-category and let p : K → C be a map
of simplicial sets. Suppose we are given a decomposition K = K ′ ∐

L′ L,
where L′ → L is a monomorphism of simplicial sets. Suppose further that
p|K ′ has a colimit X ∈ C, p|L′ has a colimit Y ∈ C, and p|L has a colimit
Z ∈ C. Then one may identify colimits for p with pushouts X

∐
Y Z.

Remark 4.4.2.3. The statement of Proposition 4.4.2.2 is slightly vague.
Implicit in the discussion is that identifications of X with the colimit of
p|K′ and Y with the colimit of p|L′ induce a morphism Y → X in C (and
similarly for Y and Z). This morphism is not uniquely determined, but it is
determined up to a contractible space of choices: see the proof of Proposition
4.2.3.4.

It follows from Proposition 4.4.2.2 that any finite colimit can be built using
initial objects and pushout squares. For example, we have the following:

Corollary 4.4.2.4. Let C be an ∞-category. Then C admits all finite co-
limits if and only if C admits pushouts and has an initial object.

Proof. The “only if” direction is clear. For the converse, let us suppose that
C has pushouts and an initial object. Let p : K → C be any diagram, where
K is a finite simplicial set: that is, K has only finitely many nondegenerate
simplices. We will prove that p has a colimit. The proof proceeds by induc-
tion: first on the dimension of K, then on the number of simplices of K
having the maximal dimension.

If K is empty, then an initial object of C is a colimit for p. Otherwise, we
may fix a nondegenerate simplex of K having the maximal dimension and
thereby decompose K � K0

∐
∂∆n ∆n. By the inductive hypothesis, p|K0

has a colimit X and p| ∂∆n has a colimit Y . The ∞-category ∆n has a final
object, so p|∆n has a colimit Z (which we may take to be p(v), where v is
the final vertex of ∆n). Now we simply apply Proposition 4.4.2.2 to deduce
that X

∐
Y Z is a colimit for p.

Using the same argument, one can show:

Corollary 4.4.2.5. Let f : C → C′ be a functor between ∞-categories.
Assume that C has all finite colimits. Then f preserves all finite colimits if
and only if f preserves initial objects and pushouts.

We conclude by showing how all colimits can be constructed out of simple
ones.

Proposition 4.4.2.6. Let C be an ∞-category which admits pushouts and
κ-small coproducts. Then C admits colimits for all κ-small diagrams.

Proof. If κ = ω, we have already shown this as Corollary 4.4.2.4. Let us
therefore suppose that κ > ω, and that C has pushouts and κ-small sums.

Let p : K → C be a diagram, where K is κ-small. We first suppose that
the dimension n of K is finite: that is, K has no nondegenerate simplices of
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dimension larger than n. We prove that p has a colimit, working by induction
on n.

If n = 0, then K consists of a finite disjoint union of fewer than κ vertices.
The colimit of p exists by the assumption that C has κ-small sums.

Now suppose that every diagram indexed by a κ-small simplicial set of
dimension n has a colimit. Let p : K → C be a diagram, with the dimension
of K equal to n+ 1. Let Kn denote the n-skeleton of K and K ′

n+1 ⊆ Kn+1

the set of all nondegenerate (n+1)-simplices of K, so that there is a pushout
diagram of simplicial sets

Kn
∐

K′
n+1×∂∆n+1

(K′
n+1 × ∆n+1) � K.

By Proposition 4.4.2.2, we can construct a colimit of p as a pushout using
colimits for p|Kn, p|(K ′

n+1 × ∂∆n+1), and p|(K ′
n+1 × ∆n+1). The first two

exist by the inductive hypothesis and the last because it is a sum of diagrams
which possess colimits.

Now let us suppose that K is not necessarily finite dimensional. In this
case, we can filterK by its skeleta {Kn}. This is a family of simplicial subsets
of K indexed by the set Z≥0 of nonnegative integers. By what we have shown
above, each p|Kn has a colimit xn in C. Since this family is directed and
covers K, Corollary 4.2.3.10 shows that we may identify colimits of p with
colimits of a diagram N(Z≥0) → C which we may write informally as

x0 → x1 → · · · .
Let L be the simplicial subset of N(Z≥0) which consists of all vertices to-

gether with the edges which join consecutive integers. A simple computation
shows that the inclusion L ⊆ N(Z≥0) is a categorical equivalence and there-
fore cofinal. Consequently, it suffices to construct the colimit of a diagram
L → C. But L is 1-dimensional and is κ-small since κ > ω.

The same argument also proves the following:

Proposition 4.4.2.7. Let κ be a regular cardinal and let f : C → D be
a functor between ∞-categories, where C admits κ-small colimits. Then f
preserves κ-small colimits if and only if f preserves pushout squares and
κ-small coproducts.

Let D be an ∞-category containing an object X and suppose that D

admits pushouts. Then DX/ admits pushouts, and these pushouts may be
computed in D. In other words, the projection f : DX/ → D preserves
pushouts. In fact, this is a special case of a very general result; it requires
only that f be a left fibration and that the simplicial set Λ2

0 be weakly
contractible.

Lemma 4.4.2.8. Let f : C → D be a left fibration of ∞-categories and let
K be a weakly contractible simplicial set. Then any map p : K
 → C is an
f-colimit diagram.
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Proof. Let p = p|K. We must show that the map

φ : Cp/ → Cp/×Df◦p/
Df◦p/

is a trivial fibration of simplicial sets. In other words, we must show that we
can solve any lifting problem of the form

(K  A)
∐
K�A0

(K
  A) ��
� �

��

C

f

��
K
  A ��

����������
D .

Since f is a left fibration, it will suffice to prove that the left vertical map is
left anodyne, which follows immediately from Lemma 4.2.3.5.

Proposition 4.4.2.9. Let f : C → D be a left fibration of ∞-categories and
let p : K → C be a diagram. Suppose that K is weakly contractible. Then

(1) Let p : K
 → C be an extension of p. Then p is a colimit of p if and
only if f ◦ p is a colimit of f ◦ p.

(2) Let q : K
 → D be a colimit of f ◦ p. Then q = f ◦ p, where p is an
extension (automatically a colimit by virtue of (1)) of p.

Proof. To prove (1), fix an extension p : K
 → C. We have a commutative
diagram

Cp/
φ �� Cp/×Dfp/

Dfp/
ψ′

��

��

Cp/

θ

��
Dfp/

ψ �� Dfp/ .

Lemma 4.4.2.8 implies that φ is a trivial Kan fibration. If f ◦ p is a colimit
diagram, the map ψ is a trivial fibration. Since ψ′ is a pullback of ψ, we
conclude that ψ′ is a trivial fibration. It follows that ψ′◦φ is a trivial fibration
so that p is a colimit diagram. This proves the “if” direction of (1).

To prove the converse, let us suppose that p is a colimit diagram. The
maps φ and ψ′ ◦ φ are both trivial fibrations. It follows that the fibers of
ψ′ are contractible. Using Lemma 4.2.3.6, we conclude that the map θ is a
trivial fibration, and therefore surjective on vertices. It follows that the fibers
of ψ are contractible. Since ψ is a left fibration with contractible fibers, it is
a trivial fibration (Lemma 2.1.3.4). Thus f ◦ p is a colimit diagram, and the
proof is complete.

To prove (2), it suffices to show that f has the right lifting property
with respect to the inclusion i : K ⊆ K
. Since f is a left fibration, it will
suffice to show that i is left anodyne, which follows immediately from Lemma
4.2.3.6.
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4.4.3 Coequalizers

Let I denote the category depicted by the diagram

X
F ��
G

�� Y.

In other words, I has two objects X and Y satisfying the conditions
HomI(X,X) = HomI(Y, Y ) = ∗

HomI(Y,X) = ∅ HomI(X,Y ) = {F,G}.
To give a diagram p : N(I) → C in an ∞-category C, one must give a pair

of morphisms f = p(F ), g = p(G) in C having the same domain x = p(X)
and the same codomain y = p(Y ). A colimit for the diagram p is said to be
a coequalizer of f and g.

Applying Corollary 4.2.3.10, we deduce the following:

Proposition 4.4.3.1. Let K and A be simplicial sets and let i0, i1 : A → K
be embeddings having disjoint images in K. Let K ′ denote the coequalizer of
i0 and i1: in other words, the simplicial set obtained from K by identifying
the image of i0 with the image of i1. Let p : K′ → C be a diagram in an
∞-category S and let q : K → C be the composition

K → K ′ p→ S.

Suppose that the diagrams q ◦ i0 = q ◦ i1 and q possess colimits x and y in
S. Then i0 and i1 induce maps j0, j1 : x → y (well-defined up to homotopy);
colimits for p may be identified with coequalizers of j0 and j1.

Like pushouts, coequalizers are a basic construction out of which other
colimits can be built. More specifically, we have the following:

Proposition 4.4.3.2. Let C be an ∞-category and κ a regular cardinal.
Then C has all κ-small colimits if and only if C has coequalizers and κ-small
coproducts.

Proof. The “only if” direction is obvious. For the converse, suppose that C

has coequalizers and κ-small coproducts. In view of Proposition 4.4.2.6, it
suffices to show that C has pushouts. Let p : Λ2

0 be a pushout diagram in C.
We note that Λ2

0 is the quotient of ∆{0,1} ∐
∆{0,2} obtained by identifying

the initial vertex of ∆{0,1} with the initial vertex of ∆{0,2}. In view of Propo-
sition 4.4.3.1, it suffices to show that p|(∆{0,1} ∐

∆{0,2}) and p|{0} possess
colimits in C. The second assertion is obvious. Since C has finite sums, to
prove that there exists a colimit for p|(∆{0,1} ∐

∆{0,2}), it suffices to prove
that p|∆{0,1} and p|∆{0,2} possess colimits in C. This is immediate because
both ∆{0,1} and ∆{0,2} have final objects.

Using the same argument, we deduce:

Proposition 4.4.3.3. Let κ be a regular cardinal and C be an ∞-category
which admits κ-small colimits. A full subcategory D ⊆ C is stable under κ-
small colimits in C if and only if D is stable under coequalizers and under
κ-small sums.
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4.4.4 Tensoring with Spaces

Every ordinary category C can be regarded as a category enriched over Set.
Moreover, if C admits coproducts, then C can be regarded as tensored over
Set in an essentially unique way. In the ∞-categorical setting, one has a
similar situation: if C is an ∞-category which admits all small limits, then C

may be regarded as tensored over the ∞-category S of spaces. To make this
idea precise, we would need a good theory of enriched ∞-categories, which
lies outside the scope of this book. We will instead settle for a slightly ad hoc
point of view which nevertheless allows us to construct the relevant tensor
products. We begin with a few remarks concerning representable functors in
the ∞-categorical setting.

Definition 4.4.4.1. Let D be a closed monoidal category and let C be a
category enriched over D. We will say that a D-enriched functor G : Cop → D

is representable if there exists an object C ∈ C and a map η : 1D → G(C)
such that the induced map

MapC(X,C) � MapC(X,C) ⊗ 1D → MapC(X,C) ⊗G(C) → G(X)

is an isomorphism for every object X ∈ C. In this case, we will say that
(C, η) represents the functor F .

Remark 4.4.4.2. In the situation of Definition 4.4.4.1, we will sometimes
abuse terminology and simply say that the functor F is represented by the
object C.

Remark 4.4.4.3. The dual notion of a corepresentable functor can be de-
fined in an obvious way.

Definition 4.4.4.4. Let C be an ∞-category and let S denote the ∞-
category of spaces. We will say that a functor F : Cop → S is representable
if the underlying functor

hF : hCop → hS � H

of (H-enriched) homotopy categories is representable. We will say that a pair
C ∈ C, η ∈ π0F (C) represents F if the pair (C, η) represents hF .

Proposition 4.4.4.5. Let f : C̃ → C be a right fibration of ∞-categories,
let C̃ be an object of C̃, let C = f(C̃) ∈ C, and let F : Cop → S be a functor
which classifies f (§3.3.2). The following conditions are equivalent:

(1) Let η ∈ π0F (C) � π0(C̃×C{C}) be the connected component containing
C̃. Then the pair (C, η) represents the functor F .

(2) The object C̃ ∈ C̃ is final.

(3) The inclusion {C̃} ⊆ C̃ is a contravariant equivalence in (Set∆)/C.
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Proof. We have a commutative diagram of right fibrations

C̃/ eC
φ ��

��

C̃

��
C/C �� C .

Observe that the left vertical map is actually a trivial fibration. Fix an object
D ∈ C. The fiber of the upper horizontal map

φD : C̃/ eC ×C {D} → C̃ ×C {D}
can be identified, in the homotopy category H, with the map MapC(D,C) →
F (C). The map φD is a right fibration of Kan complexes and therefore a Kan
fibration. If (1) is satisfied, then φD is a homotopy equivalence and therefore
a trivial fibration. It follows that the fibers of φ are contractible. Since φ is a
right fibration, it is a trivial fibration (Lemma 2.1.3.4). This proves that C̃
is a final object of C̃. Conversely, if (2) is satisfied, then φD is a trivial Kan
fibration and therefore a weak homotopy equivalence. Thus (1) ⇔ (2).

If (2) is satisfied, then the inclusion {C̃} ⊆ C̃ is right anodyne and there-
fore a contravariant equivalence by Proposition 4.1.2.1. Thus (2) ⇒ (3).
Conversely, suppose that (3) is satisfied. The inclusion {idC} ⊆ C/C is right
anodyne and therefore a contravariant equivalence. It follows that the lifting
problem

{idC} eC ��
� �

��

C̃

f

��
C/C ��

e

��%
%

%
%

%
C

has a solution. We observe that e is a contravariant equivalence of right
fibrations over C and therefore a categorical equivalence. By construction, e
carries a final object of C/C to C̃, so that C̃ is a final object of C̃.

We will say that a right fibration C̃ → C is representable if C̃ has a final
object.

Remark 4.4.4.6. Let C be an ∞-category and let p : K → C be a diagram.
Then the right fibration C/p → C is representable if and only if p has a limit
in C.

Remark 4.4.4.7. All of the above ideas dualize in an evident way, so that
we may speak of corepresentable functors and corepresentable left fibrations
in the setting of ∞-categories.

Notation 4.4.4.8. For each diagram p : K → C in an ∞-category C, we
let Fp : hC → H denote the H-enriched functor corresponding to the left
fibration Cp/ → C.
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If p : ∗ → C is the inclusion of an object X of C, then we write FX for Fp.
We note that FX is the functor corepresented by X:

FX(Y ) = MapC(X,Y ).

Now suppose that X is an object in an ∞-category C and let p : K → C

be a constant map taking the value X. For every object Y of C, we have an
isomorphism of simplicial sets (Cp/) ×C {Y } � (CX/×C{Y })K . This identi-
fication is functorial up to homotopy, so we actually obtain an equivalence

Fp(Y ) � MapC(X,Y )[K]

in the homotopy category H of spaces, where [K] denotes the simplicial set
K regarded as an object of H. Applying Proposition 4.4.4.5, we deduce the
following:

Corollary 4.4.4.9. Let C be an ∞-category, X an object of C, and K a
simplicial set. Let p : K → C be the constant map taking the value X.
The objects of the fiber Cp/×C{Y } are classified (up to equivalence) by maps
ψ : [K] → MapC(X,Y ) in the homotopy category H. Such a map ψ classifies
a colimit for p if and only if it induces isomorphisms

MapC(Y, Z) � MapC(X,Z)[K]

in the homotopy category H for every object Z of C.

In the situation of Corollary 4.4.4.9, we will denote a colimit for p by
X ⊗ K if such a colimit exists. We note that X ⊗ K is well-defined up to
(essentially unique) equivalence and that it depends (up to equivalence) only
on the weak homotopy type of the simplicial set K.

Corollary 4.4.4.10. Let C be an ∞-category, let K be a weakly contractible
simplicial set, and let p : K → C be a diagram which carries each edge of K
to an equivalence in C. Then

(1) The diagram p has a colimit in C.

(2) An arbitrary extension p : K
 → C is a colimit for C if and only if p
carries each edge of K
 → C to an equivalence in C.

Proof. Let C′ ⊆ C be the largest Kan complex contained in C. By assumption,
p factors through C′. Since K is weakly contractible, we conclude that p :
K → C′ is homotopic to a constant map p′ : K → C′. Replacing p by p′

if necessary, we may reduce to the case where p is constant, taking values
equal to some fixed object C ∈ C.

Let p : K
 → C be the constant map with value C. Using the characteri-
zation of colimits in Corollary 4.4.4.9, we deduce that p is a colimit diagram
in C. This proves (1) and (in view of the uniqueness of colimits up to equiva-
lence) the “only if” direction of (2). To prove the converse, we suppose that
p′ is an arbitrary extension of p which carries each edge of K
 to an equiv-
alence in C. Then p′ factors through C′. Since K
 is weakly contractible, we
conclude as above that p′ is homotopic to a constant map and is therefore a
colimit diagram.
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4.4.5 Retracts and Idempotents

Let C be a category. An object Y ∈ C is said to be a retract of an object
X ∈ C if there is a commutative diagram

X
r

���
��

��
��

Y
idY ��

i

���������
Y

in C. In this case we can identify Y with a subobject of X via the monomor-
phism i and think of r as a retraction from X onto Y ⊆ X. We observe also
that the map i ◦ r : X → X is idempotent. Moreover, this idempotent de-
termines Y up to canonical isomorphism: we can recover Y as the equalizer
of the pair of maps (idX , i ◦ r) : X → X (or, dually, as the coequalizer of
the same pair of maps). Consequently, we obtain an injective map from the
collection of isomorphism classes of retracts of X to the set of idempotent
maps f : X → X. We will say that C is idempotent complete if this cor-
respondence is bijective for every X ∈ C: that is, if every idempotent map
f : X → X comes from a (uniquely determined) retract of X. If C admits
equalizers (or coequalizers), then C is idempotent complete.

These ideas can be adapted to the ∞-categorical setting in a straightfor-
ward way. If X and Y are objects of an ∞-category C, then we say that Y
is a retract of X if it is a retract of X in the homotopy category hC. Equiva-
lently, Y is a retract of X if there exists a 2-simplex ∆2 → C corresponding
to a diagram

X
r

��












Y
idY ��

i

���������
Y.

As in the classical case, there is a correspondence between retracts Y of
X and idempotent maps f : X → X. However, there are two important
differences: first, the notion of an idempotent map needs to be interpreted
in an ∞-categorical sense. It is not enough to require that f = f ◦ f in the
homotopy category hC. This would correspond to the condition that there
is a path p joining f to f ◦ f in the endomorphism space of X, which would
give rise to two paths from f to f ◦f ◦f . In order to have a hope of recovering
Y , we need these paths to be homotopic. This condition does not even make
sense unless p is specified; thus we must take p as part of the data of an
idempotent map. In other words, in the ∞-categorical setting idempotence
is not merely a condition but involves additional data (see Definition 4.4.5.4).

The second important difference between the classical and ∞-categorical
theory of retracts is that in the ∞-categorical case one cannot recover a
retract Y of X as the limit (or colimit) of a finite diagram involving X.

Example 4.4.5.1. Let R be a commutative ring and let C•(R) be the
category of complexes of finite free R-modules, so that an object of C•(R)
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is a chain complex

· · · → M1 → M0 → M−1 → · · ·
such that each Mi is a finite free R-module and Mi = 0 for |i| � 0; mor-
phisms in C•(R) are given by morphisms of chain complexes. There is a
natural simplicial structure on the category C•(R) for which the mapping
spaces are Kan complexes; let C = N(C•(R)) be the associated ∞-category.
Then C admits all finite limits and colimits (C is an example of a stable ∞-
category; see [50]). However, C is idempotent complete if and only if every
finitely generated projective R-module is stably free.

The purpose of this section is to define the notion of an idempotent in
an ∞-category C and to obtain a correspondence between idempotents and
retracts in C.

Definition 4.4.5.2. The simplicial set Idem+ is defined as follows: for every
nonempty finite linearly ordered set J , HomSet∆(∆J , Idem+) can be iden-
tified with the set of pairs (J0,∼), where J0 ⊆ J and ∼ is an equivalence
relation on J0 which satisfies the following condition:

(∗) Let i ≤ j ≤ k be elements of J such that i, k ∈ J0 and i ∼ k. Then
j ∈ J0 and i ∼ j ∼ k.

Let Idem denote the simplicial subset of Idem+ corresponding to those
pairs (J0,∼) such that J = J0. Let Ret ⊆ Idem+ denote the simplicial
subset corresponding to those pairs (J0,∼) such that the quotient J0/ ∼ has
at most one element.

Remark 4.4.5.3. The simplicial set Idem has exactly one nondegenerate
simplex in each dimension n (corresponding to the equivalence relation ∼ on
{0, 1, . . . , n} given by (i ∼ j) ⇔ (i = j)), and the set of nondegenerate sim-
plices of Idem is stable under passage to faces. In fact, Idem is characterized
up to unique isomorphism by these two properties.

Definition 4.4.5.4. Let C be an ∞-category.

(1) An idempotent in C is a map of simplicial sets Idem → C. We will refer
to Fun(Idem,C) as the ∞-category of idempotents in C.

(2) A weak retraction diagram in C is a map of simplicial sets Ret → C. We
will refer to Fun(Ret,C) as the ∞-category of weak retraction diagrams
in C.

(3) A strong retraction diagram in C is a map of simplicial sets Idem+ → C.
We will refer to Fun(Idem+,C) as the ∞-category of strong retraction
diagrams in C.

We now spell out Definition 4.4.5.4 in more concrete terms. We first ob-
serve that Idem+ has precisely two vertices. Once of these vertices, which
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we will denote by x, belongs to Idem, and the other, which we will denote
by y, does not. The simplicial set Ret can be identified with the quotient of
∆2 obtained by collapsing ∆{0,2} to the vertex y. A weak retraction diagram
F : Ret → C in an ∞-category C can therefore be identified with a 2-simplex

X

���
��

��
��

Y

���������� idY �� Y,

where X = F (x) and Y = F (y). In other words, it is precisely the datum
that we need in order to exhibit Y as a retract ofX in the homotopy category
hC.

To give an idempotent F : Idem → C in C, it suffices to specify the image
under F of each nondegenerate simplex of Idem in each dimension n ≥ 0.
Taking n = 0, we obtain an object X = F (x) ∈ C. Taking n = 1, we get a
morphism f : X → X. Taking n = 2, we get a 2-simplex of C corresponding
to a diagram

X
f

��












X

f
��							 f �� X

which verifies the equation f = f ◦ f in the homotopy category hC. Taking
n > 2, we get higher-dimensional diagrams which express the idea that f is
not only idempotent “up to homotopy,” but “up to coherent homotopy.”

The simplicial set Idem+ can be thought of as “interweaving” its sim-
plicial subsets Idem and Ret, so that giving a strong retraction diagram
F : Idem+ → C is equivalent to giving a weak retraction diagram

X
r

���
��

��
��

Y

i

��������� idY �� Y

together with a coherently idempotent map f = i ◦ r : X → X. Our next
result makes precise the sense in which f is “determined” by Y .

Lemma 4.4.5.5. Let J ⊆ {0, . . . , n} and let K ⊆ ∆n be the simplicial
subset spanned by the nondegenerate simplices of ∆n which do not contain
∆J . Suppose that there exist 0 ≤ i < j < k ≤ n such that i, k ∈ J , j /∈ J .
Then the inclusion K ⊆ ∆n is inner anodyne.

Proof. Let P denote the collection of all subsets J ′ ⊆ {0, . . . , n} which con-
tain J ∪ {j}. Choose a linear ordering

{J(1) ≤ · · · ≤ J(m)}
of P with the property that if J(i) ⊆ J(j), then i ≤ j. Let

K(k) = K ∪
⋃

1≤i≤k
∆J(i).
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Note that there are pushout diagrams

ΛJ(i)
j

��

��

∆J(i)

��
K(i− 1) �� K(i).

It follows that the inclusions K(i− 1) ⊆ K(i) are inner anodyne. Therefore
the composite inclusion K = K(0) ⊆ K(m) = ∆n is also inner anodyne.

Proposition 4.4.5.6. The inclusion Ret ⊆ Idem+ is an inner anodyne map
of simplicial sets.

Proof. Let Retm ⊆ Idem+ be the simplicial subset defined so that (J0,∼) :
∆J → Idem+ factors through Retm if and only if the quotient J0/ ∼ has
cardinality ≤ m. We observe that there is a pushout diagram

K ��

��

∆2m

��
Retm−1

�� Retm,

whereK ⊆ ∆2m denote the simplicial subset spanned by those faces which do
not contain ∆{1,3,...,2m−1}. If m ≥ 2, Lemma 4.4.5.5 implies that the upper
horizontal arrow is inner anodyne, so that the inclusion Retm−1 ⊆ Retm is
inner anodyne. The inclusion Ret ⊆ Idem+ can be identified with an infinite
composition

Ret = Ret1 ⊆ Ret2 ⊆ · · ·
of inner anodyne maps and is therefore inner anodyne.

Corollary 4.4.5.7. Let C be an ∞-category. Then the restriction map

Fun(Idem+,C) → Fun(Ret,C)

from strong retraction diagrams to weak retraction diagrams is a trivial fi-
bration of simplicial sets. In particular, every weak retraction diagram in C

can be extended to a strong retraction diagram.

We now study the relationship between strong retraction diagrams and
idempotents in an ∞-category C. We will need the following lemma, whose
proof is somewhat tedious.

Lemma 4.4.5.8. The simplicial set Idem+ is an ∞-category.

Proof. Suppose we are given 0 < i < n and a map Λni → Idem+ correspond-
ing to a compatible family of pairs {(Jk,∼k)}k 
=i, where Jk ⊆ {0, . . . , k −
1, k + 1, . . . , n} and ∼k is an equivalence relation Jk defining an element of
HomSet∆(∆{0,...,k−1,k+1,...,n}, Idem+). Let J =

⋃
Jk and define a relation ∼

on J as follows: if a, b ∈ J , then a ∼ b if and only if either

(∃k �= i)[(a, b ∈ Jk) ∧ (a ∼k b)]
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or

(a �= b �= i �= a) ∧ (∃c ∈ Ja ∩ Jb)[(a ∼b c) ∧ (b ∼a c)].

We must prove two things: that (J,∼) ∈ HomSet∆(∆n, Idem+) and that the
restriction of (J,∼) to {0, . . . , k− 1, k+1, . . . , n} coincides with (Jk,∼k) for
k �= i.

We first check that ∼ is an equivalence relation. It is obvious that ∼ is
reflexive and symmetric. Suppose that a ∼ b and that b ∼ c; we wish to
prove that a ∼ c. There are several cases to consider:

• Suppose that there exists j �= i, k �= i such that a, b ∈ Jj , b, c ∈ Jk, and
a ∼j b ∼k c. If a �= k, then a ∈ Jk and a ∼k b, and we conclude that
a ∼ c by invoking the transitivity of ∼k. Therefore we may suppose
that a = k. By the same argument, we may suppose that b = j; we
therefore conclude that a ∼ c.

• Suppose that there exists k �= i with a, b ∈ Jk, that b �= c �= i �= b, and
that there exists d ∈ Jb ∩ Jc with a ∼k b ∼c d ∼b c. If a = b or a = c
there is nothing to prove; assume therefore that a �= b and a �= c. Then
a ∈ Jc and a ∼c b, so by transitivity a ∼c d. Similarly, a ∈ Jb and
a ∼b d so that a ∼b c by transitivity.

• Suppose that a �= b �= i �= a, b �= c �= i �= b, and that there exist
d ∈ Ja ∩ Jb and e ∈ Jb ∩ Jc such that a ∼b d ∼a b ∼c e ∼b c. It will
suffice to prove that a ∼b c. If c = d, this is clear; let us therefore
assume that c �= d. By transitivity, it suffices to show that d ∼b e.
Since c �= d, we have d ∈ Jc and d ∼c b, so that d ∼c e by transitivity
and therefore d ∼b e.

To complete the proof that (J,∼) belongs to HomSet∆(∆n, Idem+), we
must show that if a < b < c, a ∈ J , c ∈ J , and a ∼ c, then b ∈ J
and a ∼ b ∼ c. There are two cases to consider. Suppose first that there
exists k �= j such that a, c ∈ Jk and a ∼k c. These relations hold for any
k /∈ {i, a, c}. If it is possible to choose k �= b, then we conclude that b ∈ Jk
and a ∼k b ∼k c, as desired. Otherwise, we may suppose that the choices
k = 0 and k = n are impossible, so that a = 0 and c = n. Then a < i < c,
so that i ∈ Jb and a ∼b i ∼b c. Without loss of generality, we may suppose
b < i. Then a ∼c i, so that b ∈ Jc and a ∼c b ∼c i, as desired.

We now claim that (J,∼) : ∆n → Idem+ is an extension of the original
map Λni → Idem+. In other words, we claim that for k �= i, Jk = J ∩
{0, . . . , k − 1, k + 1, . . . , n} and ∼k is the restriction of ∼ to Jk. The first
claim is obvious. For the second, let us suppose that a, b ∈ Jk and a ∼ b.
We wish to prove that a ∼k b. It will suffice to prove that a ∼j b for any
j /∈ {i, a, b}. Since a ∼ b, either such a j exists or a �= b �= i �= a and there
exists c ∈ Ja∩Jb such that a ∼b c ∼a b. If there exists j /∈ {a, b, c, i}, then we
conclude that a ∼j c ∼j b and hence a ∼j b by transitivity. Otherwise, we
conclude that c = k �= i and that 0, n ∈ {a, b, c}. Without loss of generality,
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i < c; thus 0 ∈ {a, b} and we may suppose without loss of generality that
a < i. Since a ∼b c, we conclude that i ∈ Jb and a ∼b i ∼b c. Consequently,
i ∈ Ja and i ∼a c ∼a b, so that i ∼a b by transitivity and therefore i ∼c b.
We now have a ∼c i ∼c b, so that a ∼c b, as desired.

Remark 4.4.5.9. It is clear that Idem ⊆ Idem+ is the full simplicial subset
spanned by the vertex x and therefore an ∞-category as well.

According to Corollary 4.4.5.7, every weak retraction diagram

X

���
��

��
��

Y

��������� idY �� Y

in an ∞-category C can be extended to a strong retraction diagram F :
Idem+ → C, which restricts to give an idempotent in C. Our next goal is to
show that F is canonically determined by the restriction F | Idem.

Our next result expresses the idea that if an idempotent in C arises in this
manner, then F is essentially unique.

Lemma 4.4.5.10. The ∞-category Idem is weakly contractible.

Proof. An explicit computation shows that the topological space | Idem |
is connected, is simply connected, and has vanishing homology in degrees
greater than zero. Alternatively, we can deduce this from Proposition 4.4.5.15
below.

Lemma 4.4.5.11. The inclusion Idem ⊆ Idem+ is a cofinal map of simpli-
cial sets.

Proof. According to Theorem 4.1.3.1, it will suffice to prove that the sim-
plicial sets Idemx/ and Idemy/ are weakly contractible. The simplicial set
Idemx/ is an ∞-category with an initial object and therefore weakly con-
tractible. The projection Idemy/ → Idem is an isomorphism, and Idem is
weakly contractible by Lemma 4.4.5.10.

Proposition 4.4.5.12. Let C be an ∞-category and let F : Idem+ → C be
a strong retraction diagram. Then F is a left Kan extension of F | Idem.

Remark 4.4.5.13. Passing to opposite ∞-categories, it follows that a strong
retraction diagram F : Idem+ → C is also a right Kan extension of F | Idem.

Proof. We must show that the induced map

(Idem/y)
 → (Idem+
/y)


 G→ Idem+ F→ C

is a colimit diagram. Consider the commutative diagram

Idem/y ��

��

Idem+
/y

��
Idem �� Idem+ .
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The lower horizontal map is cofinal by Lemma 4.4.5.11, and the vertical
maps are isomorphisms: therefore the upper horizontal map is also cofinal.
Consequently, it will suffice to prove that F ◦G is a colimit diagram, which
is obvious.

We will say that an idempotent F : Idem → C in an ∞-category C is
effective if it extends to a map Idem+ → C. According to Lemma 4.3.2.13, F
is effective if and only if it has a colimit in C. We will say that C is idempotent
complete if every idempotent in C is effective.

Corollary 4.4.5.14. Let C be an ∞-category and let D ⊆ Fun(Idem,C) be
the full subcategory spanned by the effective idempotents in C. The restric-
tion map Fun(Idem+,C) → D is a trivial fibration. In particular, if C is
idempotent complete, then we have a diagram

Fun(Ret,C) ← Fun(Idem+,C) → Fun(Idem,C)

of trivial fibrations.

Proof. Combine Proposition 4.4.5.12 with Proposition 4.3.2.15.

By definition, an ∞-category C is idempotent complete if and only if every
idempotent Idem → C has a colimit. In particular, if C admits all small
colimits, then it is idempotent complete. As we noted above, this is not
necessarily true if C admits only finite colimits. However, it turns out that
filtered colimits do suffice: this assertion is not entirely obvious since the
∞-category Idem itself is not filtered.

Proposition 4.4.5.15. Let A be a linearly ordered set with no largest ele-
ment. Then there exists a cofinal map p : N(A) → Idem.

Proof. Let p : N(A) → Idem be the unique map which carries nondegen-
erate simplices to nondegenerate simplices. Explicitly, this map carries a
simplex ∆J → N(A) corresponding to a map s : J → A of linearly ordered
sets to the equivalence relation (i ∼ j) ⇔ (s(i) = s(j)). We claim that
p is cofinal. According to Theorem 4.1.3.1, it will suffice to show that the
fiber product N(A) ×Idem Idemx/ is weakly contractible. We observe that
N(A) ×Idem Idemx � N(A′), where A′ denotes the set A × {0, 1} equipped
with the partial ordering

(α, i) < (α′, j) ⇔ (j = 1) ∧ (α < α′).

For each α ∈ A, let A<α = {α′ ∈ A : α′ < α} and let

A′
α = {(α′, i) ∈ A′ : (α′ < α) ∨ ((α′, i) = (α, 1))}.

By hypothesis, we can write A as a filtered union
⋃
α∈AA<α. It therefore

suffices to prove that for each α ∈ A the map

f : N(A<α) ×Idem Idemx/ → N(A) ×Idem Idemx/

has a nullhomotopic geometric realization |f |. But this map factors through
N(A′

α), and |N(A′
α)| is contractible because A′

α has a largest element.
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Corollary 4.4.5.16. Let κ be a regular cardinal and suppose that C is an
∞-category which admits κ-filtered colimits. Then C is idempotent complete.

Proof. Apply Proposition 4.4.5.15 to the linearly ordered set consisting of
all ordinals less than κ (and observe that this linearly ordered set is κ-
filtered).



Chapter Five

Presentable and Accessible ∞-Categories

Many categories which arise naturally, such as the category A of abelian
groups, are large: they have a proper class of objects even when the ob-
jects are considered only up to isomorphism. However, though A itself is
large, it is in some sense determined by the much smaller category A0 of
finitely generated abelian groups: A is naturally equivalent to the category
of Ind-objects of A0. This remark carries more than simply philosophical
significance. When properly exploited, it can be used to prove statements
such as the following:

Proposition 5.0.0.1. Let F : A → Set be a contravariant functor from A

to the category of sets. Then F is representable by an object of A if and only
if it carries colimits in A to limits in Set.

Proposition 5.0.0.1 is valid not only for the category A of abelian groups
but for any presentable category: that is, any category which possesses all
(small) colimits and satisfies mild set-theoretic assumptions (such categories
are referred to as locally presentable in [1]). Our goal in this chapter is to
develop an ∞-categorical generalization of the theory of presentable cate-
gories and to obtain higher-categorical analogues of Proposition 5.0.0.1 and
related results (such as the adjoint functor theorem).

The most basic example of a presentable ∞-category is the ∞-category S

of spaces. More generally, we can define an ∞-category P(C) of presheaves
(of spaces) on an arbitrary small ∞-category C. We will study the proper-
ties of P(C) in §5.1; in particular, we will see that there exists a Yoneda
embedding j : C → P(C) which is fully faithful, just as in ordinary category
theory. Moreover, we give a characterization of P(C) in terms of C: it is freely
generated by the essential image of j under (small) colimits.

For every small ∞-category C, the ∞-category P(C) is presentable. Con-
versely, any presentable ∞-category can be obtained as a localization of some
presheaf ∞-category P(C) (Proposition 5.5.1.1). To make sense of this state-
ment, we need a theory of localizations of ∞-categories. We will develop such
a theory in §5.2 as part of a more general theory of adjoint functors between
∞-categories.

In §5.3, we will introduce, for every small ∞-category C, an ∞-category
Ind(C) of Ind-objects of C. Roughly speaking, this is an ∞-category which
is obtained from C by freely adjoining colimits for all filtered diagrams. It
is characterized up to equivalence by the fact that Ind(C) contains a full
subcategory equivalent to C, which generates Ind(C) under filtered colimits
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and consists of compact objects.
The construction of Ind-categories will be applied in §5.4 to the study of

accessible ∞-categories. Roughly speaking, an ∞-category C is accessible if
it is generated under (sufficiently) filtered colimits by a small subcategory
C0 ⊆ C. We will prove that the class of accessible ∞-categories is stable under
various categorical constructions. Results of this type will play an important
technical role later in this book: they generally allow us to dispense with the
set-theoretic aspects of an argument (such as cardinality estimation) and to
focus instead on the more conceptual aspects.

We will say that an ∞-category C is presentable if C is accessible and
admits (small) colimits. In §5.5, we will describe the theory of presentable ∞-
categories in detail. In particular, we will generalize Proposition 5.0.0.1 to the
∞-categorical setting and prove an analogue of the adjoint functor theorem.
We will also study localizations of presentable ∞-categories following ideas
of Bousfield. The theory of presentable ∞-categories will play a vital role in
the study of ∞-topoi, which is the subject of the next chapter.

5.1 ∞-CATEGORIES OF PRESHEAVES

The category of sets plays a central role in classical category theory. The pri-
mary reason for this is Yoneda’s lemma, which asserts that for any category
C, the Yoneda embedding

j : C → SetCop

C �→ HomC(•, C)

is fully faithful. Consequently, objects in C can be thought of as a kind
of “generalized sets,” and various questions about the category C can be
reduced to questions about the category of sets.

If C is an ∞-category, then the mapping sets of the above discussion should
be replaced by mapping spaces. Consequently, one should expect the Yoneda
embedding to take values in presheaves of spaces rather than in presheaves
of sets. To formalize this, we introduce the following notation:

Definition 5.1.0.1. Let S be a simplicial set. We let P(S) denote the sim-
plicial set Fun(Sop, S); here S denotes the ∞-category of spaces defined in
§1.2.16. We will refer to P(S) as the ∞-category of presheaves on S.

Remark 5.1.0.2. More generally, for any ∞-category C, we might refer to
Fun(Sop,C) as the ∞-category of C-valued presheaves on S. Unless otherwise
specified, the word “presheaf” will always refer to a S-valued presheaf. This
is somewhat nonstandard terminology: one usually understands the term
“presheaf” to refer to a presheaf of sets rather than to a presheaf of spaces.
The shift in terminology is justified by the fact that the important role of Set
in ordinary category theory is taken on by S in the ∞-categorical setting.
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Our goal in this section is to establish the basic properties of P(S). We
begin in §5.1.1 by reviewing two other possible definitions of P(S): one via
the theory of right fibrations over S, another via simplicial presheaves on
the category C[S]. Using the “straightening” results of §2.2.3 and §4.2.4, we
will show that all three of these definitions are equivalent.

The presheaf ∞-categories P(S) are examples of presentable ∞-categories
(see §5.5). In particular, each P(S) admits small limits and colimits. We will
give a proof of this assertion in §5.1.2 by reducing to the case where S is a
point.

The main question regarding the ∞-category P(S) is how it relates to the
original simplicial set S. In §5.1.3, we will construct a map j : S → P(S),
which is an ∞-categorical analogue of the usual Yoneda embedding. Just
as in classical category theory, the Yoneda embedding is fully faithful. In
particular, we note that any ∞-category C can be embedded in a larger
∞-category which admits limits and colimits; this observation allows us to
construct an idempotent completion of C, which we will study in §5.1.4.

In §5.1.5, we will characterize the ∞-category P(S) in terms of the Yoneda
embedding j : S → P(S). Roughly speaking, we will show that P(S) is
freely generated by S under colimits (Theorem 5.1.5.6). In particular, if C

is a category which admits colimits, then any diagram f : S → C extends
uniquely (up to homotopy) to a functor F : P(S) → C. In §5.1.6, we will give
a criterion for determining whether or not F is an equivalence.

5.1.1 Other Models for P(S)

Let S be a simplicial set. We have defined the ∞-category P(S) of presheaves
on S to be the mapping space Fun(Sop, S). However, there are several equiv-
alent models which would serve equally well; we discuss two of them in this
section.

Let P′
∆(S) denote the full subcategory of (Set∆)/S spanned by the right

fibrations X → S. We define P′(S) to be the simplicial nerve N(P′
∆(S)).

Because P′
∆(S) is a fibrant simplicial category, P′(S) is an ∞-category. We

will see in a moment that P′(S) is (naturally) equivalent to P(S). In order
to do this, we need to introduce a third model.

Let φ : C[S]op → C be an equivalence of simplicial categories. Let SetC
∆

denote the category of simplicial functors C → Set∆ (which we may view as
simplicial presheaves on Cop). We regard SetC

∆ as being endowed with the
projective model structure defined in §A.3.3. With respect to this structure,
SetC

∆ is a simplicial model category; we let P′′
∆(φ) = (SetC

∆)◦ denote the full
simplicial subcategory consisting of fibrant-cofibrant objects, and we define
P′′(φ) to be the simplicial nerve N(P′′

∆(φ)).
We are now ready to describe the relationship between these different

models:

Proposition 5.1.1.1. Let S be a simplicial set and let φ : C[S]op → C be an
equivalence of simplicial categories. Then there are (canonical) equivalences
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of ∞-categories

P(S) f← P′′(φ)
g→ P′(S).

Proof. The map f was constructed in Proposition 4.2.4.4; it therefore suffices
to give a construction of g. We will regard the category (Set∆)/S of simplicial
sets over S as endowed with the contravariant model structure defined in
§2.1.4. This model structure is simplicial (Proposition 2.1.4.8) and the fibrant
objects are precisely the right fibrations over S (Corollary 2.2.3.12). Thus, we
may identify P′

∆(S) with the simplicial category (Set∆)◦/S of fibrant-cofibrant
objects of (Set∆)/S .

According to Theorem 2.2.1.2, the straightening and unstraightening func-
tors (Stφ,Unφ) determine a Quillen equivalence between the model cat-
egories (Set∆)C and (Set∆)/S . Moreover, for any X ∈ (Set∆)/S and any
simplicial set K, there is a natural chain of equivalences

Stφ(X ×K) → (StφX) ⊗ |K|Q• → (StφX) ⊗K.

(The fact that the first map is an equivalence follows easily from Proposition
3.2.1.13.) It follows from Proposition A.3.1.10 that Unφ is endowed with the
structure of a simplicial functor and induces an equivalence of simplicial
categories

(SetC
∆)◦ → (Set∆)◦/S .

We obtain the desired equivalence g by passing to the simplicial nerve.

5.1.2 Colimits in ∞-Categories of Functors

Let S be an arbitrary simplicial set. Our goal in this section is to prove that
the ∞-category P(S) of presheaves on S admits small limits and colimits.
There are (at least) three approaches to proving this:

(1) According to Proposition 5.1.1.1, we may identify P(S) with the ∞-
category underlying the simplicial model category SetC[S]op

∆ . We can
then deduce the existence of limits and colimits in P(S) by invoking
Corollary 4.2.4.8.

(2) Since the ∞-category S classifies left fibrations, the ∞-category P(S)
classifies left fibrations over Sop: in other words, homotopy classes of
maps K → P(S) can be identified with equivalence classes of left fi-
brations X → K × Sop. It is possible to generalize Proposition 3.3.4.5
and Corollary 3.3.3.3 to describe limits and colimits in P(S) entirely
in the language of left fibrations. The existence problem can then be
solved by exhibiting explicit constructions of left fibrations.

(3) Applying either (1) or (2) in the case where S is a point, we can de-
duce that the ∞-category S � P(∗) admits limits and colimits. We can
then attempt to deduce the same result for P(S) = Fun(Sop, S) us-
ing a general result about (co)limits in functor categories (Proposition
5.1.2.2).
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Although approach (1) is probably the quickest, we will adopt approach
(3) because it gives additional information: our proof will show that limits
and colimits in P(S) can be computed pointwise. The same proof will also
apply to ∞-categories of C-valued presheaves in the case where C is not
necessarily the ∞-category S of spaces.

Lemma 5.1.2.1. Let q : Y → S be a Cartesian fibration of simplicial
sets and let C = MapS(S, Y ) denote the ∞-category of sections of q. Let
p : S → Y be an object of C having the property that p(s) is an initial object
of the fiber Ys for each vertex s of S. Then p is an initial object of C.

Proof. By Proposition 4.2.2.4, the map Y pS/ → S is a Cartesian fibration.
By hypothesis, for each vertex s of S, the map Y pS/ ×S {s} → Ys is a
trivial fibration. It follows that the projection Y pS/ → Y is an equivalence
of Cartesian fibrations over S and therefore a categorical equivalence; taking
sections over S, we obtain another categorical equivalence

MapS(S, Y pS/) → MapS(Y, S).

But this map is just the left fibration j : Cp/ → C; it follows that j is a
categorical equivalence. Applying Propostion 3.3.1.5 to the diagram

Cp/

j

��














j �� C

idC''11
11
11
11

C,

we deduce that j induces categorical equivalences Cp/×C{t} → {t} for each
vertex t of Q. Thus the fibers of j are contractible Kan complexes, so that
j is a trivial fibration (by Lemma 2.1.3.4) and p is an initial object of C, as
desired.

Proposition 5.1.2.2. Let K be a simplicial set, q : X → S a Cartesian
fibration, and p : K → MapS(S,X) a diagram. For each vertex s of S, we
let ps : K → Xs be the induced map. Suppose, furthermore, that each ps has
a colimit in the ∞-category Xs. Then

(1) There exists a map p : K � ∆0 → MapS(S,X) which extends p and
induces a colimit diagram p : K � ∆0 → Xs for each vertex s ∈ S.

(2) An arbitrary extension p : K � ∆0 → MapS(S,X) of p is a colimit for
p if and only if each ps : K � ∆0 → Xs is a colimit for ps.

Proof. Choose a factorization K → K ′ → MapS(S,X) of p, where K → K′

is inner anodyne (and therefore a categorical equivalence) and K′ → CS is
an inner fibration (so that K ′ is an ∞-category). The map K → K ′ is a
categorical equivalence and therefore cofinal. We are free to replace K by K ′

and may thereby assume that K is an ∞-category.
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We apply Proposition 4.2.2.7 to the Cartesian fibration X → S and the
diagram pS : K × S → X determined by the map p. We deduce that there
exists a map

pS : (K × S) �S S = (K � ∆0) × S → X

having the property that its restriction to the fiber over each s ∈ S is a
colimit of ps; this proves (1).

The “if” direction of (2) follows immediately from Lemma 5.1.2.1. The
“only if” direction follows from (1) and the fact that colimits, when they
exist, are unique up to equivalence.

Corollary 5.1.2.3. Let K and S be simplicial sets and let C be an ∞-
category which admits K-indexed colimits. Then

(1) The ∞-category Fun(S,C) admits K-indexed colimits.

(2) A map K
 → Fun(S,C) is a colimit diagram if and only if, for each
vertex s ∈ S, the induced map K
 → C is a colimit diagram.

Proof. Apply Proposition 5.1.2.2 to the projection C×S → S.

Corollary 5.1.2.4. Let S be a simplicial set. The ∞-category P(S) of pre-
sheaves on S admits all small limits and colimits.

5.1.3 Yoneda’s Lemma

In this section, we will construct the ∞-categorical analogue of the Yoneda
embedding and prove that it is fully faithful. We begin with a somewhat
naive approach based on the formalism of simplicial categories. We note
that an analogue of Yoneda’s Lemma is valid in enriched category theory
(with the usual proof). Namely, suppose that C is a category enriched over
another category E. Then there is an enriched Yoneda embedding

i : C → ECop

X �→ MapC(•, X).

Consequently, for any simplicial category C, one obtains a fully faithful
embedding i of C into the simplicial category MapCat∆(Cop, Set∆) of simpli-
cial functors from Cop into Set∆. In fact, i is fully faithful in the strong sense
that it induces isomorphisms of simplicial sets

MapC(X,Y ) → MapSetCop

∆
(i(X), i(Y ))

rather than merely weak homotopy equivalences. Unfortunately, this asser-
tion does not necessarily have any ∞-categorical content because the sim-
plicial category SetCop

∆ does not generally represent the correct ∞-category
of functors from Cop to Set∆.
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Let us describe an analogous construction in the setting of ∞-categories.
Let K be a simplicial set and set C = C[K]. Then C is a simplicial category,
so

(X,Y ) �→ Sing |HomC(X,Y )|
determines a simplicial functor from Cop×C to the category Kan. The func-
tor C does not commute with products, but there exists a natural map
C[Kop × K] → Cop×C. Composing with this map, we obtain a simplicial
functor C[Kop ×K] → Kan . Passing to the adjoint, we get a map of simpli-
cial sets Kop ×K → S, which we can identify with

j : K → Fun(Kop, S) = P(K).

We shall refer to j (or more generally, to any functor equivalent to j) as the
Yoneda embedding.

Proposition 5.1.3.1 (∞-Categorical Yoneda Lemma). Let K be a simpli-
cial set. Then the Yoneda embedding j : K → P(K) is fully faithful.

Proof. Let C′ = Sing |C[Kop]| be the “fibrant replacement” for C = C[Kop].
We endow SetC′

∆ with the projective model structure described in §A.3.3.
We note that the Yoneda embedding factors as a composition

K
j′→ N((SetC′

∆ )◦)
j′′→ Fun(Kop, S),

where j′′ is the map of Proposition 4.2.4.4 and consequently a categorical
equivalence. It therefore suffices to prove that j′ is fully faithful. For this,
we need only show that the adjoint map

J : C[K] → SetC′
∆

is a fully faithful functor between simplicial categories. We now observe that
J is the composition of an equivalence C[K] → (C′)op with the (simplicially
enriched) Yoneda embedding (C′)op → SetC′

∆ , which is fully faithful by virtue
of the classical (enriched) version of Yoneda’s Lemma.

We conclude by establishing another pleasant property of the Yoneda em-
bedding:

Proposition 5.1.3.2. Let C be a small ∞-category and j : C → P(C) the
Yoneda embedding. Then j preserves all small limits which exist in C.

Proof. Let p : K → C be a small diagram having a limit in C. We wish to
show that j carries any limit for p to a limit of j ◦ p. Choose a category I

and a cofinal map N(Iop) → Kop (the existence of which is guaranteed by
Proposition 4.2.3.14). Replacing K by N(I), we may suppose that K is the
nerve of a category. Let p : N(I)	 → C be a limit for p.

We recall the definition of the Yoneda embedding. It involves the choice of
an equivalence C[C] → D, where D is a fibrant simplicial category. For defi-
niteness, we took D to be Sing |C[C]|. However, we could just as well choose
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some other fibrant simplicial category D′ equivalent to C[C] and obtain a
“modified” Yoneda embedding j′ : C → P(C); it is easy to see that j′ and j
are equivalent functors, so it suffices to show that j′ preserves the limit of p.
Using Corollary 4.2.4.7, we may suppose that p is obtained from a functor
between simplicial categories q : {x}  I → D by passing to the nerve. Ac-
cording to Theorem 4.2.4.1, q is a homotopy limit of q = q| I. Consequently,
for each object Z ∈ D, the induced functor

qZ : I �→ HomD(Z, q(I))

is a homotopy limit of qZ = qZ | I. Taking Z to be the image of an object C
of C, we deduce that

N(I)	 → C
j′→ P(C) → S

is a limit for its restriction to N(I), where the map on the right is given by
evaluation at C. Proposition 5.1.2.2 now implies that j′◦p is a limit for j′◦p,
as desired.

5.1.4 Idempotent Completions

Recall that an ∞-category C is said to be idempotent complete if every functor
Idem → C admits a colimit in C (see §4.4.5). If an ∞-category C is not
idempotent complete, then we can attempt to correct the situation by passing
to a larger ∞-category.

Definition 5.1.4.1. Let f : C → D be a functor between ∞-categories.
We will say that f exhibits D as an idempotent completion of C if D is
idempotent complete, f is fully faithful, and every object of D is a retract
of f(C) for some object C ∈ C.

Our goal in this section is to show that ∞-category C has an idempotent
completion D which is unique up to equivalence. The uniqueness is a conse-
quence of Proposition 5.1.4.9 below. The existence question is much easier
to address.

Proposition 5.1.4.2. Let C be an ∞-category. Then C admits an idempo-
tent completion.

Proof. Enlarging the universe if necessary, we may suppose that C is small.
Let C′ denote the full subcategory of P(C) spanned by those objects which
are retracts of objects which belong to the image of the Yoneda embedding
j : C → P(C). Then C′ is stable under retracts in P(C). Since P(C) admits all
small colimits, Corollary 4.4.5.16 implies that P(C) is idempotent complete.
It follows that C′ is idempotent complete. Proposition 5.1.3.1 implies that
the Yoneda embedding j : C → C′ is fully faithful and therefore exhibits C′

as an idempotent completion of C.

We now address the question of uniqueness for idempotent completions.
First, we need a few preliminary results.
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Lemma 5.1.4.3. Let C be an ∞-category which is idempotent complete and
let p : K → C be a diagram. Then C/p and Cp/ are also idempotent complete.

Proof. By symmetry, it will suffice to prove that C/p is idempotent complete.
Let q : C/p → C be the associated right fibration and let F : Idem → C/p
be an idempotent. We will show that F has a limit. Since C is idempotent
complete, q ◦ F has a limit q ◦ F : Idem	 → C. Consider the lifting problem

Idem

��

F �� C/p

q

��
Idem	

q◦F ��

F
���

�
�

�
C .

The right vertical map is a right fibration, and the left vertical map is right
anodyne (Lemma 4.2.3.6), so that there exists a dotted arrow F as indicated.
Using Proposition 4.4.2.9, we deduce that F is a limit of F .

Lemma 5.1.4.4. Let f : C → D be a functor between ∞-categories which
exhibits D as an idempotent completion of C and let p : K → D be a diagram.
Then the induced map f/p : C×D D/p → D/p exhibits D/p as an idempotent
completion of C×D D/p.

Proof. Lemma 5.1.4.3 asserts that D/p is idempotent complete. We must
show that every object D ∈ D/p is a retract of f/p(C) for some C ∈
C×D D/p. Let q : D/p → D be the projection and set D = q(D). Since
f exhibits D as an idempotent completion of C, there is a diagram

f(C)

���
��

��
��

�

D′ g ��

		��������
D

in D, where g is an equivalence. Since q is a right fibration, we can lift this
to a diagram

f(C)

���
��

��
��

�

D
′ g ��

��%%%%%%%%
D

in D/q. Since g is q-Cartesian and g is an equivalence, g is an equivalence.
It follows that D is a retract of f(C). By construction, f(C) = f/p(C) for
an appropriately chosen object C ∈ C×D D/p.

Lemma 5.1.4.5. Let f : C → D be a functor between ∞-categories which
exhibits D as an idempotent completion of C. Suppose that D has an initial
object ∅. Then C is weakly contractible as a simplicial set.
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Proof. Without loss of generality, we may suppose that C is a full subcate-
gory of D and that f is the inclusion. Since f exhibits D as an idempotent
completion of C, the initial object ∅ of D admits a map f : C → ∅, where
C ∈ C. The ∞-category CC/ has an initial object and is therefore weakly
contractible. Since composition

Cf/ → CC/ → C

is both a weak homotopy equivalence (in fact, a trivial fibration) and weakly
nullhomotopic, we conclude that C is weakly contractible.

Lemma 5.1.4.6. Let f : C → D be a functor between ∞-categories which
exhibits D as an idempotent completion of C. Then f is cofinal.

Proof. According to Theorem 4.1.3.1, it suffices to prove that for every object
D ∈ D, the simplicial set C×D DD/ is weakly contractible. Lemma 5.1.4.4
asserts that fD/ is also an idempotent completion, and Lemma 5.1.4.5 com-
pletes the proof.

Lemma 5.1.4.7. Let F : C → D be a functor between ∞-categories and
let C0 ⊆ C be a full subcategory such that the inclusion exhibits C as an
idempotent completion of C0. Then F is a left Kan extension of F |C0.

Proof. We must show that for every object C ∈ C, the composite map

(C0
/C)
 → (C/C)
 G→ C

F→ D

is a colimit diagram in D. Lemma 5.1.4.4 guarantees that C0
/C ⊆ C/C is

an idempotent completion and therefore cofinal by Lemma 5.1.4.6. Conse-
quently, it suffices to prove that F ◦ G is a colimit diagram, which is obvi-
ous.

Lemma 5.1.4.8. Let C and D be ∞-categories which are idempotent com-
plete and let C0 ⊆ C be a full subcategory such that the inclusion exhibits C

as an idempotent completion of C0. Then any functor F0 : C0 → D has an
extension F : C → D.

Proof. We will suppose that the ∞-categories C and D are small. Let P(D) be
the ∞-category of presheaves on D (see §5.1), j : D → P(D) the Yoneda em-
bedding, and D′ the essential image of j. According to Proposition A.2.3.1,
it will suffice to prove that j ◦ F0 can be extended to a functor F ′ : C → D′.
Since P(D) admits small colimits, we can choose F ′ : C → P(D) to be a left
Kan extension of j ◦ F0. Every object of C is a retract of an object of C0,
so that every object in the essential image of F ′ is a retract of the Yoneda
image of an object of D. Since D is idempotent complete, it follows that the
F ′ factors through D′.

Proposition 5.1.4.9. Let f : C → D be a functor which exhibits D as the
idempotent completion of C and let E be an ∞-category which is idempotent
complete. Then composition with f induces an equivalence of ∞-categories
f∗ : Fun(D,E) → Fun(C,E).
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Proof. Without loss of generality, we may suppose that f is the inclusion of
a full subcategory. In this case, we combine Lemma 5.1.4.7, Lemma 5.1.4.8,
and Proposition 4.3.2.15 to deduce that f∗ is a trivial fibration.

Remark 5.1.4.10. Let C be a small ∞-category and let f : C → C′ be an
idempotent completion of C. The proof of Proposition 5.1.4.2 shows that C′

is equivalent to a full subcategory of P(C) and therefore locally small (see
§5.4.1). Moreover, every object of hC′ is the image of some retraction map in
hC; it follows that the set of equivalence classes of objects in C′ is bounded
in size. It follows that C′ is essentially small.

5.1.5 The Universal Property of P(S)

Let S be a (small) simplicial set. We have defined P(S) to be the ∞-category
of maps from Sop into the ∞-category S of spaces. Informally, we may view
P(S) as the limit of a diagram in the ∞-bicategory of (large) ∞-categories:
namely, the constant diagram carrying Sop to S. In more concrete terms,
our definition of P(S) leads immediately to a characaterization of P(S) by a
universal mapping property: for every ∞-category C, there is an equivalence
of ∞-categories (in fact, an isomorphism of simplicial sets)

Fun(C,P(S)) � Fun(C×Sop, S).

The goal of this section is to give a dual characterization of P(S): it may also
be viewed as a colimit of copies of S indexed by S. However, this colimit needs
to be understood in an appropriate ∞-bicategory of ∞-categories where the
morphisms are given by colimit-preserving functors. In other words, we will
show that P(S) is in some sense “freely generated” by S under small colimits
(Theorem 5.1.5.6). First, we need to introduce a bit of notation.

Notation 5.1.5.1. Let C be an ∞-category and S a simplicial set. We will
let FunL(P(S),C) denote the full subcategory of Fun(P(S),C) spanned by
those functors P(S) → C which preserve small colimits.

The motivation for this notation is as follows: in §5.2.6, we will use the
notation FunL(D,C) to denote the full subcategory of Fun(D,C) spanned
by those functors which are left adjoints. In §5.5.2, we will see that when
D = P(S) (or more generally, when D is presentable), then a functor D → C

is a left adjoint if and only if it preserves small colimits (see Corollary 5.5.2.9
and Remark 5.5.2.10).

We wish to prove that if C is an ∞-category which admits small colimits,
then any map S → C extends in an essentially unique fashion to a colimit-
preserving functor P(S) → C. To prove this, we need a second characteri-
zation of the colimit-preserving functors f : P(S) → C: they are precisely
those functors which are left Kan extensions of their restriction to the es-
sential image of the Yoneda embedding.

Lemma 5.1.5.2. Let S be a small simplicial set, let s be a vertex of S, let
e : P(S) → S be the map given by evaluation at s, and let f : C → P(S)
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be the associated left fibration (see §3.3.2). Then f is corepresentable by the
object j(s) ∈ P(S), where j : S → P(S) denotes the Yoneda embedding.

Proof. Without loss of generality, we may suppose that S is an ∞-category.
We make use of the equivalent model P′(S) of §5.1.1. Observe that the
functor f : P(S) → S is equivalent to f ′ : P′(S) → S, where f ′ is the nerve of
the simplicial functor P′

∆(S) → Kan which associates to each left fibration
Y → S the fiber Ys = Y ×S {s}. Furthermore, under the equivalence of P(S)
with P′(S), the object j(s) corresponds to a left fibration X(s) → S which is
corepresented by s. Then X(s) contains an initial object x lying over s. The
choice of x determines a point η ∈ π0f

′(X(s)). According to Proposition
4.4.4.5, to show that X(s) corepresents f ′, it suffices to show that for every
left fibration X → S, the map

MapS(X(s), Y ) → Ys,

given by evaluation at x, is a homotopy equivalence of Kan complexes. We
may rewrite the space on the right hand side as MapS({x}, Y ). According to
Proposition 2.1.4.8, the covariant model structure on (Set∆)/S is compatible
with the simplicial structure. It therefore suffices to prove that the inclusion
i : {x} ⊆ X(s) is a covariant equivalence. But this is clear since i is the
inclusion of an initial object and therefore left anodyne.

Lemma 5.1.5.3. Let S be a small simplicial set and let j : S → P(S) denote
the Yoneda embedding. Then idP(S) is a left Kan extension of j along itself.

Proof. Let C ⊆ P(S) denote the essential image of j. According to Proposi-
tion 5.1.3.1, j induces an equivalence S → C. It therefore suffices to prove
that idP(S) is a left Kan extension of its restriction to C. Let X be an object
of P(S); we must show that the natural map

φ : C
/X ⊆ P(S)
/X → P(S)

is a colimit diagram.
According to Proposition 5.1.2.2, it will suffice to prove that, for each

vertex s of S, the map

φs : C
/X → S

given by composing φ with the evaluation map is a colimit diagram in S.
Let D → C
/X be the pullback of the universal left fibration along φs and
let D0 ⊆ D be the preimage in D of C/X ⊆ C
/X . According to Proposition
3.3.4.5, it will suffice to prove that the inclusion D0 ⊆ D is a weak homotopy
equivalence of simplicial sets.

Let C = j(s). Let E = C
/X ×P(S) P(S)C/, let E0 = C/X ×C CC/ ⊆ E, and
let E1 = C/X ×C{idC} ⊆ E0. Lemma 5.1.5.2 implies that the left fibrations

D → C
/X ← E

are equivalent. It therefore suffices to show that the inclusion E0 ⊆ E is a
weak homotopy equivalence. To prove this, we observe that both E and E0
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contain E1 as a deformation retract (that is, there is a retraction r : E → E1

and a homotopy E×∆1 → E from r to idE, so that the inclusion E1 ⊆ E is
a homotopy equivalence; the situation for E0 is similar).

Lemma 5.1.5.4. Let

A
f ��

���
��

��
��

B

g
����
��
��
�

S

be a diagram of simplicial sets. The following conditions are equivalent:

(1) The map f is a covariant equivalence in (Set∆)/S .

(2) For every diagram p : S → C taking values in an ∞-category C and
every limit p ◦ g : B	 → C of p ◦ g, the composition p ◦ g ◦ f	 : A	 → C

is a limit diagram.

(3) For every diagram p : S → S taking values in the ∞-category S of
spaces and every limit p ◦ g : B	 → S of p◦g, the composition p ◦ g◦f	 :
A	 → S is a limit diagram.

Proof. The equivalence of (1) and (3) follows from Corollary 3.3.3.4 (and
the definition of a contravariant equivalence). The implication (2) ⇒ (3) is
obvious. We show that (3) ⇒ (2). Let p : S → C and p ◦ g be as in (2).
Passing to a larger universe if necessary, we may suppose that C is small.
For each object C ∈ C, let jC : C → S denote the composition of the Yoneda
embedding j : C → P(C) with the map P(C) → S given by evaluation at C.
Combining Proposition 5.1.3.2 with Proposition 5.1.2.2, we deduce that each
jC ◦p ◦ g is a limit diagram. Applying (3), we conclude that each jC ◦p ◦ g◦f	
is a limit diagram. We now apply Propositions 5.1.3.2 and 5.1.2.2 to conclude
that p ◦ g ◦ f	 is a limit diagram, as desired.

Lemma 5.1.5.5. Let S be a small simplicial set, let j : S → P(S) be the
Yoneda embedding, and let C denote the full subcategory of P(S) spanned by
the objects j(s), where s is a vertex of S. Let D be an arbitrary ∞-category.

(1) Let f : P(S) → D be a functor. Then f is a left Kan extension of f |C
if and only if f preserves small colimits.

(2) Suppose that D admits small colimits and let f0 : C → D be an arbitrary
functor. There exists an extension f : P(S) → D which is a left Kan
extension of f0 = f |C.

Proof. Assertion (2) follows from Lemma 4.3.2.13 since the ∞-category C/X
is small for each object X ∈ P(S). We will prove (1). Suppose first that
f preserves small colimits. We must show that for each X ∈ P(S), the
composition

C
/X
δ→ P(S)

f→ D
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is a colimit diagram. Lemma 5.1.5.3 implies that δ is a colimit diagram; if f
preserves small colimits, then f ◦ δ is also a colimit diagram.

Now suppose that f is a left Kan extension of f0 = f |C. We wish to
prove that f preserves small colimits. Let K be a small simplicial set and
let p : K
 → P(S) be a colimit diagram. We must show that f ◦ p is also a
colimit diagram.

Let

E = C×Fun({0},P(S) Fun(∆1,P(S)) ×Fun({1},P(S)) K



and let E = E ×K
 K ⊆ E. We have a commutative diagram

E

��

�� E

��
K �� K
,

where the vertical arrows are coCartesian fibrations (Corollary 2.4.7.12). Let
η : E �K
 K
 → P(S) be the natural map and set η = η|E �KK. Proposition
4.3.3.10 implies that f ◦ η exhibits f ◦ p as a left Kan extension of f ◦ (η|E)
along q|E. Similarly, f ◦η exhibits f ◦p as a left Kan extension of f ◦(η|E). It
will therefore suffice to prove that every colimit of f ◦(η|E) is also a colimit of
f ◦ (η|E). According to Lemma 5.1.5.4, it suffices to show that the inclusion
E ⊆ E is a contravariant equivalence in (Set∆)/C.

Since the map E → K
 × C is a bivariant fibration, we can apply Propo-
sition 4.1.2.16 to deduce that the map E

op → Cop is smooth. Similarly,
Eop → Cop is smooth. According to Proposition 4.1.2.18, the inclusion E ⊆ E

is a contravariant equivalence if and only if, for every object C ∈ C, the
inclusion of fibers EC ⊆ EC is a weak homotopy equivalence. Lemma 5.1.5.2
implies that EC → K
 is equivalent to the left fibration given by the pullback
of the universal left fibration along the map

K
 p→ P(S) s→ S .

We now conclude by applying Proposition 3.3.4.5, noting that p is a colimit
diagram by assumption and that s preserves colimits by Proposition 5.1.2.2.

Theorem 5.1.5.6. Let S be a small simplicial set and let C be an ∞-category
which admits small colimits. Composition with the Yoneda embedding j :
S → P(S) induces an equivalence of ∞-categories

FunL(P(S),C) → Fun(S,C).

Proof. Combine Corollary 4.3.2.16 with Lemma 5.1.5.5.

Definition 5.1.5.7. Let C be an ∞-category. A full subcategory C′ ⊆ C

is stable under colimits if, for any small diagram p : K → C′ which has a
colimit p : K
 → C in C, the map p factors through C′.
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Let C be an ∞-category which admits all small colimits. Let A be a col-
lection of objects of C. We will say that A generates C under colimits if the
following condition is satisfied: for any full subcategory C′ ⊆ C containing
every element of A, if C′ is stable under colimits, then C = C′.

We say that a map f : S → C generates C under colimits if the image
f(S0) generates C under colimits.

Corollary 5.1.5.8. Let S be a small simplicial set. Then the Yoneda em-
bedding j : S → P(S) generates P(S) under small colimits.

Proof. Let C be the smallest full subcategory of P(S) which contains the
essential image of j and is stable under small colimits. Applying Theorem
5.1.5.6, we deduce that the diagram j : S → C is equivalent to F ◦ j for some
colimit-preserving functor F : P(S) → C. We may regard F as a colimit-
preserving functor from P(S) to itself. Applying Theorem 5.1.5.6 again, we
deduce that F is equivalent to the identity functor from P(S) to itself. It
follows that every object of P(S) is equivalent to an object which lies in C,
so that C = P(S), as desired.

5.1.6 Complete Compactness

Let S be a small simplicial set and f : S → C a diagram in an ∞-category
C. Our goal in this section is to analyze the following question: when is the
diagram f : S → C equivalent to the Yoneda embedding j : S → P(S)? An
obvious necessary condition is that C admit small colimits (Corollary 5.1.2.4).
Conversely, if C admits small colimits, then Theorem 5.1.5.6 implies that f
is equivalent to F ◦ j, where F : P(S) → C is a colimit-preserving functor.
We are now reduced to the question of deciding whether or not the functor
F is an equivalence. There are two obvious necessary conditions for this to
be so: f must be fully faithful (Proposition 5.1.3.1), and f must generate
C under colimits (Corollary 5.1.5.8). We will show that the converse holds
provided that the essential image of f consists of completely compact objects
of C (see Definition 5.1.6.2 below).

We begin by considering an arbitrary simplicial set S and a vertex s of S.
Composing the Yoneda embedding j : S → P(S) with the evaluation map

P(S) = Fun(Sop, S) → Fun({s}, S) � S,

we obtain a map js : S → S. We will refer to js as the functor corepresented
by s.

Remark 5.1.6.1. The above definition makes sense even when the simplicial
set S is not small. However, in this case we need to replace S (the simplicial
nerve of the category of small Kan complexes) by the (very large) ∞-category
Ŝ, where Ŝ is the simplicial nerve of the category of all Kan complexes (not
necessarily small).

Definition 5.1.6.2. Let C be an ∞-category which admits small colimits.
We will say that an object C ∈ C is completely compact if the functor jC :
C → Ŝ corepresented by C preserves small colimits.
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The requirement that an object C of an ∞-category C be completely
compact is very restrictive (see Example 5.1.6.9 below). We introduce this
notion not because it is a generally useful one but because it is relevant for
the purpose of characterizing ∞-categories of presheaves.

Our first goal is to establish that the class of completely compact objects
of C is stable under retracts.

Lemma 5.1.6.3. Let C be an ∞-category, K a simplicial set, and p, q :
K
 → C a pair of diagrams. Suppose that q is a colimit diagram and that p
is a retract of q in the ∞-category Fun(K
,C). Then p is a colimit diagram.

Proof. Choose a map σ : ∆2 × K
 → C such that σ|{1} × K
 = q and
σ|∆{0,2} ×K
 = p◦πK
 . We have a commutative diagram of simplicial sets:

Cσ/ ��

��

Cσ|∆2×K/

��
Cσ|∆{1,2}/×K


f ��

��

Cσ|∆{1,2}×K/

��
Cσ|{2}×K
/

f ′
�� Cσ|{2}×K/ .

We first claim that both vertical compositions are categorical equivalences.
We give the argument for the right vertical composition; the other case is
similar. We have a factorization

Cσ|∆2×K/
g′→ Cσ|∆{0,2}×K/

g′′→ Cσ|{2}×K/,

where g′ is a trivial fibration and g′′ admits a section s. The map s is also
a section of the trivial fibration C/σ|∆{0,2}×K → C/σ|{0}×K . Consequently, s
and g′′ are categorical equivalences. It follows that the map f ′ is a retract of
f in the homotopy category of Set∆ (taken with respect to the Joyal model
structure).

The map f sits in a commutative diagram

Cσ|∆{1,2}/×K

f ��

��

Cσ|∆{1,2}/×K

��
Cq/ �� Cq/,

where the vertical maps and the lower horizontal map are trivial fibrations.
It follows that f is a categorical equivalence. Since f ′ is a retract of f , f ′

is also a categorical equivalence. Since f ′ is a left fibration, we deduce that
f ′ is a trivial fibration (Corollary 2.4.4.6), so that p is a colimit diagram as
desired.

Lemma 5.1.6.4. Let C be an ∞-category which admits small colimits. Let
C and D be objects of C. Suppose that C is completely compact and that D
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is a retract of C (that is, there exist maps f : D → C and r : C → D with
r ◦ f � idD. Then D is completely compact. In particular, if C and D are
equivalent, then D is completely compact.

Proof. Let j : Cop → SC denote the Yoneda embedding (for Cop). Since D
is a retract of C, j(D) is a retract of j(C). Let p : K
 → C be a diagram.
Then j(D) ◦ p : K
 → S is a retract of j(C) ◦ p : K
 → S in the ∞-category
Fun(K
, S). If p is a colimit diagram, then j(C) ◦ p is a colimit diagram
(since C is completely compact). Lemma 5.1.6.3 now implies that j(D) ◦ p
is a colimit diagram as well.

In order to study the condition of complete compactness in more detail,
it is convenient to introduce a slightly more general notion.

Definition 5.1.6.5. Let C be an ∞-category which admits small colimits
and let φ : C̃ → C be a left fibration. We will say that φ is completely compact
if it is classified by a functor C → Ŝ that preserves small colimits.

Lemma 5.1.6.6. Let C be an ∞-category which admits small colimits, let
f : X ′ → X be a map of Kan complexes, and let

F′ ��

��

F

��
X ′ × C

f×idC �� X × C

be a diagram of left fibrations over C which is a homotopy pullback square
(with respect to the covariant model structure on (Set∆)/C). If F → C is
completely compact, then F′ → C is completely compact.

Proof. Replacing the diagram by an equivalent one if necessary, we may
suppose that it is Cartesian and that f is a Kan fibration. Let p : K
 → C

be a colimit diagram and let F : C → Ŝ be a functor which classifies the left
fibration F′. We wish to show that F ◦ p is a colimit diagram in Ŝ.

We have a pullback diagram

K ×C F′ ��

ψ′

��

K ×C F

ψ

��
K
 ×C F′ �� K
 ×C F

of simplicial sets which is homotopy Cartesian (with respect to the usual
model structure on Set∆) since the horizontal maps are pullbacks of f . Since
F is completely compact, Proposition 3.3.4.5 implies that the inclusion ψ is
a weak homotopy equivalence. It follows that ψ′ is also a weak homotopy
equivalence. Applying Proposition 3.3.4.5 again, we deduce that F ◦ p is a
colimit diagram, as desired.

Lemma 5.1.6.7. Let C be a presentable ∞-category, let p : K → C be a
small diagram, and let X ∈ C/p be an object whose image in C is completely
compact. Then X is completely compact.
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Proof. Let p : K	 → C be a limit of p carrying the cone point to an object
Z ∈ C. Then we have trivial fibrations

C/Z ← C/p → C/p .

Consequently, we may replace the diagram p : K → C with the inclusion
{Z} → C.

We may identify the object X ∈ C/Z with a morphism f : Y → Z in C.
We have a commutative diagram of simplicial sets

(C/Z)f/
ψ

 !..
..

..
..

..
θ �� (C/Y )f/

��

θ′ �� (C/Y )f/

ψ′

��
C/Z

θ′0 �� C/Z ,

where θ is an isomorphism, the maps θ′ and θ′0 are categorical equivalences
(see §4.2.1), and the vertical maps are left fibrations. We wish to prove that
ψ is a completely compact left fibration. It will therefore suffice to prove that
ψ′ is completely compact. We have a (homotopy) pullback diagram

C
/f
Y/

��

��

C∆1

Y/ ×C{1}{Z}

��

C/Z
�� (CY/×C{Z}) × C/Z

of left fibrations over C/Z . We observe that the left fibrations in the lower
part of the diagram are constant. According to Lemma 5.1.6.6, to prove
that ψ′ is completely compact, it will suffice to prove that the left fibration

C∆1

Y/ ×C{1}{Z} ψ′′
→ C/Z is completely compact. We observe that ψ′′ admits a

factorization

C∆1

Y/ ×C{1}{Z} φ→ CY/×C{0} C/Z
φ′
→ C/Z ,

where φ is a trivial fibration and φ′ is a pullback of the left fibration φ′′ :
CY/ → C. Since Y is completely compact, φ′′ is completely compact. The
projection C/Z → C is equivalent to C/Z → C and therefore commutes with
colimits by Proposition 1.2.13.8. It follows that φ′ is completely compact,
which completes the proof.

Proposition 5.1.6.8. Let S be a small simplicial set and let j : S → P(S)
denote the Yoneda embedding. Let C be an object of P(S). The following
conditions are equivalent:

(1) The object C ∈ P(S) is completely compact.

(2) There exists a vertex s of S such that C is a retract of j(s).
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Proof. Suppose first that (1) is satisfied. Let S/C = S×P(S)P(S)/C . Accord-
ing to Lemma 5.1.5.3, the natural map

S
/C
j′→ P(S)
/C → P(S)

is a colimit diagram. Let f : P(S) → S be the functor corepresented by C.
Since C is completely compact. f(C) can be identified with a colimit of the
diagram f |S/C . The space f(C) is homotopy equivalent to MapP(S)(C,C)
and therefore contains a point corresponding to idC . It follows that idC
lies in the image of MapP(S)(C, j′(s̃)) → MapP(S)(C,C) for some vertex s̃
of S/C . The vertex s̃ classifies a vertex s ∈ S equipped with a morphism
α : j(s) → C. It follows that there is a commutative triangle

j(s)
α

���
��

��
��

�

C

���������� idC �� C

in the ∞-category P(S), so that C is a retract of j(s).
Now suppose that (2) is satisfied. According to Lemma 5.1.6.4, it suffices

to prove that j(s) is completely compact. Using Lemma 5.1.5.2, we may
identify the functor P(S) → S corepresented by j(s) with the functor given
by evaluation at s. Proposition 5.1.2.2 implies that this functor preserves all
limits and colimits that exist in P(S).

Example 5.1.6.9. Let C be the ∞-category S of spaces. Then an object
C ∈ S is completely compact if and only if it is equivalent to ∗, the final
object of S.

We now use the theory of completely compact objects to give a character-
ization of presheaf ∞-categories.

Proposition 5.1.6.10. Let S be a small simplicial set and C an ∞-category
which admits small colimits. Let F : P(S) → C be a functor which preserves
small colimits and let f = F ◦j be its composition with the Yoneda embedding
j : S → P(S). Suppose further that

(1) The functor f is fully faithful.

(2) For every vertex s of S, the object f(s) ∈ C is completely compact.

Then F is fully faithful.

Proof. Let C and D be objects of P(S). We wish to prove that the natural
map

ηC,D : MapP(S)(C,D) → MapC(F (C), F (D))

is an isomorphism in the homotopy category H. Suppose first that C belongs
to the essential image of j. Let G : P(S) → S be a functor corepresented by
C and let G′ : C → S be a functor corepresented by F (C). Then we have
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a natural transformation of functors G → G′ ◦ F . Assumption (2) implies
that G′ preserves small colimits, so that G′ ◦ F preserves small colimits.
Proposition 5.1.6.8 implies that G preserves small colimits. It follows that
the collection of objects D ∈ P(S) such that ηC,D is an equivalence is stable
under small colimits. If D belongs to the essential image of j, then assump-
tion (1) implies that ηC,D is an equivalence. It follows from Lemma 5.1.5.3
that the essential image of j generates P(S) under small colimits; thus ηC,D
is an isomorphism in H for every object D ∈ P(S).

We now prove the result in general. Fix D ∈ P(S). Let H : P(S)op → S be
a functor represented by D and let H ′ : Cop → S be a functor represented
by FD. Then we have a natural transformation of functors H → H ′ ◦ F op,
which we wish to prove is an equivalence. By assumption, F op preserves
small limits. Proposition 5.1.3.2 implies that H and H ′ preserve small limits.
It follows that the collection P of objects C ∈ P(S) such that ηC,D is an
equivalence is stable under small colimits. The special case above established
that P contains the essential image of the Yoneda embedding. We once again
invoke Lemma 5.1.5.3 to deduce that every object of P(S) belongs to P , as
desired.

Corollary 5.1.6.11. Let C be an ∞-category which admits small colimits.
Let S be a small simplicial set and F : P(S) → C a colimit-preserving func-
tor. Then F is an equivalence if and only if the following conditions are
satisfied:

(1) The composition f = F ◦ j : S → C is fully faithful.

(2) For every vertex s ∈ S, the object f(s) ∈ C is completely compact.

(3) The set of objects {f(s) : s ∈ S0} generates C under colimits.

Proof. If (1), (2), and (3) are satisfied, then F is fully faithful (Proposition
5.1.6.10). Since P(S) admits small colimits and F preserves small colimits,
the essential image of F is stable under small colimits. Using (3), we conclude
that F is essentially surjective and therefore an equivalence of ∞-categories.
For the converse, it suffices to check that idP(S) : P(S) → P(S) satisfies (1),
(2), and (3). For this, we invoke Propsition 5.1.3.1, Proposition 5.1.6.8, and
Lemma 5.1.5.3, respectively.

Corollary 5.1.6.12. Let C be a small ∞-category, let p : K → C be a
diagram, let p′ : K → P(C) be the composition of p with the Yoneda em-
bedding j : C → P(C), and let f : C/p → P(C)/p′ be the induced map. Let
F : P(C/p) → P(C)/p′ be a colimit-preserving functor such that F ◦ j′ is
equivalent to f , where j′ : C/p → P(C/p) denotes the Yoneda embedding for
C/p (according to Theorem 5.1.5.6, F exists and is unique up to equivalence).
Then F is an equivalence of ∞-categories.

Proof. We will show that f satisfies conditions (1) through (3) of Corollary
5.1.6.11. The assertion that f is fully faithful follows immediately from the



PRESENTABLE AND ACCESSIBLE ∞-CATEGORIES 331

assertion that j is fully faithful (Proposition 5.1.3.1). To prove that the es-
sential image of f consists of completely compact objects, we use Lemma
5.1.6.7 to reduce to proving that the essential image of j consists of com-
pletely compact objects of P(C), which follows from Proposition 5.1.6.8. It
remains to prove that P(C)/p′ is generated under colimits by f . Let X be
an object of P(C)/p′ and X its image in P(C). Let D ⊆ P(C) be the essen-
tial image of j and D the inverse image of D in P(C)/p′ , so that D is the
essential image of f . Using Lemma 5.1.5.3, we can choose a colimit diagram
q : L
 → P(C) which carries the cone point to X such that q = q|L factors
through D. Since the inclusion of the cone point into L
 is right anodyne,
there exists a map q′ : L
 → P(C)/p′ lifting q, which carries the cone point
of L
 to X. Proposition 1.2.13.8 implies that q′ is a colimit diagram, so that
X can be written as the colimit of a diagram L → D.

5.2 ADJOINT FUNCTORS

Let C and D be (ordinary) categories. Two functors

C
F �� D
G

��

are said to be adjoint to one another if there is a functorial bijection

HomD(F (C), D) � HomC(C,G(D))

defined for C ∈ C, D ∈ D. Our goal in this section is to extend the theory
of adjoint functors to the ∞-categorical setting.

By definition, a pair of functors F and G (as above) are adjoint if and
only if they determine the same correspondence

Cop×D → Set .

In §2.3.1, we introduced an ∞-categorical generalization of the notion of a
correspondence. In certain cases, a correspondence M from an ∞-category
C to an ∞-category D determines a functor F : C → D, which we say
is a functor associated to M. We will study these associated functors in
§5.2.1. The notion of a correspondence is self-dual, so it is possible that the
correspondence M also determines an associated functor G : D → C. In this
case, we will say that F and G are adjoint. We will study the basic properties
of adjoint functors in §5.2.2.

One of the most important features of adjoint functors is their behavior
with respect to limits and colimits: left adjoints preserve colimits, while
right adjoints preserve limits. We will prove an ∞-categorical analogue of
this statement in §5.2.3. In certain situations, the adjoint functor theorem
provides a converse to this statement: see §5.5.2.

The theory of model categories provides a host of examples of adjoint func-
tors between ∞-categories. In §5.2.4, we will show that a simplicial Quillen
adjunction between a pair of model categories (A,A′) determines an ad-
junction between the associated ∞-categories (N(A◦),N(A′◦)). We will also
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consider some other examples of situations which give rise to adjoint func-
tors.

In §5.2.5, we study the behavior of adjoint functors when restricted to
overcategories. Our main result (Proposition 5.2.5.1) can be summarized as
follows: suppose that F : C → D is a functor between ∞-categories which
admits a right adjoint G. Assume further that the ∞-category C admits
pullbacks. Then for every object C, the induced functor C/C → D/FC admits
a right adjoint given by the formula

(D → FC) �→ (GD ×GFC C → C).

If a functor F : C → D has a right adjointG, thenG is uniquely determined
up to equivalence. In §5.2.6, we will prove a strong version of this statement
(which we phrase as an (anti)equivalence of functor ∞-categories).

In §5.2.7, we will restrict the theory of adjoint functors to the special case
in which one of the functors is the inclusion of a full subcategory. In this
case, we obtain the theory of localizations of ∞-categories. This theory will
play a central role in our study of presentable ∞-categories (§5.5) and later
in the study of ∞-topoi (§6). It is also useful in the study of factorization
systems on ∞-categories, which we will discuss in §5.2.8.

5.2.1 Correspondences and Associated Functors

Let p : X → S be a Cartesian fibration of simplicial sets. In §3.3.2, we saw
that p is classified by a functor Sop → Cat∞. In particular, if S = ∆1, then
p determines a diagram

G : D → C

in the ∞-category Cat∞, which is well-defined up to equivalence. We can
obtain this diagram by applying the straightening functor St+S to the marked
simplicial set X� and then taking a fibrant replacement. In general, this
construction is rather complicated. However, in the special case where S =
∆1, it is possible to give a direct construction of G; that is our goal in this
section.

Definition 5.2.1.1. Let p : M → ∆1 be a Cartesian fibration and suppose
we are given equivalences of ∞-categories h0 : C → p−1{0} and h1 : D →
p−1{1}. We will say that a functor g : D → C is associated to M if there is
a commutative diagram

D×∆1

���
��

��
��

��
s �� M

��		
		
		
		

∆1

such that s|D×{1} = h1, s|D×{0} = h0◦g, and s|{x}×∆1 is a p-Cartesian
edge of M for every object x of D.
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Remark 5.2.1.2. The terminology of Definition 5.2.1.1 is slightly abusive:
it would be more accurate to say that g is associated to the triple (p : M →
∆1, h0 : C → p−1{0}, h1 : D → p−1{1}).
Proposition 5.2.1.3. Let C and D be ∞-categories and let g : D → C be a
functor.

(1) There exists a diagram

C ��

��

M

p

��

D��

��
{0} �� ∆1 {1},��

where p is a Cartesian fibration, the associated maps C → p−1{0} and
D → p−1{1} are isomorphisms, and g is associated to M.

(2) Suppose we are given a commutative diagram

C ��

��

M′

s

��

D��

��

M

p

��
{0} �� ∆1 {1}��

where s is a categorical equivalence, p and p′ = p ◦ s are Cartesian
fibrations, and the maps C → p−1{0}, D → p−1{1} are categorical
equivalences. The functor g is associated to M if and only if it is as-
sociated to M′.

(3) Suppose we are given diagrams

C ��

��

M′

p′

��

D��

��
{0} �� ∆1 {1}��

C ��

��

M′′

p′′

��

D��

��
{0} �� ∆1 {1}��

as above, such that g is associated to both M′ and M′′. Then there
exists a third such diagram

C ��

��

M

p

��

D��

��
{0} �� ∆1 {1}��
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and a diagram

M′ ← M → M′′

of categorical equivalences in (Set∆)C
‘

D / /∆1.

Proof. We begin with (1). Let C� and D� denote the simplicial sets C and D

considered as marked simplicial sets, where the marked edges are precisely
the equivalences. We set

N = (D�×(∆1)�)
∐

D� ×{0}�

C� .

The small object argument implies the existence of a factorization

N → N(∞) → (∆1)�,

where the left map is marked anodyne and the right map has the right lifting
property with respect to all marked anodyne morphisms. We remark that
we can obtain N(∞) as the colimit of a transfinite sequence of simplicial
sets N(α), where N(0) = N , N(α) is the colimit of the sequence {N(β)}β<α
when α is a limit ordinal and each N(α+ 1) fits into a pushout diagram

A

��

�� N(α)

�� !"22
22

22
22

2

B ��

���
�

�
�

�
N(α+ 1) �� (∆1)�,

where the left vertical map is one of the generators for the class of marked
anodyne maps given in Definition 3.1.1.1. We may furthermore assume that
there does not exist a dotted arrow as indicated in the diagram. It follows by
induction on α that N(α)×∆1 {0} � C� and N(α)×∆1 {1} � D�. According
to Proposition 3.1.1.6, N(∞) � M� for some Cartesian fibration M → ∆1. It
follows immediately that C � M{0}, that D � M{1}, and that g is associated
to M.

We now prove (2). The “if” direction is immediate from the definition.
Conversely, suppose that g is associated to M. To show that g is associated
to M′, we need to produce the dotted arrow indicated in the diagram

D× ∂∆1 ��
� �

��

M′

D×∆1.

���
�

�
�

�

According to Proposition A.2.3.1, we may replace M′ by the equivalent ∞-
category M; the desired result then follows from the assumption that g is
associated to M.

To prove (3), we take M to be the correspondence constructed in the
course of proving (1). It will suffice to construct an appropriate categorical
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equivalence M → M′; the same argument will construct the desired map
M → M′′. Consider the diagram

N� �

s′

��

s �� M′

��
M ��

s′′
���

�
�

�
∆1.

(Here we identify N with its underlying simplicial set by forgetting the class
of marked edges, and the top horizontal map exhibits g as associated to M′.)
In the terminology of §3.2.2, the maps s and s′ are both quasi-equivalences.
By Proposition 3.2.2.10, they are categorical equivalences. The projection
M′ → ∆1 is a categorical fibration and s′ is a trivial cofibration, which
ensures the existence of the arrow s′′. The factorization s = s′′ ◦ s′ shows
that s′′ is a categorical equivalence and completes the proof.

Proposition 5.2.1.3 may be informally summarized by saying that every
functor g : D → C is associated to some Cartesian fibration p : M → ∆1 and
that M is determined up to equivalence. Conversely, the Cartesian fibration
also determines g:

Proposition 5.2.1.4. Let p : M → ∆1 be a Cartesian fibration and let
h0 : C → p−1{0} and h1 : D → p−1{1} be categorical equivalences. There
exists a functor g : D → C associated to M. Any other functor g′ : C → D is
associated to p if and only if g is equivalent to g′ as objects of the ∞-category
CD.

Proof. Consider the diagram

D�×{1}

��

��
M�

��
D�×(∆1)� ��

s

� (
(

(
(

(
(∆1)�.

By Proposition 3.1.2.3, the left vertical map is marked anodyne, so the dotted
arrow exists. Consider the map s0 : s|D×{0} : D → p−1{0}. Since h0 is a
categorical equivalence, there exists a map g : D → C such that the functions
h0 ◦ g and s0 are equivalent. Let e : D×∆1 → M be an equivalence from
h0 ◦ g to s0. Let e′ : D×Λ2

1 → M be the result of amalgamating e with s.
Then we have a commutative diagram of marked simplicial sets

D�×(Λ2
1)
�

� �

��

e′ ��
M�

��
D�×(∆2)� ��

e′′
� (

(
(

(
(

(∆1)�.

Because the left vertical map is marked anodyne, there exists a morphism
e′′ as indicated which renders the diagram commutative. The restriction
e′′|D×∆{0,2} exhibits g as associated to M.
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Now suppose that g′ is another functor associated to p. Then there exists
a commutative diagram of marked simplicial sets

D�×{1}� �

��

��
M�

��
D�×(∆1)� ��

s′
� (

(
(

(
(

(∆1)�,

with g′ = s′|D×{0}. Let s′′ be the map obtained by amalgamating s and
s′. Consider the diagram

D�×(Λ2
2)
�

� �

��

s′′ ��
M�

��
D�×(∆2)� ��

s′′′
� (

(
(

(
(

(∆1)�.

Since the left vertical map is marked anodyne, the indicated dotted arrow
s′′ exists. The restriction s′′|D×∆{0,1} is an equivalence between h0 ◦ g
and h0 ◦ g′. Since h0 is a categorical equivalence, g and g′ are themselves
homotopic.

Conversely, suppose that f : D×∆1 → C is an equivalence from g′ to g.
The maps s and h0 ◦ f amalgamate to give a map f ′ : D×Λ2

1 → C which fits
into a commutative diagram of marked simplicial sets:

D�×(Λ2
1)
�

� �

��

f ′
��
M�

��
D�×(∆2)� ��

f ′′
� (

(
(

(
(

(∆1)�.

The left vertical map is marked anodyne, so there exists a dotted arrow f ′′

as indicated; then the map f ′′|D×∆{0,2} exhibits that g′ is associated to
p.

Proposition 5.2.1.5. Let p : M → ∆2 be a Cartesian fibration and sup-
pose we are given equivalences of ∞-categories C → p−1{0}, D → p−1{1},
and E → p−1{2}. Suppose that M×∆2∆{0,1} is associated to a functor
f : D → C and that M×∆2∆{1,2} is associated to a functor g : E → D.
Then M×∆2∆{0,2} is associated to the composite functor f ◦ g.
Proof. Let X be the mapping simplex of the sequence of functors

E
g→ D

f→ C .

Since f and g are associated to restrictions of M, we obtain a commutative
diagram

X ×∆2 Λ2
1� �

��

�� M

��
X ��

s

��/
/

/
/

/
/

∆2.
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The left vertical inclusion is a pushout of E×Λ2
1 ⊆ E×∆2, which is inner

anodyne. Since p is inner anodyne, there exists a dotted arrow s as indicated
in the diagram. The restriction s|X×∆2 ∆{0,2} exhibits that the functor f ◦g
is associated to the correspondence M×∆2∆{0,2}.

Remark 5.2.1.6. Taken together, Propositions 5.2.1.3 and 5.2.1.4 assert
that there is a bijective correspondence between equivalence classes of func-
tors D → C and equivalence classes of Cartesian fibrations p : M → ∆1

equipped with equivalences C → p−1{0}, D → p−1{1}.

5.2.2 Adjunctions

In §5.2.1, we established a dictionary that allows us to pass back and forth
between functors g : D → C and Cartesian fibrations p : M → ∆1. The
dual argument shows that if p is a coCartesian fibration, it also determines a
functor f : C → D. In this case, we will say that f and g are adjoint functors.

Definition 5.2.2.1. Let C and D be ∞-categories. An adjunction between
C and D is a map q : M → ∆1 which is both a Cartesian fibration and a
coCartesian fibration together with equivalences C → M{0} and D → M{1}.

Let M be an adjunction between C and D and let f : C → D and g : D → C

be functors associated to M. In this case, we will say that f is left adjoint
to g and g is right adjoint to f .

Remark 5.2.2.2. Propositions 5.2.1.3 and 5.2.1.4 imply that if a functor
f : C → D has a right adjoint g : D → C, then g is uniquely determined up to
homotopy. In fact, we will later see that g is determined up to a contractible
ambiguity.

We now verify a few basic properties of adjunctions:

Lemma 5.2.2.3. Let p : X → S be a locally Cartesian fibration of simplicial
sets. Let e : s → s′ be an edge of S with the following property:

(∗) For every 2-simplex
x′

e′

��












x
e′′ ��

e

����������
x′′

in X such that p(e) = e, if e and e′ are locally p-Cartesian, then e′′ is
locally p-Cartesian.

Let e : x → y be a locally p-coCartesian edge such that p(e) = e. Then e is
p-coCartesian.

Proof. We must show that for any n ≥ 2 and any diagram

Λn0
f ��

� �

��

X

��
∆n ��

���
�

�
�

S
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such that f |∆{0,1} = e, there exists a dotted arrow as indicated. Pulling
back along the bottom horizontal map, we may reduce to the case S = ∆n;
in particular, X and S are both ∞-categories.

According to (the dual of) Proposition 2.4.4.3, it suffices to show that
composition with e gives a homotopy Cartesian diagram

MapX(y, z) ��

��

MapX(x, z)

��
MapS(p(y), p(z)) �� MapS(p(x), p(z)).

There are two cases to consider: if MapS(p(y), p(z)) = ∅, there is nothing to
prove. Otherwise, we must show that composition with f induces a homotopy
equivalence MapX(y, z) → MapX(x, z).

In view of the assumption that S = ∆n, there is a unique morphism
g0 : p(y) → p(z). Let g : y′ → z be a locally p-Cartesian edge lifting g0. We
have a commutative diagram

MapX(y, y′) ��

��

MapX(x, y′)

��
MapX(y, z) �� MapX(x, z).

Since g is locally p-Cartesian, the left vertical arrow is a homotopy equiva-
lence. Since e is locally p-coCartesian, the top horizontal arrow is a homotopy
equivalence. It will therefore suffice to show that the map MapX(x, y′) →
MapX(x, z) is a homotopy equivalence.

Choose a locally p-Cartesian edge e′ : x′ → y′ in X with p(e′) = e, so that
we have another commutative diagram

MapX(x, x′)

##���
���

���
���

����
���

���
���

�

MapX(x, y′) �� MapX(x, z).

Using the two-out-of-three property, we are reduced to proving that both
of the diagonal arrows are homotopy equivalences. For the diagonal arrow
on the left, this follows from our assumption that e′ is locally p-Cartesian.
For the arrow on the right, it suffices to show that the composition g ◦ e′ is
locally p-coCartesian, which follows from assumption (∗).
Corollary 5.2.2.4. Let p : X → S be a Cartesian fibration of simplicial
sets. An edge e : x → y of X is p-coCartesian if and only if it is locally
p-coCartesian (see the discussion preceding Proposition 2.4.2.8).

Corollary 5.2.2.5. Let p : X → S be a Cartesian fibration of simplicial
sets. The following conditions are equivalent:

(1) The map p is a coCartesian fibration.
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(2) For every edge f : s → s′ of S, the induced functor f∗ : Xs′ → Xs has
a left adjoint.

Proof. By definition, the functor corresponding to an edge f : ∆1 → S has
a left adjoint if and only if the pullback X ×S ∆1 → ∆1 is a coCartesian
fibration. In other words, condition (2) is equivalent to the assertion that for
every edge f : s → s′ and every vertex s̃ of X lifting s, there exists a locally
p-coCartesian edge f̃ : s̃ → s̃′ lifting f . Using Corollary 5.2.2.4, we conclude
that f̃ is automatically p-coCartesian, so that (2) is equivalent to (1).

Proposition 5.2.2.6. Let f : C → D and f ′ : D → E be functors between
∞-categories. Suppose that f has a right adjoint g and that f ′ has a right
adjoint g′. Then g ◦ g′ is right adjoint to f ′ ◦ f .
Proof. Let φ denote the composable sequence of morphisms

C
g← D

g′← E .

Let M(φ) denote the mapping simplex and choose a factorization

M(φ) s→ X
q→ ∆2,

where s is a quasi-equivalence and X → ∆2 is a Cartesian fibration (using
Proposition 3.2.2.11). We first show that q is a coCartesian fibration. In
other words, we must show that, for every object x ∈ C and every morphism
e : q(x) → y, there is a q-Cartesian edge e : x → y lifting e. This is clear if
e is degenerate. If e = ∆{0,1} ⊆ ∆2, then the existence of a left adjoint to g
implies that e has a locally q-coCartesian lift e. Lemma 5.2.2.3 implies that e
is q-coCartesian. Similarly, if e = ∆{1,2}, then we can find a q-coCartesian lift
of e. Finally, if e is the long edge ∆{0,2}, then we may write e as a composite
e′ ◦ e′′; the existence of a q-coCartesian lift of e follows from the existence
of q-coCartesian lifts of e′ and e′′. We now apply Proposition 5.2.1.5 and
deduce that the adjunction X ×∆2 ∆{0,2} is associated to both g ◦ g′ and
f ′ ◦ f .

In classical category theory, one can spell out the relationship between a
pair of adjoint functors f : C → D and g : D → C by specifying a unit
transformation idC → g ◦ f (or, dually, a counit f ◦ g → idD). This concept
generalizes to the ∞-categorical setting as follows:

Definition 5.2.2.7. Suppose we are given a pair of functors

C
f �� D
g

��

between ∞-categories. A unit transformation for (f, g) is a morphism u :
idC → g◦f in Fun(C,C) with the following property: for every pair of objects
C ∈ C, D ∈ D, the composition

MapD(f(C), D) → MapC(g(f(C)), g(D))
u(C)→ MapC(C, g(D))

is an isomorphism in the homotopy category H.
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Proposition 5.2.2.8. Let f : C → D and g : D → C be a pair of functors
between ∞-categories C and D. The following conditions are equivalent:

(1) The functor f is a left adjoint to g.

(2) There exists a unit transformation u : idC → g ◦ f .
Proof. Suppose first that (1) is satisfied. Choose an adjunction p : M → ∆1

which is associated to f and g; according to (1) of Proposition 5.2.1.3 we may
identify M{0} with C and M{1} with D. Since f is associated to M , there is
a map F : C×∆1 → M such that F |C×{0} = idC and F |C×{1} = f , with
each edge F |{c}×∆1 p-coCartesian. Similarly, there is a map G : D×∆1 →
M with G|D×{1} = idD, G|D×{0} = g, and such that G|{d} × ∆1 is
p-Cartesian for each object d ∈ D. Let F ′ : Λ2

2 × C → M be such that
F ′|∆{0,2} ×C = F and F ′|∆{1,2} ×C = G◦ (f × id∆1). Consider the diagram

Λ2
2 × C� �

��

F ′
�� M

��
∆2 × C ��

F ′′
���

�
�

�
�

∆1.

Using the fact that F ′|{c} × ∆{1,2} is p-Cartesian for every object c ∈ C,
we deduce the existence of the indicated dotted arrow F ′′. We now define
u = F ′|C×∆{0,1}. We may regard u as a natural transformation idC → g◦f .
We claim that u is a unit transformation. In other words, we must show that
for any objects C ∈ C, D ∈ D, the composite map

MapD(fC,D) → MapC(gfC, gD) u→ MapC(C, gD)

is an isomorphism in the homotopy category H of spaces. This composite
map fits into a commutative diagram

MapD(f(C), D) ��

��

MapD(g(f(C)), g(D)) �� MapD(C, g(D))

��
MapM (C,D) �� MapM (C,D).

The left and right vertical arrows in this diagram are given by composi-
tion with a p-coCartesian and a p-Cartesian morphism in M , respectively.
Proposition 2.4.4.2 implies that these maps are homotopy equivalences.

We now prove that (2) ⇒ (1). Choose a correspondence p : M → ∆1 from
C to D which is associated to the functor g via a map G : D×∆1 → M as
above. We have natural transformations

idC
u �� g ◦ f G◦(f×id∆1 ) �� f.

Let F : C×∆1 → M be a composition of these transformations. We will
complete the proof by showing that F exhibits M as a correspondence as-
sociated to the functor f . It will suffice to show that for each object C ∈ C,
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F (C) : C → fC is p-coCartesian. According to Proposition 2.4.4.3, it will
suffice to show that for each object D ∈ D, composition with F (C) induces a
homotopy equivalence MapD(f(C), D) → MapM (C,D). As above, this map
fits into a commutative diagram

MapD(f(C), D) ��

��

MapD(g(f(C)), g(D)) �� MapD(C, g(D))

��
MapM (C,D) �� MapM (C,D)

where the upper horizontal composition is an equivalence (since u is a unit
transformation) and the right vertical arrow is an equivalence (since it is
given by composition with a p-Cartesian morphism). It follows that the left
vertical arrow is also a homotopy equivalence, as desired.

Proposition 5.2.2.9. Let C and D be ∞-categories and let f : C → D

and g : D → C be adjoint functors. Then f and g induce adjoint functors
hf : hC → hD and hg : hD → hC between (H-enriched) homotopy categories.

Proof. This follows immediately from Proposition 5.2.2.8 because a unit
transformation idC → g ◦ f induces a unit transformation idhC → (hg) ◦
(hf ).

The converse to Proposition 5.2.2.9 is false. If f : C → D and g : D → C

are functors such that hf and hg are adjoint to one another, then f and
g are not necessarily adjoint. Nevertheless, the existence of adjoints can be
tested at the level of (enriched) homotopy categories.

Lemma 5.2.2.10. Let p : M → ∆1 be an inner fibration of simplicial sets
giving a correspondence between the ∞-categories C = M{0} and D = M{1}.
Let c be an object of C, d an object of D, and f : c → d a morphism. The
following are equivalent:

(1) The morphism f is p-Cartesian.

(2) The morphism f gives rise to a Cartesian morphism in the enriched
homotopy category hM; in other words, composition with p induces
homotopy equivalences

MapC(c′, c) → MapM(c′, d)

for every object c′ ∈ C.

Proof. This follows immediately from Proposition 2.4.4.3.

Lemma 5.2.2.11. Let p : M → ∆1 be an inner fibration, so that M can
be identified with a correspondence from C = p−1{0} to D = p−1{1}. The
following conditions are equivalent:

(1) The map p is a Cartesian fibration.
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(2) There exists a H-enriched functor g : hD → hC and a functorial iden-
tification

MapM(c, d) � MapC(c, g(d)).

Proof. If p is a Cartesian fibration, then there is a functor D → C asso-
ciated to M; we can then take g to be the associated functor on enriched
homotopy categories. Conversely, suppose that there exists a functor g as
above. We wish to show that p is a Cartesian fibration. In other words, we
must show that for every object d ∈ D, there is an object c ∈ C and a p-
Cartesian morphism f : c → d. We take c = g(d); in view of the identification
MapM(c, d) � MapC(c, c), there exists a morphism f : c → d correspond-
ing to the identity idc. Lemma 5.2.2.10 implies that f is p-Cartesian, as
desired.

Proposition 5.2.2.12. Let f : C → D be a functor between ∞-categories.
Suppose that the induced functor of H-enriched categories hf : hC → hD

admits a right adjoint. Then f admits a right adjoint.

Proof. According to (1) of Proposition 5.2.1.3, there is a coCartesian fibra-
tion p : M → ∆1 associated to f . Let hg be the right adjoint of hf . Applying
Lemma 5.2.2.11, we deduce that p is a Cartesian fibration. Thus p is an
adjunction, so that f has a right adjoint, as desired.

5.2.3 Preservation of Limits and Colimits

Let C and D be ordinary categories and let F : C → D be a functor. If F
has a right adjoint G, then F preserves colimits; we have a chain of natural
isomorphisms

HomD(F (lim−→Cα), D)�HomC(lim−→Cα, G(D))
� lim←−HomC(Cα, G(D))
� lim←−HomD(F (Cα), D)
�HomD(lim−→F (Cα), D).

In fact, this is in some sense the defining feature of left adjoints: under
suitable set-theoretic assumptions, the adjoint functor theorem asserts that
any colimit-preserving functor admits a right adjoint. We will prove an ∞-
categorical version of the adjoint functor theorem in §5.5.2. Our goal in
this section is to lay the groundwork by showing that left adjoints preserve
colimits in the ∞-categorical setting. We will first need to establish several
lemmas.

Lemma 5.2.3.1. Suppose we are given a diagram

K × ∆1 P ��

�� 
  

  
  

  
M

q
��		
		
		
		

∆1
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of simplicial sets, where M is an ∞-category and P |{k}×∆1 is q-coCartesian
for every vertex k of K. Let p = P |K × {0}. Then the induced map

ψ : MP/ → Mp/

induces a trivial fibration

ψ1 : MP/×∆1{1} → Mp/×∆1{1}.
Proof. If K is a point, then the assertion reduces immediately to the defini-
tion of a coCartesian edge. In the general case, we note that ψ and ψ1 are
both left fibrations between ∞-categories. Consequently, it suffices to show
that ψ1 is a categorical equivalence. In doing so, we are free to replace ψ by
the equivalent map ψ′ : MP/ → Mp/. To prove that ψ′

1 : MP/×∆1{1} →
Mp/×∆1{1} is a trivial fibration, we must show that for every inclusion
A ⊆ B of simplicial sets and any map

k0 : ((K × ∆1) �A)
∐

(K×{0})�A
((K × {0}) �B) → M

with k0|K ×∆1 = P and k0(B) ⊆ q−1{1}, there exists an extension of k0 to
a map k : (K × ∆1) �B → M. Let

X = (K × ∆1)
∐

K×∆1×B×{0}
(K × ∆1 ×B × ∆1)

and let h : X → K �B be the natural map. Let

X ′ = h−1((K × ∆1) �A)
∐

(K×{0})�A
((K × {0}) �B) ⊆ X

and let k̃0 : X ′ → M be the composition k0 ◦ h. It suffices to prove that
there exists an extension of k̃0 to a map k̃ : X → M. Replacing M by
Map∆1(K,M), we may reduce to the case where K is a point, which we
already treated above.

Lemma 5.2.3.2. Let q : M → ∆1 be a correspondence between ∞-categories
C = q−1{0} and D = q−1{1} and let p : K → C be a diagram in C. Let
f : c → d be a q-Cartesian morphism in M from c ∈ C to d ∈ D. Let
r : Mp/ → M be the projection and let d be an object of Mp/ with r(d) = d.
Then

(1) There exists a morphism f : c → d in Mp/ satisfying f = r(f).

(2) Any morphism f : c → d which satisfies r(f) = f is r-Cartesian.

Proof. We may identify d with a map d : K → M/d. Consider the set of
pairs (L, s), where L ⊆ K and s : L → M/f sits in a commutative diagram

L ��
� �

��

M/f

��
K �� M/d .
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We order these pairs by setting (L, s) ≤ (L′, s′) if L ⊆ L′ and s = s′|L. By
Zorn’s lemma, there exists a pair (L, s) which is maximal with respect to
this ordering. To prove (1), it suffices to show that L = K. Otherwise, we
may obtain a larger simplicial subset L′ = L

∐
∂∆n ∆n ⊆ K by adjoining

a single nondegenerate simplex. By maximality, there is no solution to the
associated lifting problem

∂∆n ��
� �

��

M/f

��
∆n ��

		�
�

�
�

�
M/d

nor to the associated lifting problem

Λn+2
n+2� �

��

s �� M

q

��
∆n+2 ��

		�
�

�
�

�
∆1,

which contradicts the fact that s carries ∆{n+1,n+2} to the q-Cartesian mor-
phism f in M.

Now suppose that f is a lift of f . To prove that f is r-Cartesian, it suffices
to show that for every m ≥ 2 and every diagram

Λmm
g0 ��

� �

��

Mp/

��
∆m ��

g
		�

�
�

�
�� M

such that g0|∆{m−1,m} = f̃ , there exists a dotted arrow g as indicated,
rendering the diagram commutative. We can identify the diagram with a
map

t0 : (K  Λmm)
∐
Λm

m

∆m → M .

Consider the set of all pairs (L, t), where L ⊆ K and

t : (K  Λmm)
∐
L�Λm

m

(L ∆m) → M

is an extension of t0. As above, we order the set of such pairs by declaring
(L, t) ≤ (L′, t′) if L ⊆ L′ and t = t′|L. Zorn’s lemma guarantees the exis-
tence of a maximal pair (L, t). If L = K, we are done; otherwise let L′ be
obtained from L by adjoining a single nondegenerate n-simplex of K. By
maximality, the map t does not extend to L′; consequently, the associated
mapping problem

(∆n  Λmm)
∐
∂∆n�Λm

m
(∂∆n ∆m) ��

� �

��

M

��
∆n ∆m ��



'''''''''
∆1
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has no solution. But this contradicts the assumption that r(f̃) = f is a
q-Cartesian edge of M.

Lemma 5.2.3.3. Let q : M → ∆1 be a correspondence between the ∞-
categories C = q−1{0} and D = q−1{1}. Let f : c → d be a morphism in M

between objects c ∈ C and d ∈ D. Let p : K → C be a diagram and consider
an associated map

k : Mp/×M{c} → Mp/×M{d}
(the map k is well-defined up to homotopy according to Lemma 2.1.1.4). If
f is q-Cartesian, then k is a homotopy equivalence.

Proof. Let X = (Mp/)∆
1 ×

M∆1 {f} and consider the diagram

X

u

!"22
222

222
22

v((///
///

///
/

Mp/×M{c} Mp/×M{d}.
The map u is a homotopy equivalence, and k is defined as the composition of
v with a homotopy inverse to u. Consequently, it will suffice to show that v
is a trivial fibration. To prove this, we must show that v has the right lifting
property with respect to ∂∆n ⊆ ∆n, which is equivalent to solving a lifting
problem

(∂∆n × ∆1)
∐
∂∆n×{1}(∆

n × {1}) ��
� �

��

Mp/

r

��
∆n × ∆1 ��



���������
M .

If n = 0, we invoke (1) of Lemma 5.2.3.2. If n > 0, then Proposition 2.4.1.8
implies that it suffices to show that the upper horizontal map carries {n} ×
∆1 to an r-Cartesian edge of Mp/, which also follows from assertion (2) of
Lemma 5.2.3.2.

Lemma 5.2.3.4. Let q : M → ∆1 be a Cartesian fibration and let C =
q−1{0}. The inclusion C ⊆ M preserves all colimits which exist in C.

Proof. Let p : K
 → C be a colimit of p = p|K. We wish to show that
Mp/ → Mp/ is a trivial fibration. Since we have a diagram

Mp/ → Mp/ → M

of left fibrations, it will suffice to show that the induced map

Mp/×M{d} → Mp/×M{d}
is a homotopy equivalence of Kan complexes for each object d of M. If
d belongs to C, this is obvious. In general, we may choose a q-Cartesian
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morphism f : c → d in M. Composition with f gives a commutative diagram

[Mp/×M{c}] ��

��

[Mp/×M{c}]

��
[Mp/×M{d}] �� [Mp/×M{d}]

in the homotopy category H of spaces. The upper horizontal map is a homo-
topy equivalence since p is a colimit of p in C. The vertical maps are homotopy
equivalences by Lemma 5.2.3.3. Consequently, the bottom horizontal map is
also a homotopy equivalence, as desired.

Proposition 5.2.3.5. Let f : C → D be a functor between ∞-categories
which has a right adjoint g : D → C. Then f preserves all colimits which
exist in C, and g preserves all limits which exist in D.

Proof. We will show that f preserves colimits; the analogous statement for
g follows by a dual argument. Let p : K
 → C be a colimit for p = p|K. We
must show that f ◦ p is a colimit of f ◦ p.

Let q : M → ∆1 be an adjunction between C = M{0} and D = M{1} which
is associated to f and g. We wish to show that

φ1 : Dfp/ → Dfp/

is a trivial fibration. Since φ1 is a left fibration, it suffices to show that φ1 is
a categorical equivalence.

Since M is associated to f , there is a map F : C×∆1 → M such that
F |C×{0} = idC, F |C×{1} = f , and F |{c} × ∆1 a q-coCartesian morphism
of M for every object c ∈ C. Let P = F ◦ (p × id∆1) be the induced map
K
 × ∆1 → M and let P = P |K × ∆1.

Consider the diagram

Mp/
φ′

�� Mp/

MP/
��

v

$$

u

��

MP/

v

$$

u

��
Mfp/

φ �� Mfp/ .

We note that every object in this diagram is an ∞-category with a map to
∆1; moreover, the map φ1 is obtained from φ by passage to the fiber over
{1} ⊆ ∆1. Consequently, to prove that φ1 is a categorical equivalence, it
suffices to verify three things:

(1) The bottom vertical maps u and u are trivial fibrations. This follows
from the fact that K × {1} ⊆ K × ∆1 and K
 × {1} ⊆ K
 × ∆1 are
right anodyne inclusions (Proposition 2.1.2.5).
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(2) The upper vertical maps v and v are trivial fibrations when restricted to
D ⊆ M. This follows from Lemma 5.2.3.1 since F carries each {c}×∆1

to a q-coCartesian edge of M.

(3) The map φ′ is a trivial fibration since p is a colimit of p in M according
to Lemma 5.2.3.4.

Remark 5.2.3.6. Under appropriate set-theoretic hypotheses, one can es-
tablish a converse to Proposition 5.2.3.5. See Corollary 5.5.2.9.

5.2.4 Examples of Adjoint Functors

In this section, we describe a few simple criteria for establishing the existence
of adjoint functors.

Lemma 5.2.4.1. Let q : M → ∆1 be a coCartesian fibration associated to a
functor f : C → D, where C = q−1{0} and D = q−1{1}. Let D be an object
of D. The following are equivalent:

(1) There exists a q-Cartesian morphism g : C → D in M, where C ∈ C.

(2) The right fibration C×D D/D → C is representable.

Proof. Let F : C×∆1 → M be a p-coCartesian natural transformation
from idC to f . Define a simplicial set X so that for every simplicial set
K, HomSet∆(K,X) parametrizes maps H : K × ∆2 → M such that h =
H|K×{0} factors through C, H|K×∆{0,1} = F ◦ (h|(K×{0})× id∆1), and
H|K × {2} is the constant map at the vertex D. We have restriction maps

X

 !..
...

...
..

))���
���

���
�

C×M M/D C×D D/D .

which are both trivial fibrations (the map on the right because M is an ∞-
category, and the map on the left because F is p-coCartesian). Consequently,
(2) is equivalent to the assertion that the ∞-category C×M M/D has a final
object. It now suffices to observe that a final object of C×M M/D is precisely
a q-Cartesian morphism C → D, where C ∈ C.

Proposition 5.2.4.2. Let F : C → D be a functor between ∞-categories.
The following are equivalent:

(1) The functor F has a right adjoint.



348 CHAPTER 5

(2) For every pullback diagram

C ��

p′

��

D

p

��
C

F �� D,

if p is a representable right fibration, then p′ is also a representable
right fibration.

Proof. Let M be a correspondence from C to D associated to F and apply
Lemma 5.2.4.1 to each object of D.

Proposition 5.2.4.3. Let p : C → D be a Cartesian fibration of ∞-
categories and let s : D → C be a section of p such that s(D) is an initial
object of CD = C×D{D} for every object D ∈ D. Then s is a left adjoint of
p.

Proof. Let C0 ⊆ C denote the full subcategory of C spanned by those ob-
jects C ∈ C such that C is initial in the ∞-category Cp(C). According to
Proposition 2.4.4.9, the restriction p|C0 is a trivial fibration from C0 to D.
Consequently, it will suffice to show that the inclusion C0 ⊆ C is left adjoint
to the composition s ◦ p : C → C0. Let M ⊆ C×∆1 be the full subcategory
spanned by the vertices (C, {i}), where i = 1 or C ∈ C0. Let q : M → ∆1 be
the projection. It is clear that q is a coCartesian fibration associated to the
inclusion C0 ⊆ C. To complete the proof, it will suffice to show that q is also
a Cartesian fibration associated to s ◦ p.

We first show that q is a Cartesian fibration. It will suffice to show that
for any object C ∈ C, there is a q-Cartesian edge (C ′, 0) → (C, 1) in M. By
assumption, C ′ = (s◦p)(C) is an initial object of Cp(C). Consequently, there
exists a morphism f : C ′ → C in Cp(C); we will show that f × id∆1 is a
q-Cartesian edge of M. To prove this, it suffices to show that for every n ≥ 2
and every diagram

Λnn� �

��

G0 �� M

��
∆n ��

G

���
�

�
�

∆1

such that F0|∆{n−1,n} = f × id∆1 , there exists a dotted arrow F : ∆n → M

as indicated, rendering the diagram commutative. We may identifyG0 with a
map g0 : Λnn → C. The composite map p◦g0 carries ∆{n−1,n} to a degenerate
edge of D and therefore admits an extension g : ∆n → D. Consider the
diagram

Λnn
g0 ��

� �

��

C

p

��
∆n

g ��

g

��%
%

%
%

D .
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Since g0 carries the initial vertex v of ∆n to an initial object of the fiber
Cg(v), Lemma 2.4.4.8 implies the existence of the indicated map g rendering
the diagram commutative. This gives rise to a map G : ∆n → M with the
desired properties and completes the proof that q is a Cartesian fibration.

We now wish to show that s◦p is associated to q. To prove this, it suffices
to prove the existence of a map H : C×∆1 → C such that p ◦H = p ◦ πC,
H|C×{1} = idC, andH|C×{0} = s◦p. We construct the mapH inductively,
working simplex by simplex on C. Suppose that we have a nondegenerate
simplex σ : ∆n → C and that H has already been defined on skn−1 C×∆1.
To defineH◦(σ×id∆1), we must solve a lifting problem that may be depicted
as follows:

(∂∆n × ∆1)
∐
∂∆n×∂∆1(∆n × ∂∆1)

h0 ��
� �

��

C

p

��
∆n × ∆1 ��

h

��3333333333333333333
D .

We now consider the filtration

X(n+ 1) ⊆ X(n) ⊆ · · · ⊆ X(0) = ∆n × ∆1

defined in the proof of Proposition 2.1.2.6. Let Y (i) = X(i)
∐
∂∆n×{0}(∆

n×
{1}). For i > 0, the inclusion Y (i + 1) ⊆ Y (i) is a pushout of the inclusion
X(i+1) ⊆ X(i) and therefore inner anodyne. Consequently, we may use the
assumption that p is an inner fibration to extend h0 to a map defined on
Y (1). The inclusion Y (1) ⊆ ∆n × ∆1 is a pushout of ∂∆n+1 ⊆ ∆n+1; we
then obtain the desired extension h by applying Lemma 2.4.4.8.

Proposition 5.2.4.4. Let M be a fibrant simplicial category equipped with
a functor p : M → ∆1 (here we identify ∆1 with the two-object category
whose nerve is ∆1), so that we may view M as a correspondence between
the simplicial categories C = p−1{0} and D = p−1{1}. The following are
equivalent

(1) The map p is a Cartesian fibration.

(2) For every object D ∈ D, there exists a morphism f : C → D in M

which induces homotopy equivalences

MapC(C ′, C) → MapM(C ′, D)

for every C ′ ∈ C.

Proof. This follows immediately from Proposition 2.4.1.10 since nonempty
morphism spaces in ∆1 are contractible.

Corollary 5.2.4.5. Let C and D be fibrant simplicial categories and let

C
F �� D
G

��
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be a pair of adjoint functors F : C → D (in the sense of enriched category
theory, so that there is a natural isomorphism of simplicial sets

MapC(F (C), D) � MapD(C,G(D))

for C ∈ C, D ∈ D). Then the induced functors

N(C)
f �� N(D)
g

��

are also adjoint to one another.

Proof. Let M be the correspondence associated to the adjunction (F,G). In
other words, M is a simplicial category containing C and D as full (simplicial)
subcategories, with

MapM(C,D) = MapC(C,G(D)) = MapD(F (C), D)

MapM(D,C) = ∅
for every pair of objects C ∈ C, D ∈ D. Let M = N(M). Then M is a
correspondence between N(C) and N(D). By Proposition 5.2.4.4, it is an
adjunction. It is easy to see that this adjunction is associated to both f and
g.

The following variant on the situation of Corollary 5.2.4.5 arises very often
in practice:

Proposition 5.2.4.6. Let A and A′ be simplicial model categories and let

A
F ��A′
G

��

be a (simplicial) Quillen adjunction. Let M be the simplicial category defined
as in the proof of Corollary 5.2.4.5 and let M◦ be the full subcategory of M

consisting of those objects which are fibrant-cofibrant (either as objects of A
or as objects of A′). Then N(M◦) determines an adjunction between N(A◦)
and N(A′◦).

Proof. We need to show that N(M◦) → ∆1 is both a Cartesian fibration and
a coCartesian fibration. We will argue the first point; the second follows from
a dual argument. According to Proposition A.2.3.1, it suffices to show that
for every fibrant-cofibrant object D of A′, there is a fibrant-cofibrant object
C of A and a morphism f : C → D in M◦ which induces weak homotopy
equivalences

MapA(C ′, C) → MapM(C ′, D)

for every fibrant-cofibrant object C ′ ∈ A. We define C to be a cofibrant
replacement for GD: in other words, we choose a cofibrant object C with a
trivial fibration C → G(D) in the model category A. Then MapA(C ′, C) →
MapM(C ′, D) = MapA(C ′, G(D)) is a trivial fibration of simplicial sets,
whenever C′ is a cofibrant object of A.
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Remark 5.2.4.7. Suppose that F : A → A′ and G : A′ → A are as
in Proposition 5.2.4.6. We may associate to the adjunction N(M◦) a pair
of adjoint functors f : N(A◦) → N(A′◦) and g : N(A′◦) → N(A◦). In
this situation, f is often called a (nonabelian) left derived functor of F ,
and g a (nonabelian) right derived functor of G. On the level of homotopy
categories, f and g reduce to the usual derived functors associated to the
Quillen adjunction (see §A.2.5).

5.2.5 Adjoint Functors and Overcategories

Our goal in this section is to prove the following result:

Proposition 5.2.5.1. Suppose we are given an adjunction of ∞-categories

C
F �� D
G

�� .

Assume that the ∞-category C admits pullbacks and let C be an object of C.
Then

(1) The induced functor f : C/C → D/FC admits a right adjoint g.

(2) The functor g is equivalent to the composition

D/FC g′→ C/GFC
g′′→ C/C ,

where g′ is induced by G and g′′ is induced by pullback along the unit
map C → GFC.

Proposition 5.2.5.1 is an immediate consequence of the following more
general result, which we will prove at the end of this section:

Lemma 5.2.5.2. Suppose we are given an adjunction between ∞-categories

C
F �� D
G

�� .

Let K be a simplicial set and suppose we are given a pair of diagrams p0 :
K → C, p1 : K → D and a natural transformation h : F ◦ p0 → p1. Assume
that C admits pullbacks and K-indexed limits. Then

(1) Let f : C/p0 → D/p1 denote the composition

C/p0 → D/Fp0 ◦α→ D/p1 .

Then f admits a right adjoint g.

(2) The functor g is equivalent the composition

D/p1 g′→ C/Gp1
g′′→ C/p0 .

Here g′′ is induced by pullback along the natural transformation p0 →
Gp1 adjoint to h (see below).
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We begin by recalling a bit of notation which will be needed in the proof.
Suppose that q : X → S is an inner fibration of simplicial sets and pS :
K → X is an arbitrary map, then we have defined a map of simplicial sets
X/pS → S, which is characterized by the following universal property: for
every simplicial set Y equipped with a map to S, there is a pullback diagram

HomS(Y,X/pS ) ��

��

HomS(Y �S S,X)

��
{p} �� HomS(S,X).

We refer the reader to §4.2.2 for a more detailed discussion.

Lemma 5.2.5.3. Let q : M → ∆1 be a coCartesian fibration of simplicial
sets classifying a functor F from C = M×∆1{0} to D = M×∆1{1}. Let K
be a simplicial set and suppose we are given a commutative diagram

K × ∆1

�� 
  

  
  

  
g∆1 �� M

��		
		
		
		

∆1,

which restricts to give a pair of diagrams

C
g0← K

g1→ D .

Then

(1) The projection q′ : M/g∆1 → ∆1 is a coCartesian fibration of simplicial
sets classifying a functor F ′ : C/g0 → D/g1 . Moreover, an edge of
M/g∆1 is q′-coCartesian if and only if its image in M is q-coCartesian.

(2) Suppose that for every vertex k in K, the map g∆ carries {k}×∆1 to a
q-coCartesian morphism in M, so that g∆1 determines an equivalence
g1 � F ◦ g0. Then F ′ is homotopic to the composite functor

C/g0 → D/Fg0 � D/g1 .

(3) Suppose that M = D×∆1 and that q is the projection onto the second
factor, so that we can identify F with the identity functor from D

to itself. Let g : K × ∆1 → D denote the composition g∆1 with the
projection map M → D, so that we can regard g as a morphism from
g0 to g1 in Fun(K,D). Then the functor F ′ : D/g0 → D/g1 is induced
by composition with g.

Proof. Assertion (1) follows immediately from Proposition 4.2.2.4.
We now prove (2). Since F is associated to the correspondence M, there

exists a natural transformation α : C×∆1 → M from idC to F , such that for
each C ′ ∈ C the induced map αC : C ′ → FC ′ is q-coCartesian. Without loss
of generality, we may assume that g∆1 is given by the composition

K × ∆1 g0→ C×∆1 α→ M .
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In this case, α induces a map α′ : C/g0 ×∆1 → M/g∆1 , which we may identify
with a natural transformation from idC/g0 to the functor C/g0 → D/Fg0

determined by F . To show that this functor coincides with F ′, it will suffice
to show that α′ carries each object of C/g0 to a q′-coCartesian morphism in
M/g∆1 . This follows immediately from the description of the q′-coCartesian
edges given in assertion (1).

We next prove (3). Consider the diagram

D/g0 p← D/g p′→ D/g1 .

By definition, “composition with g” refers to a functor from D/g0 to D/g1

obtained by composing p′ with a section to the trivial fibration p. To prove
that this functor is homotopic to F ′, it will suffice to show that F ′ ◦ p is
homotopic to p′. For this, we must produce a map β : D/g ×∆1 → M/g∆1

from p to p′, such that β carries each object of D/g to a q′-coCartesian edge
of M/g∆1 . We observe that D/g ×∆1 can be identified with M/h∆1 , where
h : ∆1 × ∆1 → M � D×∆1 is the product of g with the identity map.
We now take β to be the restriction map M/h∆1 → M/g∆1 induced by the
diagonal inclusion ∆1 ⊆ ∆1 × ∆1. Using (1), we readily deduce that β has
the desired properties.

We will also need the following counterpart to Proposition 4.2.2.4:

Lemma 5.2.5.4. Suppose we are given a commutative diagram of simplicial
sets

K × S
pS ��

��*
**

**
**

**
X

q ��

��

Y

����
��
��
�

S,

where the left diagonal arrow is projection onto the second factor and q is a
Cartesian fibration. Assume further that the following condition holds:

(∗) For every vertex k ∈ K, the map pS carries each edge of {k} × S to a
q-Cartsian edge in X.

Let p′S = q ◦ pS. Then the map q′ : X/pS → Y /p
′
S is a Cartesian fibration.

Moreover, an edge of X/pS is q′-Cartesian if and only if its image in X is
q-Cartesian.

Proof. To give the proof, it is convenient to use the language of marked
simplicial sets (see §3.1). Let X� denote the marked simplicial set whose
underlying simplicial set is X, where we consider an edge of X� to be marked
if it is q-Cartesian. LetX

�
denote the marked simplicial set whose underlying

simplicial set is X/pS , where we consider an edge to be marked if and only if
its image in X is marked. According to Proposition 3.1.1.6, it will suffice to
show that the map X

� → (Y /p
′
S )� has the right lifting property with respect
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to every marked anodyne map i : A → B. Let A and B denote the simplicial
sets underlying A and B, respectively. Suppose we are given a diagram of
marked simplicial sets

A� �

i

��

��
X
�

��
B ��

		�
�

�
�

�
(Y /p

′
S )�.

We wish to show that there exists a dotted arrow rendering the diagram com-
mutative. We begin by choosing a solution to the associated lifting problem

A� �

��

�� X�

��
B ��

���
�

�
�

Y �,

which is possible in view of our assumption that q is a Cartesian fibration. To
extend this to a solution to the original problem, it suffices to solve another
lifting problem

(A×K × ∆1)
∐

(A×K×∂∆1)(B ×K × ∂∆1)
f ��

� �

j

��

X

q

��
B ×K × ∆1 ��

��00000000000
Y.

By construction, the map f induces a map of marked simplicial sets from
B×K� ×{0} to X�. Using assumption (∗), we conclude that f also induces
a map of marked simplicial sets from B×K�×{1} to X�. Using Proposition
3.1.1.6 again (and our assumption that q is a Cartesian fibration), we are
reduced to proving that the map j induces a marked anodyne map

(A× (K × ∆1)�)
∐

A×(K×∂∆1)�

(B × (K × ∂∆1)�) → B × (K × ∆1)�.

Since i is marked anodyne by assumption, this follows immediately from
Proposition 3.1.2.3.

Lemma 5.2.5.5. Let q : M → ∆1 be a Cartesian fibration of simplicial sets
associated to a functor G from D = M×∆1{1} to C = M×∆1{0}. Suppose
we are given a simplicial set K and a commutative diagram

K × ∆1
g∆1 ��

�� 
  

  
  

  
M

��		
		
		
		

∆1,

so that g∆1 restricts to a pair of functors
C
g0← K

g1→ D .

Suppose furthermore that, for every vertex k of K, the corresponding mor-
phism g0(k) → g1(k) is q-Cartesian. Then
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(1) The induced map q′ : M/f∆1 → ∆1 is a Cartesian fibration. Moreover,
an edge of M/f∆1 is q′-Cartesian if and only if its image in M is q-
Cartesian.

(2) The associated functor D/g1 → C/g0 is homotopic to the composition
of the functor G′ : D/g1 → C/Gg1 induced by G and the equivalence
C/Gg1 � C/g0 determined by the map g∆1 .

Proof. Assertion (1) follows immediately from Lemma 5.2.5.4. We will prove
(2). Since the functorG is associated to q, there exists a map α : D×∆1 → M

which is a natural transformation from G to idD, such that for every object
D ∈ D the induced map αD : {D} × ∆1 → M is a q-Cartesian edge of
M. Without loss of generality, we may assume that g coincides with the
composition

K × ∆1 g1→ D×∆1 α→ M .

In this case, α induces a map α′ : D/g1 ×∆1 → M/f∆1 , which is a natural
transformation from G′ to the identity. Using (1), we deduce that α′ carries
each object of D/g1 to a q′-Cartesian edge of M/f∆1 . It follows that α′ exhibits
G′ as the functor associated to the Cartesian fibration q′, as desired.

Proof of Lemma 5.2.5.2. Let q : M → ∆1 be a correspondence from C =
M×∆1{0} to D = M×∆1{1}, which is associated to the pair of adjoint
functors F and G. The natural transformation h determines a map α :
K × ∆1 → M, which is a natural transformation from p0 to p1. Using the
fact that q is both a Cartesian and a coCartesian fibration, we can form a
commutative square σ

Gp1

φ

��!
!!

!!
!!

!

p0

��%%%%%%%% α ��

ψ

��!
!!

!!
!!

! p1

Fp0

��%%%%%%%%

in the ∞-category Fun(K,M), where the morphism φ is q-Cartesian and the
morphism ψ is q-coCartesian.

Let N = M×∆1. We can identify σ with a map σ∆1×∆1 : K×∆1 ×∆1 →
M×∆1. Let N′ = N/σ∆1×∆1 . Proposition 4.2.2.4 implies that the projection
N′ → ∆1 × ∆1 is a coCartesian fibration associated to some diagram of
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∞-categories

C/Gp1

f ′

 ! 
  

  
  

  

C/p0
��

�� 
  

  
  

  

f ′′
�����������

D/p1

D/Fp0 .

�����������

Lemma 5.2.5.3 allows us to identify the functors in the lower triangle, so
we see that the horizontal composition is homotopic to the functor f . To
complete the proof of (1), it will suffice to show that the functors f ′ and
f ′′ admit right adjoints. To prove (2), it suffices to show that those right
adjoints are given by g′ and g′′, respectively. The adjointness of f ′ and g′

follows from Lemma 5.2.5.5.
It follows from Lemma 5.2.5.3 that the functor f ′′ : C/p0 → C/Gp1 is given

by composition with the transformation h′ : p0 → Gp1 which is adjoint to
h. The pullback functor g′′ is right adjoint to f ′′ by definition; the only
nontrivial point is to establish the existence of g′′. Here we must use our
hypotheses on the ∞-category C. Let p0 : K	 → C be a limit of p0 and let
Gp1 : K	 → C be a limit of Gp1. Let us identify h′ with a map K × ∆1 → C

and choose an extension h
′
: K	×∆1 → C which is a natural transformation

from p0 to Gp1. Let C ∈ C denote the image under p0 of the cone point of
K	, let C ′ ∈ C denote the image under Gp1 of the cone point of K	, and
let j : C → C ′ be the morphism induced by h

′
. We have a commutative

diagram of ∞-categories:

C/p0 C/h
′ f ′′

1 ��
f ′′
0

��
C/Gp1

C/p0

$$

��

C/h
′�� ��

$$

��

C/Gp1

$$

��
C/C C/j

����
C/C

′
.

In this diagram, the left horizontal arrows are trivial Kan fibrations, as are
all of the vertical arrows. The functor f ′′ is obtained by composing f ′′

0 with
a section to the trivial Kan fibration f ′′

1 . Utilizing the vertical equivalences,
we can identify f ′′ with the functor C/C → C/C

′
given by composition with

j. But this functor admits a right adjoint in view of our assumption that C

admits pullbacks.

5.2.6 Uniqueness of Adjoint Functors

We have seen that if f : C → D is a functor which admits a right adjoint
g : D → C, then g is uniquely determined up to homotopy. Our next result
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is a slight refinement of this assertion.

Definition 5.2.6.1. Let C and D be ∞-categories. We let FunL(C,D) ⊆
Fun(C,D) denote the full subcategory of Fun(C,D) spanned by those func-
tors F : C → D which are left adjoints. Similarly, we define FunR(C,D) to
be the full subcategory of Fun(C,D) spanned by those functors which are
right adjoints.

Proposition 5.2.6.2. Let C and D be ∞-categories. Then the ∞-categories
FunL(C,D) and FunR(D,C)op are (canonically) equivalent to one another.

Proof. Enlarging the universe if necessary, we may assume without loss of
generality that C and D are small. Let j : D → P(D) be the Yoneda embed-
ding. Composition with j induces a fully faithful embedding

i : Fun(C,D)→Fun(C,P(D)) � Fun(C×Dop, S).
The essential image of i consists of those functors G : C×Dop → S with
the property that, for each C ∈ C, the induced functor GC : Dop → S is
representable by an object D ∈ D. The functor i induces a fully faithful
embedding

i0 : FunR(C,D) → Fun(C×Dop, S)
whose essential image consists of those functors G which belong to the es-
sential image of i and furthermore satisfy the additional condition that for
each D ∈ D, the induced functor GD : C → S is corepresentable by an ob-
ject C ∈ C (this follows from Proposition 5.2.4.2). Let E ⊆ Fun(C×Dop, S)
be the full subcategory spanned by those functors which satisfy these two
conditions, so that the Yoneda embedding induces an equivalence

FunR(C,D) → E .

We note that the above conditions are self-dual, so that the same reasoning
gives an equivalence of ∞-categories

FunR(Dop,Cop) → E .

We now conclude by observing that there is a natural equivalence of ∞-
categories FunR(Dop,Cop) � FunL(D,C)op.

We will later need a slight refinement of Proposition 5.2.6.2, which exhibits
some functoriality in C. We begin with a few preliminary remarks concerning
the construction of presheaf ∞-categories.

Let f : C → C′ be a functor between small ∞-categories. Then composition
with f induces a restriction functor G : P(C′) → P(C). However, there is
another slightly less evident functoriality of the construction C �→ P(C).
Namely, according to Theorem 5.1.5.6, there is a colimit-preserving functor
P(f) : P(C) → P(C′), uniquely determined up to equivalence, such that the
diagram

C

��

f �� C′

��
P(C)

P(f) �� P(C′)
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commutes up to homotopy (here the vertical arrows are given by the Yoneda
embeddings).

The functor P(f) has an alternative characterization in the language of
adjoint functors:

Proposition 5.2.6.3. Let f : C → C′ be a functor between small ∞-
categories and let G : P(C′) → P(C) be the functor given by composition
with f . Then G is right adjoint to P(f).

Proof. We first prove that G admits a left adjoint. Let

e : P(C) → Fun(P(C)op, Ŝ)

denote the Yoneda embedding. According to Proposition 5.2.4.2, it will suf-
fice to show that for each M ∈ P(C), the composite functor e(M) ◦ G is
corepresentable. Let D denote the full subcategory of P(C) spanned by those
objects M such that G ◦ eM is corepresentable. Since P(C) admits small
colimits, Proposition 5.1.3.2 implies that the collection of corepresentable
functors on P(C) is stable under small colimits. According to Propositions
5.1.3.2 and 5.1.2.2, the functor M �→ e(M) ◦ G preserves small colimits. It
follows that D is stable under small colimits in P(C). Since P(C) is generated
under small colimits by the Yoneda embedding jC′ : C → P(C) (Corollary
5.1.5.8), it will suffice to show that jC(C) ∈ D for each C ∈ C. According
to Lemma 5.1.5.2, e(jC(C)) is equivalent to the functor P(C) → Ŝ given by
evaluation at C. Then e(jC(C)) ◦ G is equivalent to the functor given by
evaluation at f(C) ∈ C′, which is corepresentable (Lemma 5.1.5.2 again).
We conclude that G has a left adjoint F .

To complete the proof, we must show that F is equivalent to P(f). To
prove this, it will suffice to show that F preserves small colimits and that
the diagram

C
f ��

��

C′

��
P(C) F �� P(C′)

commutes up to homotopy. The first point is obvious: since F is a left adjoint,
it preserves all colimits which exist in P(C) (Proposition 5.2.3.5). For the
second, choose a counit map v : F ◦ G → idP(C′). By construction, the
functor f induces a natural transformation u : jC → G ◦ jC′ ◦ f . To complete
the proof, it will suffice to show that the composition

θ : F ◦ jC u→ F ◦G ◦ jC′ ◦ f v→ jC′ ◦ f

is an equivalence of functors from C to P(C′). Fix objects C ∈ C, M ∈ P(C′).
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We have a commutative diagram

MapP(C′)(jC′(f(C)),M)

��

MapP(C′)(jC′(f(C)),M)

��
MapP(C)(G(jC′(f(C))), G(M)) ��

��

MapP(C′)(F (G(jC′(f(C)))),M)

��
MapP(C)(jC(C), G(M)) �� MapP(C′)(F (jC(C)),M)

in the homotopy category H of spaces, where the vertical arrows are iso-
morphisms. Consequently, to prove that the lower horizontal composition is
an isomorphism, it suffices to prove that the upper horizontal composition
is an isomorphism. Using Lemma 5.1.5.2, we reduce to the assertion that
M(f(C)) → (G(M))(C) is an isomorphism in H, which follows immediately
from the definition of G.

Remark 5.2.6.4. Suppose we are given a functor f : D → D′ which admits
a right adjoint g. Let E ⊆ Fun(C×Dop, S) and E′ ⊆ Fun(C×(D′)op, S) be
defined as in the proof of Proposition 5.2.6.2 and consider the diagram

FunR(C,D)

◦g
��

�� E

��

FunL(D,C)op

◦f
��

��

FunR(C,D′) �� E′ FunL(D′,C)op.��

Here the middle vertical map is given by composition with idC ×f . The
square on the right is manifestly commutative, but the square on the left
commutes only up to homotopy. To verify the second point, we observe that
the square in question is given by applying the functor Map(C, •) to the
diagram

D ��

g

��

P(D)

G

��
D′ �� P(D′),

where G is given by composition with f and the horizontal arrows are given
by the Yoneda embedding. Let P0(D) ⊆ P(D) and P0(D′) denote the es-
sential images of the Yoneda embeddings. Proposition 5.2.4.2 asserts that G
carries P0(D′) into P0(D), so that it will suffice to verify that the diagram

D ��

g

��

P0(D)

G0

��
D′ �� P0(D′)
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is homotopy commutative. In view of Proposition 5.2.2.6, it will suffice to
show that G0 admits a left adjoint F 0 and that the diagram

D �� P0(D)

D′ ��

$$

P0(D′)

F0

$$

is homotopy commutative. According to Proposition 5.2.6.3, the functor G
has a left adjoint P(f) which fits into a commutative diagram

D �� P(D)

D′ ��

f

$$

P(D′).

P(f)

$$

In particular, P(f) carries P0(D) into P0(D′) and therefore restricts to give
a left adjoint F 0 : P0(D) → P0(D′) which verifies the desired commutativity.

We conclude this section by establishing the following consequence of
Proposition 5.2.6.3:

Corollary 5.2.6.5. Let C be a small ∞-category and D a locally small
∞-category which admits small colimits. Let F : P(C) → D be a colimit-
preserving functor, let f : C → D denote the composition of F with the
Yoneda embedding of C, and let G : D → P(C) be the functor given by the
composition

D
j′→ Fun(Dop, S)

◦f→ P(C).

Then G is a right adjoint to F . Moreover, the map

f = F ◦ j → (F ◦ (G ◦ F )) ◦ j = (F ◦G) ◦ f
exhibits F ◦G as a left Kan extension of f along itself.

The proof requires a few preliminaries:

Lemma 5.2.6.6. Suppose we are given a pair of adjoint functors

C
f �� D
g

��

between ∞-categories. Let T : C → X be any functor. Then T ◦ g : D → X is
a left Kan extension of T along f .

Proof. Let p : M → ∆1 be a correspondence associated to the pair of adjoint
functors f and g. Choose a p-Cartesian homotopy h from r to idM , where r
is a functor from M to C; thus r|D is homotopic to g. It will therefore suffice
to show that the composition

T : M
r→ C

T→ X
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is a left Kan extension of T |C � T . For this, we must show that for each
D ∈ D, the functor T exhibits T (D) as a colimit of the diagram

(C×M M/D) → M
T→ X .

We observe that C×M M/D has a final object given by any p-Cartesian
morphism e : C → D. It therefore suffices to show that T (e) is an equivalence
in X, which follows immediately from the construction of T .

Lemma 5.2.6.7. Let f : C → C′ be a functor between small ∞-categories
and X an ∞-category which admits small colimits. Let H : P(C) → X be a
functor which preserves small colimits and h : C → X the composition of F
with the Yoneda embedding jC : C → P(C). Then the composition

C′ jC′→ P(C′)
◦f→ P(C) H→ X

is a left Kan extension of h along f .

Proof. Let G : P(C′) → P(C) be the functor given by composition with f . In
view of Proposition 4.3.2.8, it will suffice to show that H ◦ G is a left Kan
extension of h along jC ◦ f .

Theorem 5.1.5.6 implies the existence of a functor F : P(C) → P(C′) which
preserves small colimits, such that F ◦jC � jC′ ◦f . Moreover, Lemma 5.1.5.5
ensures that F is a left Kan extension of f along the fully faithful Yoneda
embedding jC. Using Proposition 4.3.2.8 again, we are reduced to proving
that H ◦ G is a left Kan extension of H along F . This follows immediately
from Proposition 5.2.6.3 and Lemma 5.2.6.6.

Proof of Corollary 5.2.6.5. The first claim follows from Proposition 5.2.6.3.
To prove the second, we may assume without loss of generality that D is
minimal, so that D is a union of small full subcategories {Dα}. It will suffice
to show that, for each index α such that f factors through Dα, the restricted
transformation f → ((F ◦ G)|Dα) ◦ f exhibits (F ◦ G)|Dα as a left Kan
extension of f along the induced map C → Dα, which follows from Lemma
5.2.6.7.

5.2.7 Localization Functors

Suppose we are given an ∞-category C and a collection S of morphisms of C

which we would like to invert. In other words, we wish to find an ∞-category
S−1 C equipped with a functor η : C → S−1 C which carries each morphism
in S to an equivalence and is in some sense universal with respect to these
properties. One can give a general construction of S−1 C using the formalism
of §3.1.1. Without loss of generality, we may suppose that S contains all the
identity morphisms in C. Consequently, the pair (C, S) may be regarded as
a marked simplicial set, and we can choose a marked anodyne map (C, S) →
(S−1 C, S′), where S−1 C is an ∞-category and S′ is the collection of all
equivalences in S−1 C. However, this construction is generally very difficult
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to analyze, and the properties of S−1 C are very difficult to control. For
example, it might be the case that C is locally small and S−1 C is not.

Under suitable hypotheses on S (see §5.5.4), there is a drastically simpler
approach: we can find the desired ∞-category S−1 C inside C as the full
subcategory of S-local objects of C.

Example 5.2.7.1. Let C be the (ordinary) category of abelian groups, let
p be a prime number, and let S denote the collection of morphisms f whose
kernel and cokernel consist entirely of p-power torsion elements. A morphism
f lies in S if and only if it induces an isomorphism after inverting the prime
number p. In this case, we may identify S−1 C with the full subcategory of C

consisting of those abelian groups which are uniquely p-divisible. The functor
C → S−1 C is given by

M �→ M ⊗Z Z[
1
p
].

In Example 5.2.7.1, the functor C → S−1 C is actually left adjoint to an
inclusion functor. We will take this as our starting point.

Definition 5.2.7.2. A functor f : C → D between ∞-categories is a local-
ization if f has a fully faithful right adjoint.

Warning 5.2.7.3. Let f : C → D be a localization functor and let S denote
the collection of all morphisms α in C such that f(α) is an equivalence. Then,
for any ∞-category E, composition with f induces a fully faithful functor

Fun(D,E)
◦f→ Fun(C,E)

whose essential image consists of those functors p : C → E which carry each
α ∈ S to an equivalence in E (Proposition 5.2.7.12). We may describe the
situation more informally by saying that D is obtained from C by inverting
the morphisms of S.

Some authors use the term “localization” in a more general sense to de-
scribe any functor f : C → D in which D is obtained by inverting some
collection S of morphisms in C. Such a morphism f need not be a local-
ization in the sense of Definition 5.2.7.2; however, it is in many cases (see
Proposition 5.5.4.15).

If f : C → D is a localization of ∞-categories, then we will also say that
D is a localization of C. In this case, a right adjoint g : D → C of f gives an
equivalence between D and a full subcategory of C (the essential image of g).
We let L : C → C denote the composition g ◦ f . We will abuse terminology
by referring to L as a localization functor if it arises in this way.

The following result will allow us to recognize localization functors:

Proposition 5.2.7.4. Let C be an ∞-category and let L : C → C be a functor
with essential image LC ⊆ C. The following conditions are equivalent:

(1) There exists a functor f : C → D with a fully faithful right adjoint
g : D → C and an equivalence between g ◦ f and L.
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(2) When regarded as a functor from C to LC, L is a left adjoint of the
inclusion LC ⊆ C.

(3) There exists a natural transformation α : C×∆1 → C from idC to L
such that, for every object C of C, the morphisms L(α(C)), α(LC) :
LC → LLC of C are equivalences.

Proof. It is obvious that (2) implies (1) (take D = LC, f = L, and g to
be the inclusion). The converse follows from the observation that, since g is
fully faithful, we are free to replace D by the essential image of g (which is
equal to the essential image of L).

We next prove that (2) implies (3). Let α : idC → L be a unit for the
adjunction. Then, for each pair of objects C ∈ C, D ∈ LC, composition with
α(C) induces a homotopy equivalence

MapC(LC,D) → MapC(C,D)

and, in particular, a bijection HomhC(LC,D) → HomhC(C,D). If C belongs
to LC, then Yoneda’s lemma implies that α(C) is an isomorphism in hC.
This proves that α(LC) is an equivalence for every C ∈ C. Since α is a
natural transformation, we obtain a diagram

C
α(C) ��

α(C)

��

LC

Lα(C)

��
LC

α(LC)�� LLC.

Since composition with α(C) gives an injective map from HomhC(LC,LLC)
to HomhC(C,LLC), we conclude that α(LC) is homotopic to Lα(C); in
particular, α(LC) is also an equivalence. This proves (3).

Now suppose that (3) is satisfied; we will prove that α is the unit of an
adjunction between C and LC. In other words, we must show that for each
C ∈ C and D ∈ C, composition with α(C) induces a homotopy equivalence

φ : MapC(LC,LD) → MapC(C,LD).

By Yoneda’s lemma, it will suffice to show that for every Kan complex K,
the induced map

HomH(K,MapC(LC,LD)) → HomH(K,MapC(C,LD))

is a bijection of sets, where H denotes the homotopy category of spaces.
Replacing C by Fun(K,C), we are reduced to proving the following:

(∗) Suppose that α : idC → L satisfies (3). Then, for every pair of objects
C,D ∈ C, composition with α(C) induces a bijection of sets

φ : HomhC(LC,LD) → HomhC(C,LD).
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We first show that φ is surjective. Let f be a morphism from C to LD.
We then have a commutative diagram

C
f ��

α(C)

��

LD

α(LD)

��
LC

Lf �� LLD,

so that f is homotopic to the composition (α(LD)−1◦Lf)◦α(C); this proves
that the homotopy class of f lies in the image of φ.

We now show that φ is injective. Let g : LC → LD be an arbitrary
morphism. We have a commutative diagram

LC
g ��

α(LC)

��

LD

α(LD)

��
LLC

Lg �� LLD,

so that g is homotopic to the composition

α(LD)−1 ◦ Lg ◦ α(LC)�α(LD)−1 ◦ Lg ◦ Lα(C) ◦ (Lα(C))−1 ◦ α(LC)
�α(LD)−1 ◦ L(g ◦ α(C)) ◦ (Lα(C))−1 ◦ α(LC).

In particular, g is determined by g ◦ α(C) up to homotopy.

Remark 5.2.7.5. Let L : C → D be a localization functor andK a simplicial
set. Suppose that every diagram p : K → C admits a colimit in C. Then the
∞-category D has the same property. Moreover, we can give an explicit
prescription for computing colimits in D. Let q : K → D be a diagram and
let p : K → C be the composition of q with a right adjoint to L. Choose a
colimit p : K
 → C. Since L is a left adjoint, L ◦ p is a colimit diagram in D,
and L ◦ p is equivalent to the diagram q.

We conclude this section by introducing a few ideas which will allow us to
recognize localization functors when they exist.

Definition 5.2.7.6. Let C be an ∞-category and C0 ⊆ C a full subcategory.
We will say that a morphism f : C → D in C exhibits D as a C0-localization
of C if D ∈ C0, and composition with f induces an isomorphism

MapC0(D,E) → MapC(C,E)

in the homotopy category H for each object E ∈ C0.

Remark 5.2.7.7. In the situation of Definition 5.2.7.6, a morphism f : C →
D exhibits D as a localization of C if and only if f is an initial object of the
∞-category C0

C/ = CC/×C C0. In particular, f is uniquely determined up to
equivalence.
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Proposition 5.2.7.8. Let C be an ∞-category and C0 ⊆ C a full subcategory.
The following conditions are equivalent:

(1) For every object C ∈ C, there exists a localization f : C → D relative
to C0.

(2) The inclusion C0 ⊆ C admits a left adjoint.

Proof. Let D be the full subcategory of C×∆1 spanned by objects of the
form (C, i), where C ∈ C0 if i = 1. Then the projection p : D → ∆1 is
a correspondence from C to C0 which is associated to the inclusion functor
i : C0 ⊆ C. It follows that i admits a left adjoint if and only if p is a
coCartesian fibration. It now suffices to observe that if C is an object of
C, then we may identify p-coCartesian edges f : (C, 0) → (D, 1) of D with
localizations C → D relative to C0.

Remark 5.2.7.9. By analogy with classical category theory, we will say
that a full subcategory C0 of an ∞-category C is a reflective subcategory if
the hypotheses of Proposition 5.2.7.8 are satisfied by the inclusion C0 ⊆ C.

Example 5.2.7.10. Let C be an ∞-category which has a final object and
let C0 be the full subcategory of C spanned by the final objects. Then the
inclusion C0 ⊆ C admits a left adjoint.

Corollary 5.2.7.11. Let p : C → D be a coCartesian fibration between ∞-
categories, let D0 ⊆ D be a full subcategory and let C0 = C×D D0. If the
inclusion D0 ⊆ D admits a left adjoint, then the inclusion C0 ⊆ C admits a
left adjoint.

Proof. In view of Proposition 5.2.7.8, it will suffice to show that for every
object C ∈ C, there a morphism f : C → C0 which is a localization of C
relative to C0. Let D = p(C), let f : D → D0 be a localization of D relative
to D0, and let f : C → C0 be a p-coCartesian morphism in C lifting f . We
claim that f has the desired property. Choose any object C ′ ∈ C0 and let
D′ = p(C ′) ∈ D0. We obtain a diagram of spaces

MapC(C0, C
′)

φ ��

��

MapC(C,C ′)

��
MapD(D0, D

′)
ψ �� MapD(D,D′)

which commutes up to preferred homotopy. By assumption, the map ψ is a
homotopy equivalence. Since f is p-coCartesian, the map φ induces a homo-
topy equivalence after passing to the homotopy fibers over any pair of points
η ∈ MapD(D0, D

′), ψ(η) ∈ MapD(D,D′). Using the long exact sequence of
homotopy groups associated to the vertical fibrations, we conclude that φ is
a homotopy equivalence, as desired.



366 CHAPTER 5

Proposition 5.2.7.12. Let C be an ∞-category and let L : C → C be a
localization functor with essential image LC. Let S denote the collection of
all morphisms f in C such that Lf is an equivalence. Then, for every ∞-
category D, composition with f induces a fully faithful functor

ψ : Fun(LC,D) → Fun(C,D).

Moreover, the essential image of ψ consists of those functors F : C → D

such that F (f) is an equivalence in D for each f ∈ S.

Proof. Let S0 be the collection of all morphisms C → D in C which exhibit
D as an LC-localization of C. We first claim that, for any functor F : C → D,
the following conditions are equivalent:

(a) The functor F is a right Kan extension of F |LC.

(b) The functor F carries each morphism in S0 to an equivalence in D.

(c) The functor F carries each morphism in S to an equivalence in D.

The equivalence of (a) and (b) follows immediately from the definitions
(since a morphism f : C → D exhibits D as an LC-localization of C if and
only if f is an initial object of (LC)×C CC/ ), and the implication (c) ⇒ (b)
is obvious. To prove that (b) ⇒ (c), let us consider any map f : C → D
which belongs to S. We have a commutative diagram

C
f ��

��

LC

f

��
D �� LD.

Since f ∈ S, the map Lf is an equivalence in C. If F satisfies (b), then F
carries each of the horizontal maps to an equivalence in D. It follows from
the two-out-of-three property that Ff is an equivalence in D as well, so that
F satisfies (c).

Let Fun0(C,D) denote the full subcategory of Fun(C,D) spanned by those
functors which satisfy (a), (b), and (c). Using Proposition 4.3.2.15, we deduce
that the restriction functor φ : Fun0(C,D) → Fun(LC,D) is fully faithful.
We now observe that ψ is a right homotopy inverse to φ. It follows that φ
is essentially surjective and therefore an equivalence. Being right homotopy
inverse to an equivalence, the functor ψ must itself be an equivalence.

5.2.8 Factorization Systems

Let f : X → Z be a map of sets. Then f can be written as a composition

X
f ′
→ Y

f ′′
→ Z,

where f ′ is surjective and f ′′ is injective. This factorization is uniquely de-
termined up to (unique) isomorphism: the set Y can be characterized either
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as the image of the map f or as the quotient of X by the equivalence re-
lation R = {(x, y) ∈ X2 : f(x) = f(y)}. We can describe the situation
formally by saying that the collections of surjective and injective maps form
a factorization system on the category Set of sets (see Definition 5.2.8.8).
In this section, we will describe a theory of factorization systems in the ∞-
categorical setting. These ideas are due to Joyal, and we refer the reader to
[44] for further details.

Definition 5.2.8.1. Let f : A → B and g : X → Y be morphisms in an
∞-category C. We will say that f is left orthogonal to g (or that g is right
orthogonal to f) if the following condition is satisfied:

(∗) For every commutative diagram

A ��

f

��

X

g

��
B �� Y

in C, the mapping space MapCA/ /Y
(B,X) is contractible. (Here we

abuse notation by identifying B and X with the corresponding objects
of CA//Y .)

In this case, we will write f ⊥ g.

Remark 5.2.8.2. More informally, a morphism f : A → B in an ∞-category
C is left orthogonal to another morphism g : X → Y if, for every commutative
diagram

A

f

��

�� X

g

��
B ��

���
�

�
�

Y,

the space of dotted arrows which render the diagram commutative is con-
tractible.

Remark 5.2.8.3. Let f : A → B and g : X → Y be morphisms in an ∞-
category C. Fix a morphism A → Y , which we can identify with an object
Y ∈ CA/. Lifting g : X → Y to an object of X̃ ∈ CA//Y is equivalent to
lifting g to a morphism g : X → Y in CA/. The map f : A → B determines
an object B ∈ CA/, and lifting f to an object B̃ ∈ CA//Y is equivalent to
giving a map h : B → Y in CA/. We therefore have a fiber sequence of spaces

MapCA/ /Y
(B̃, X̃) → MapCA/

(B,X) → MapCA/
(B, Y ),

where the fiber is taken over the point h. Consequently, condition (∗) of
Definition 5.2.8.1 can be reformulated as follows: for every morphism g :
X → Y in CA/ lifting g, composition with g induces a homotopy equivalence

MapCA/
(B,X) → MapCA/

(B,Y ).
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Notation 5.2.8.4. Let C be an ∞-category and let S be a collection of
morphisms in C. We let S⊥ denote the collection of all morphisms in C

which are right orthogonal to S, and ⊥S the collection of all morphisms in
C which are left orthogonal to S.

Remark 5.2.8.5. Let C be an ordinary category containing a pair of mor-
phisms f and g. If f ⊥ g, then f has the left lifting property with respect
to g, and g has the right lifting property with respect to f . It follows that
for any collection S of morphisms in C, we have inclusions S⊥ ⊆ S⊥ and
⊥S ⊆⊥ S, where the latter classes of morphisms are defined in §A.1.2.

Applying Remark 5.2.8.3 to an ∞-category C and its opposite, we obtain
the following result:

Proposition 5.2.8.6. Let C be an ∞-category and S a collection of mor-
phisms in C.

(1) The sets of morphisms S⊥ and ⊥S contain every equivalence in C.

(2) The sets of morphisms S⊥ and ⊥S are closed under the formation of
retracts.

(3) Suppose we are given a commutative diagram

Y
g

���
��

��
��

X

f
��������� h �� Z

in C, where g ∈ S⊥. Then f ∈ S⊥ if and only if h ∈ S⊥. In particular,
S⊥ is closed under composition.

(4) Suppose we are given a commutative diagram

Y
g

���
��

��
��

X

f
��������� h �� Z

in C, where f ∈ ⊥S. Then g ∈ ⊥S if and only if h ∈ ⊥S. In particular,
⊥S is closed under composition.

(5) The set of morphisms S⊥ is stable under pullbacks: that is, given a
pullback diagram

X′

g′

��

�� X

g

��
Y ′ �� Y

in C, if g belongs to S⊥, then g′ belongs to S⊥.
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(6) The set of morphisms ⊥S is stable under pushouts: that is, given a
pushout diagram

A

f

��

�� A′

f ′

��
B �� B′,

if f belongs to ⊥S, then so does f ′.

(7) Let K be a simplicial set such that C admits K-indexed colimits. Then
the full subcategory of Fun(∆1,C) spanned by the elements of ⊥S is
closed under K-indexed colimits.

(8) Let K be a simplicial set such that C admits K-indexed limits. Then
the full subcategory of Fun(∆1,C) spanned by the elements of S⊥ is
closed under K-indexed limits.

Remark 5.2.8.7. Suppose we are given a pair of adjoint functors

C
F �� D .
G

��

Let f be a morphism in C and g a morphism in D. Then f ⊥ G(g) if and
only if F (f) ⊥ g.

Definition 5.2.8.8 (Joyal). Let C be an ∞-category. A factorization system
on C is a pair (SL, SR), where SL and SR are collections of morphisms of C

which satisfy the following axioms:

(1) The collections SL and SR are stable under the formation of retracts.

(2) Every morphism in SL is left orthogonal to every morphism in SR.

(3) For every morphism h : X → Z in C, there exists a commutative
triangle

Y
g

���
��

��
��

X

f
���������� h �� Z,

where f ∈ SL and g ∈ SR.

We will call SL the left set of the factorization system and SR the right set
of the factorization system.

Example 5.2.8.9. Let C be an ∞-category. Then C admits a factorization
system (SL, SR), where SL is the collection of all equivalences in C and SR
consists of all morphisms of C.

Remark 5.2.8.10. Let (SL, SR) be a factorization system on an ∞-category
C. Then (SR, SL) is a factorization system on the opposite ∞-category Cop.
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Proposition 5.2.8.11. Let C be an ∞-category and let (SL, SR) be a fac-
torization system on C. Then SL = ⊥SR and SR = S⊥

L .

Proof. By symmetry, it will suffice to prove the first assertion. The inclusion
SL ⊆ ⊥SR follows immediately from the definition. To prove the reverse
inclusion, let us suppose that h : X → Z is a morphism in C which is left
orthogonal to every morphism in SR. Choose a commutative triangle

Y
g

���
��

��
��

X

f
��������� h �� Z

where f ∈ SL and g ∈ SR, and consider the associated diagram

X
f ��

h

��

Y

g

��
Z

id ��

��	
	

	
	

Z.

Since h ⊥ g, we can complete this diagram to a 3-simplex of C as indicated.
This 3-simplex exhibits h as a retract of f , so that h ∈ SL, as desired.

Remark 5.2.8.12. It follows from Proposition 5.2.8.11 that a factorization
system (SL, SR) on an ∞-category C is completely determined by either the
left set SL or the right set SR.

Corollary 5.2.8.13. Let C be an ∞-category and let (SL, SR) be a factor-
ization system on C. Then the collections of morphisms SL and SR contain
all equivalences and are stable under composition.

Proof. Combine Propositions 5.2.8.11 and 5.2.8.6.

Remark 5.2.8.14. It follows from Corollary 5.2.8.13 that a factorization
system (SL, SR) on C determines a pair of subcategories CL,CR ⊆ C, each
containing all the objects of C: the morphisms of CL are the elements of SL,
and the morphisms of CR are the elements of SR.

Example 5.2.8.15. Let p : C → D be a coCartesian fibration of ∞-
categories. Then there is an associated factorization system (SL, SR) on C,
where SL is the class of p-coCartesian morphisms of C and SR is the class
of morphisms g of C such that p(g) is an equivalence in D. If D � ∆0, this
recovers the factorization system of Example 5.2.8.9; if p is an isomorphism,
this recovers the opposite of the factorization system of Example 5.2.8.9.

Example 5.2.8.16. Let X be an ∞-topos and let n ≥ −2 be an integer.
Then there exists a factorization system (SL, SR) on X, where SL denotes
the collection of (n + 1)-connective morphisms of X and SR denotes the
collection of n-truncated morphisms of C. See §6.5.1.
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Let (SL, SR) be a factorization system on an ∞-category C, so that any
morphism h : X → Z factors as a composition

Y
g

���
��

��
��

X

f
���������� h �� Z,

where f ∈ SL and g ∈ SR. For many purposes, it is important to know that
this factorization is canonical. More precisely, we have the following result:

Proposition 5.2.8.17. Let C be an ∞-category and let SL and SR be col-
lections of morphisms in C. Suppose that SL and SR are stable under equiv-
alence in Fun(∆1,C) and contain every equivalence in C. The following con-
ditions are equivalent:

(1) The pair (SL, SR) is a factorization system on C.

(2) The restriction map p : Fun′(∆2,C) → Fun(∆{0,2},C) is a trivial Kan
fibration. Here Fun′(∆2,C) denotes the full subcategory of Fun(∆2,C)
spanned by those diagrams

Y
g

���
��

��
��

X

f
��������� h �� Z

such that f ∈ SL and g ∈ SR.

Corollary 5.2.8.18. Let C be an ∞-category equipped with a factoriza-
tion system (SL, SR) and let K be an arbitrary simplicial set. Then the
∞-category Fun(K,C) admits a factorization system (SKL , S

K
R ), where SKL

denotes the collection of all morphisms f in Fun(K,C) such that f(v) ∈ SL
for each vertex v of K, and SKR is defined likewise.

The remainder of this section is devoted to the proof of Proposition
5.2.8.17. We begin with a few preliminary results.

Lemma 5.2.8.19. Let C be an ∞-category and let (SL, SR) be a factoriza-
tion system on C. Let D be the full subcategory of Fun(∆1,C) spanned by the
elements of SR. Then

(1) The ∞-category D is a localization of Fun(∆1,C); in other words, the
inclusion D ⊆ Fun(∆1,C) admits a left adjoint.

(2) A morphism α : h → g in Fun(∆1,C) corresponding to a commutative
diagram

X

h

��

f �� Y

g

��
Z ′ e �� Z



372 CHAPTER 5

exhibits g as a D-localization of h (see Definition 5.2.7.6) if and only
if g ∈ SR, f ∈ SL, and e is an equivalence.

Proof. We will prove the “if” direction of assertion (2). It follows from the
definition of a factorization system that for every object h ∈ Fun(∆1,C),
there exists a morphism α : h → g satisfying the condition stated in (2),
which therefore exhibits g as a D-localization of h. Invoking Proposition
5.2.7.8, we will deduce (1). Because a D-localization of h is uniquely de-
termined up to equivalence, we will also deduce the “only if” direction of
assertion (2).

Suppose we are given a commutative diagram

X

h

��

f �� Y

g

��
Z ′ e �� Z,

where f ∈ SL, g ∈ SR, and e is an equivalence, and let g : Y → Z be another
element of SR. We have a diagram of spaces

MapFun(∆1,C)(g, g)
ψ ��

��

MapFun(∆1,C)(h, g)

��
MapC(Z,Z)

ψ0 �� MapC(Z ′, Z)

which commutes up to canonical homotopy. We wish to prove that ψ is a
homotopy equivalence.

Since e is an equivalence in C, the map ψ0 is a homotopy equivalence. It will
therefore suffice to show that ψ induces a homotopy equivalence after passing
to the homotopy fibers over any point of MapC(Z,Z) � MapC(Z ′, Z). These
homotopy fibers can be identified with the homotopy fibers of the vertical
arrows in the diagram

MapC(Y, Y ) ��

��

MapC(X,Y )

��
MapC(Y, Z) �� MapC(X,Z).

It will therefore suffice to show that this diagram (which commutes up to
specified homotopy) is a homotopy pullback. Unwinding the definition, this
is equivalent to the assertion that f is left orthogonal to g, which is part of
the definition of a factorization system.

Lemma 5.2.8.20. Let K, A, and B be simplicial sets. Then the diagram

K ×B ��

��

K × (A  B)

��
B �� (K ×A)  B
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is a homotopy pushout square of simplicial sets (with respect to the Joyal
model structure).

Proof. We consider the larger diagram

K ×B ��

��

K × (A �B) ��

��

K × (A  B)

��
B �� (K ×A) �B �� (K ×A)  B.

The square on the left is a pushout square in which the horizontal maps
are monomorphisms of simplicial sets and therefore is a homotopy pushout
square (since the Joyal model structure is left proper). The square on the
right is a homotopy pushout square since the horizontal arrows are both cat-
egorical equivalences (Proposition 4.2.1.2). It follows that the outer rectangle
is also a homotopy pushout as desired.

Notation 5.2.8.21. In the arguments which follow, we let Q denote the
simplicial subset of ∆3 spanned by all simplices which do not contain ∆{1,2}.
Note that Q is isomorphic to the product ∆1 × ∆1 as a simplicial set.

Lemma 5.2.8.22. Let C be an ∞-category and let σ : Q → C be a diagram,
which we depict as

A ��

��

X

��
B �� Y.

Then there is a canonical categorical equivalence

θ : Fun(∆3,C) ×Fun(Q,C) {σ} → MapCA/ /Y
(B,X).

In particular, Fun(∆3,C) ×Fun(Q,C) {σ} is a Kan complex.

Proof. We will identify MapCA/ /Y
(B,X) with the simplicial set Z defined

by the following universal property: for every simplicial set K, we have a
pullback diagram of sets

HomSet∆(K,Z) ��

��

HomSet∆(∆0  (K × ∆1) ∆0,C)

��
∆0 �� HomSet∆(∆0  (K × ∂∆1) ∆0,C).

The map θ is then induced by the natural transformation

K × ∆3 � K × (∆0 ∆1 ∆0) → ∆0  (K × ∆1) ∆0.

We wish to prove that θ is a categorical equivalence. Since C is an ∞-
category, it will suffice to show that for every simplicial set K, the bottom
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square of the diagram

K × (∆{0} ∐
∆{3}) ��

��

∆{0} ∐
∆{3}

��
K × C ��

��

∆0  (K × ∂∆1) ∆0

��
K × ∆3 �� ∆0  (K × ∆1) ∆0

is a homotopy pushout square (with respect to the Joyal model structure).
For this we need only verify that the top and outer squares are homotopy
pushout diagrams; this follows from repeated application of Lemma 5.2.8.20.

Proof of Proposition 5.2.8.17. We first show that (1) ⇒ (2). Assume that
(SL, SR) is a factorization system on C. The restriction map

p : Fun′(∆2,C) → Fun(∆{0,2},C)

is obviously a categorical fibration. It will therefore suffice to show that p is
a categorical equivalence.

Let D be the full subcategory of Fun(∆1 × ∆1,C) spanned by those dia-
grams of the form

X

h

��

f �� Y

g

��
Z ′ e �� Z,

where f ∈ SL, g ∈ SR, and e is an equivalence in C. The map p factors as a
composition

Fun′(∆2,C)
p′→ D

p′′→ Fun(∆1,C),

where p′ carries a diagram

Y
g

���
��

��
��

X
h ��

f
���������

Z

to the partially degenerate square

X

h

��

h

���
��

��
��
f �� Y

g

��
Z

id �� Z
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and p′′ is given by restriction to the left vertical edge of the diagram. To
complete the proof, it will suffice to show that p′ and p′′ are categorical
equivalences.

We first show that p′ is a categorical equivalence. The map p′ admits a left
inverse q given by composition with an inclusion ∆2 ⊆ ∆1 × ∆1. We note
that q is a pullback of the restriction map q′ : Fun′′(∆2,C) → Fun(∆{0,2},C),
where Fun′′(∆2,C) is the full subcategory spanned by diagrams of the form

X

��












��
Z ′ e �� Z,

where e is an equivalence. Since q′ is a trivial Kan fibration (Proposition
4.3.2.15), q is a trivial Kan fibration, so that p′ is a categorical equivalence,
as desired.

We now complete the proof by showing that p′′ is a trivial Kan fibration.
Let E denote the full subcategory of Fun(∆1,C)×∆1 spanned by those pairs
(g, i) where either i = 0 or g ∈ SR. The projection map r : E → ∆1 is
a Cartesian fibration associated to the inclusion Fun′(∆1,C) ⊆ Fun(∆1,C),
where Fun′(∆1,C) is the full subcategory spanned by the elements of SR.
Using Lemma 5.2.8.19, we conclude that r is also a coCartesian fibration.
Moreover, we can identify

D ⊆ Fun(∆1 × ∆1,C) � Map∆1(∆1,E)

with the full subcategory spanned by the coCartesian sections of r. In terms
of this identification, p′′ is given by evaluation at the initial vertex {0} ⊆ ∆1

and is therefore a trivial Kan fibration, as desired. This completes the proof
that (1) ⇒ (2).

Now suppose that (2) is satisfied and choose a section s of the trivial Kan
fibration p. Let s carry each morphism f : X → Z to a commutative diagram

Y
sR(f)

��












X

sL(f)
��������� f �� Z.

If sR(f) is an equivalence, then f is equivalent to sL(f) and therefore belongs
to SL. Conversely, if f belongs to SL, then the diagram

Z
id

���
��

��
��

X

f
��������� f �� Z

is a preimage of f under p and therefore equivalent to s(f); this implies that
sL(f) is an equivalence. We have proved the following:

(∗) A morphism f of C belongs to SL if and only if sL(f) is an equivalence
in C.
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It follows immediately from (∗) that SL is stable under the formation of
retracts; similarly, SR is stable under the formation of retracts. To complete
the proof, it will suffice to show that f ⊥ g whenever f ∈ SL and g ∈ SR.
Fix a commutative diagram σ

A

f

��

�� X

g

��
B �� Y

in C. In view of Lemma 5.2.8.22, it will suffice to show that the Kan complex
Fun(∆3,C) ×Fun(Q,C) {σ} is contractible.

Let D denote the full subcategory of Fun(∆2 × ∆1,C) spanned by those
diagrams

C ��

u′

��

Z

v′

��
C′ ��

u′′

��

Z ′

v′′

��
C ′′ �� Z ′′

for which u′ ∈ SL, v′′ ∈ SR, and the maps v′ and u′′ are equivalences. Let us
identify ∆3 with the full subcategory of ∆2×∆1 spanned by all those vertices
except for (2, 0) and (0, 1). Applying Proposition 4.3.2.15 twice, we deduce
that the restriction functor Fun(∆2 × ∆1,C) → Fun(∆3,C) induces a trivial
Kan fibration from D to the full subcategory D′ ⊆ Fun(∆3,C) spanned by
those diagrams

C

u′

��

�� Z ′

v′′

��
C′ ��

����������
Z ′′

such that u′ ∈ SL and v′′ ∈ SR. It will therefore suffice to show that the
fiber D×Fun(Q,C){σ} is contractible.

By construction, the restriction functor D → Fun(Q,C) is equivalent to
the composition

q : D ⊆ Fun(∆2 × ∆1,C) → Fun(∆{0,2} × ∆1,C).
It will therefore suffice to show that q−1{σ} is a contractible Kan complex.
Invoking assumption (2) and (∗), we deduce that q induces an equivalence
from D to the full subcategory of Fun(∆{0,2} × ∆1,C) spanned by those
diagrams

C

u

��

�� Z

v

��
C′′ �� Z ′′

such that u ∈ SL and v ∈ SR. The desired result now follows from our
assumption that f ∈ SL and g ∈ SR.
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5.3 ∞-CATEGORIES OF INDUCTIVE LIMITS

Let C be a category. An Ind-object of C is a diagram f : I → C where I is a
small filtered category. We will informally denote the Ind-object f by

[lim−→Xi]

where Xi = f(i). The collection of all Ind-objects of C forms a category in
which the morphisms are given by the formula

HomInd(C)([lim−→Xi], [lim−→Yj ]) = lim←− lim−→HomC(Xi, Yj).

We note that C may be identified with a full subcategory of Ind(C) corre-
sponding to diagrams indexed by the one-point category I = ∗. The idea is
that Ind(C) is obtained from C by formally adjoining colimits of filtered di-
agrams. More precisely, Ind(C) may be described by the following universal
property: for any category D which admits filtered colimits and any functor
F : C → D, there exists a functor F̃ : Ind(C) → D whose restriction to C is
isomorphic to F and which commutes with filtered colimits. Moreover, F̃ is
determined up to (unique) isomorphism.

Example 5.3.0.1. Let C denote the category of finitely presented groups.
Then Ind(C) is equivalent to the category of groups. (More generally, one
could replace “group” by any type of mathematical structure described by
algebraic operations which are required to satisfy equational axioms.)

Our objective in this section is to generalize the definition of Ind(C) to the
case where C is an ∞-category. If we were to work in the setting of simplicial
(or topological) categories, we could apply the definition given above directly.
However, this leads to a number of problems:

(1) The construction of Ind-categories does not preserve equivalences be-
tween simplicial categories.

(2) The obvious generalization of the right hand side in the equation above
is given by

lim←− lim−→MapC(Xi, Yj).

While the relevant limits and colimits certainly exist in the category of
simplicial sets, they are not necessarily the correct objects: one should
really replace the limit by a homotopy limit.

(3) In the higher-categorical setting, we should really allow the indexing
diagram I to be a higher category as well. While this does not result
in any additional generality (Corollary 5.3.1.16), the restriction to the
diagrams indexed by ordinary categories is a technical inconvenience.

Although these difficulties are not insurmountable, it is far more conve-
nient to proceed differently using the theory of ∞-categories. In §5.1, we



378 CHAPTER 5

showed that if C is a ∞-category, then P(C) can be interpreted as an ∞-
category which is freely generated by C under colimits. We might therefore
hope to find Ind(C) inside P(C) as a full subcategory. The problem, then,
is to characterize this subcategory and to prove that it has the appropriate
universal mapping property.

We will begin in §5.3.1 by introducing the definition of a filtered ∞-
category. Let C be a small ∞-category. In §5.3.5, we will define Ind(C) to be
the smallest full subcategory of P(C) which contains all representable pre-
sheaves on C and is stable under filtered colimits. There is also a more direct
characterization of which presheaves F : C → Sop belong to Ind(C): they are
precisely the right exact functors, which we will study in §5.3.2.

In §5.3.5, we will define the Ind-categories Ind(C) and study their proper-
ties. In particular, we will show that morphism spaces in Ind(C) are computed
by the naive formula

HomInd(C)([lim−→Xi], [lim−→Yj ]) = lim←− lim−→HomC(Xi, Yj).

Unwinding the definitions, this amounts to two conditions:

(1) The (Yoneda) embedding of j : C → Ind(C) is fully faithful (Proposi-
tion 5.1.3.1).

(2) For each object C ∈ C, the corepresentable functor

HomInd(C)(j(C), •)
commutes with filtered colimits.

It is useful to translate condition (2) into a definition: an object D of an
∞-category D is said to be compact if the functor D → S corepresented by
D commutes with filtered colimits. We will study this compactness condition
in §5.3.4.

One of our main results asserts that the ∞-category Ind(C) is obtained
from C by freely adjoining colimits of filtered diagrams (Proposition 5.3.5.10).
In §5.3.6, we will describe a similar construction in the case where the class
of filtered diagrams has been replaced by any class of diagrams. We will
revisit this idea in §5.5.8, where we will study the ∞-category obtained from
C by freely adjoining colimits of sifted diagrams.

5.3.1 Filtered ∞-Categories

Recall that a partially ordered set A is filtered if every finite subset of A has
an upper bound in A. Diagrams indexed by directed partially ordered sets
are extremely common in mathematics. For example, if A is the set

Z≥0 = {0, 1, . . .}
of natural numbers, then a diagram indexed by A is a sequence

X0 → X1 → · · · .
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The formation of direct limits for such sequences is one of the most basic
constructions in mathematics.

In classical category theory, it is convenient to consider not only diagrams
indexed by filtered partially ordered sets but also more general diagrams
indexed by filtered categories. A category C is said to be filtered if it satisfies
the following conditions:

(1) For every finite collection {Xi} of objects of C, there exists an object
X ∈ C equipped with morphisms φi : Xi → X.

(2) Given any two morphisms f, g : X → Y in C, there exists a morphism
h : Y → Z such that h ◦ f = h ◦ g.

Condition (1) is analogous to the requirement that any finite part of C

admits an “upper bound,” while condition (2) guarantees that the upper
bound is unique in some asymptotic sense.

If we wish to extend the above definition to the ∞-categorical setting, it
is natural to strengthen the second condition.

Definition 5.3.1.1. Let C be a topological category. We will say that C is
filtered if it satisfies the following conditions:

(1′) For every finite set {Xi} of objects of C, there exists an object X ∈ C

and morphisms φi : Xi → X.

(2′) For every pair X,Y ∈ C of objects of C, every nonnegative integer
n ≥ 0, and every continuous map Sn → MapC(X,Y ), there exists a
morphism Y → Z such that the induced map Sn → MapC(X,Z) is
nullhomotopic.

Remark 5.3.1.2. It is easy to see that an ordinary category C is filtered
in the usual sense if and only if it is filtered when regarded as a topological
category with discrete mapping spaces. Conversely, if C is a filtered topolog-
ical category, then its homotopy category hC is filtered (when viewed as an
ordinary category).

Remark 5.3.1.3. Condition (2′) of Definition 5.3.1.1 is a reasonable ana-
logue of condition (2) in the definition of a filtered category. In the special
case n = 0, condition (2′) asserts that any pair of morphisms f, g : X → Y
become homotopic after composition with some map Y → Z.

Remark 5.3.1.4. Topological spheres Sn need not play any distinguished
role in the definition of a filtered topological category. Condition (2′) is
equivalent to the following apparently stronger condition:

(2′′) For every pair X,Y ∈ C of objects of C, every finite cell complex K,
and every continuous map K → MapC(X,Y ), there exists a morphism
Y → Z such that the induced map K → MapC(X,Z) is nullhomotopic.
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Remark 5.3.1.5. The condition that a topological category C be filtered
depends only on the homotopy category hC (viewed as an H-enriched cate-
gory). Consequently, if F : C → C′ is an equivalence of topological categories,
then C is filtered if and only if C′ is filtered.

Remark 5.3.1.6. Definition 5.3.1.1 has an obvious analogue for (fibrant)
simplicial categories: one simply replaces the topological n-sphere Sn by the
simplicial n-sphere ∂∆n. It is easy to see that a topological category C is
filtered if and only if the simplicial category Sing C is filtered. Similarly,
a (fibrant) simplicial category D is filtered if and only if the topological
category |D | is filtered.

We now wish to study the analogue of Definition 5.3.1.1 in the setting
of ∞-categories. It will be convenient to introduce a slightly more general
notion:

Definition 5.3.1.7. Let κ be a regular cardinal and let C be a ∞-category.
We will say that C is κ-filtered if, for every κ-small simplicial set K and
every map f : K → C, there exists a map f : K
 → C extending f . (In
other words, C is κ-filtered if it has the extension property with respect to
the inclusion K ⊆ K
 for every κ-small simplicial set K.)

We will say that C is filtered if it is ω-filtered.

Example 5.3.1.8. Let C be the nerve of a partially ordered set A. Then C

is κ-filtered if and only if every κ-small subset of A has an upper bound in
A.

Remark 5.3.1.9. One may rephrase Definition 5.3.1.7 as follows: an ∞-
category C is κ-filtered if and only if, for every diagram p : K → C, where
K is κ-small, the slice ∞-category Cp/ is nonempty. Let q : C → C′ be a
categorical equivalence of ∞-categories. Proposition 1.2.9.3 asserts that the
induced map Cp/ → C′

q◦p/ is a categorical equivalence. Consequently, Cp/ is
nonempty if and only if C′

q◦p/ is nonempty. It follows that C is κ-filtered if
and only if C′ is κ-filtered.

Remark 5.3.1.10. An ∞-category C is κ-filtered if and only if, for every
κ-small partially ordered set A, C has the right lifting property with respect
to the inclusion N(A) ⊆ N(A)
 � N(A ∪ {∞}). The “only if” direction is
obvious. For the converse, we observe that for every κ-small diagram p : K →
C, the ∞-category Cp/ is equivalent to Cq/, where q denotes the composition

N(A)
p′→ K

p→ C. Here we have chosen p′ to be a cofinal map such that A
is a κ-small partially ordered set. (If κ is uncountable, the existence of p′

follows from Variant 4.2.3.15; otherwise, we use Variant 4.2.3.16.)

Remark 5.3.1.11. We will say that an arbitrary simplicial set S is κ-filtered
if there exists a categorical equivalence j : S → C, where C is a κ-filtered
∞-category. In view of Remark 5.3.1.9, this condition is independent of the
choice of j.
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Our next major goal is to prove Proposition 5.3.1.13, which asserts that
an ∞-category C is filtered if and only if the associated topological category
|C[C]| is filtered. First, we need a lemma.

Lemma 5.3.1.12. Let C be an ∞-category. Then C is filtered if and only if it
has the right extension property with respect to every inclusion ∂∆n ⊆ Λn+1

n+1,
n ≥ 0.

Proof. The “only if” direction is clear: we simply take K = ∂∆n in Defini-
tion 5.3.1.7. For the converse, let us suppose that the assumption of Defini-
tion 5.3.1.7 is satisfied whenever K is the boundary of a simplex; we must
then show that it remains satisfied for any K which has only finitely many
nondegenerate simplices.

We work by induction on the dimension of K and the number of nonde-
generate simplices of K. If K is empty, there is nothing to prove (since it is
the boundary of a 0-simplex). Otherwise, we may write K = K′ ∐

∂∆n ∆n,
where n is the dimension of K.

Choose a map p : K → C; we wish to show that p may be extended
to a map p̃ : K  {y} → C. We first consider the restriction p|K′; by the
inductive hypothesis, it admits an extension q : K′{x} → C. The restriction
q| ∂∆n  {x} and the map p|∆n assemble to give a map

r : ∂∆n+1 � (∂∆n  {x})
∐
∂∆n

∆n → C .

By assumption, the map r admits an extension

r̃ : ∂∆n+1  {y} → C .

Let

s : (K ′  {x})
∐

∂∆n+1

(∂∆n+1  {y})

denote the result of amalgamating r with p̃. We note that the inclusion

(K ′  {x})
∐

∂∆n�{x}
(∂∆n+1  {y}) ⊆ (K ′  {x}  {y})

∐
∂∆n�{x}�{y}

(∆n  {y})

is a pushout of

(K ′  {x})
∐

∂∆n�{x}
(∂∆n  {x}  {y}) ⊆ K′  {x}  {y}

and therefore a categorical equivalence by Lemma 2.4.3.1. It follows that s
admits an extension

s̃ : (K ′  {x}  {y})
∐

∂∆n�{x}�{y}
(∆n  {y}) → C,

and we may now define p̃ = s̃|K  {y}.
Proposition 5.3.1.13. Let C be a topological category. Then C is filtered if
and only if the ∞-category N(C) is filtered.
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Proof. Suppose first that N(C) is filtered. We verify conditions (1′) and (2′)
of Definition 5.3.1.1:

(1′) Let {Xi}i∈I be a finite collection of objects of C corresponding to a map
p : I → N(C), where I is regarded as a discrete simplicial set. If N(C)
is filtered, then p extends to a map p̃ : I  {x} → N(C) corresponding
to an object X = p(x) equipped with maps Xi → X in C.

(2′) Let X,Y ∈ C be objects, let n ≥ 0, and let Sn → MapC(X,Y ) be
a map. We note that this data may be identified with a topological
functor F : |C[K]| → C, where K is the simplicial set obtained from
∂∆n+2 by collapsing the initial face ∆n+1 to a point. If N(C) is filtered,
then F extends to a functor F̃ defined on |C[K  {z}]|; this gives an
object Z = F̃ (z) and a morphism Y → Z such that the induced map
Sn → MapC(X,Z) is nullhomotopic.

For the converse, let us suppose that C is filtered. We wish to show that
N(C) is filtered. By Lemma 5.3.1.12, it will suffice to prove that N(C) has the
extension property with respect to the inclusion ∂∆n ⊆ Λn+1

n+1 for each n ≥ 0.
Equivalently, it suffices to show that C has the right extension property with
respect to the inclusion |C[∂∆n]| ⊆ |C[Λn+1

n+1]|. If n = 0, this is simply the
assertion that C is nonempty; if n = 1, this is the assertion that for any
pair of objects X,Y ∈ C, there exists an object Z equipped with morphisms
X → Z, Y → Z. Both of these conditions follow from part (1) of Definition
5.3.1.1; we may therefore assume that n > 1.

Let A0 = |C[∂∆n]|, A1 = |C[∂∆n
∐

Λn
n

Λnn  {n + 1}]|, A2 = |C[Λn+1
n+1]|,

and A3 = |C[∆n+1]|, so that we have inclusions of topological categories
A0 ⊆ A1 ⊆ A2 ⊆ A3 .

We will make use of the description of A3 given in Remark 1.1.5.2: its
objects are integers i satisfying 0 ≤ i ≤ n + 1, with MapA3

(i, j) given by
the cube of all functions p : {i, . . . , j} → [0, 1] satisfying p(i) = p(j) = 1 for
i ≤ j and HomA3(i, j) = ∅ for j < i. Composition is given by amalgamation
of functions.

We note that A1 and A2 are subcategories of A3 having the same objects,
whose morphism spaces are may be described as follows:

• MapA1
(i, j) = MapA2

(i, j) = MapA3
(i, j) unless i = 0 and j ∈ {n, n+

1}.
• MapA1

(0, n) = MapA2
(0, n) is the boundary of the cube

MapA3
(0, n) � [0, 1]n−1.

• MapA1
(0, n + 1) consists of all functions p : [n + 1] → [0, 1] satisfying

p(0) = p(n+ 1) = 1 and (∃i)[(1 ≤ i ≤ n− 1) ∧ p(i) ∈ {0, 1}].
• MapA2

(0, n+ 1) is the union of MapA1
(0, n+ 1) with the collection of

functions p : {0, . . . , n+1} → [0, 1] satisfying p(0) = p(n) = p(n+1) =
1.
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Finally, we note that A0 is the full subcategory of A1 (or A2) whose set
of objects is {0, . . . , n}.

We wish to show that any topological functor F : A0 → C can be extended
to a functor F̃ : A2 → C. Let X = F (0) and let Y = F (n). Then F induces
a map Sn−1 � MapA0

(0, n) → MapC(X,Y ). Since C is filtered, there exists
a map φ : Y → Z such that the induced map f : Sn−1 → MapC(X,Z) is
nullhomotopic.

Now set F̃ (n + 1) = Z; for p ∈ MapA1
(i, n + 1), we set F̃ (p) = φ ◦ F (q),

where q ∈ MapA1
(i, n) is such that q|{i, . . . , n−1} = p|{i, . . . , n−1}. Finally,

we note that the assumption that f is nullhomotopic allows us to extend F̃
from MapA1

(0, n+ 1) to the whole of MapA2
(0, n+ 1).

Remark 5.3.1.14. Suppose that C is a κ-filtered ∞-category and let K be
a simplicial set which is categorically equivalent to a κ-small simplicial set.
Then C has the extension property with respect to the inclusion K ⊆ K
.
This follows from Proposition A.2.3.1: to test whether or not a map K →
S extends over K
, it suffices to check in the homotopy category of Set∆
(with respect to the Joyal model structure), where we may replace K by an
equivalent κ-small simplicial set.

Proposition 5.3.1.15. Let C be a ∞-category with a final object. Then C is
κ-filtered for every regular cardinal κ. Conversely, if C is κ-filtered and there
exists a categorical equivalence K → C, where K is a κ-small simplicial set,
then C has a final object.

Proof. We remark that C has a final object if and only if there exists a
retraction r of C
 onto C. If C is κ-filtered and categorically equivalent to a
κ-small simplicial set, then the existence of such a retraction follows from
Remark 5.3.1.14. On the other hand, if the retraction r exists, then any
map p : K → C admits an extension K
 → C: one merely considers the
composition K
 → C


r→ C .

A useful observation from classical category theory is that, if we are only
interested in using filtered categories to index colimit diagrams, then in fact
we do not need the notion of a filtered category at all: we can work instead
with diagrams indexed by filtered partially ordered sets. We now prove an
∞-categorical analogue of this statement.

Proposition 5.3.1.16. Suppose that C is a κ-filtered ∞-category. Then
there exists a κ-filtered partially ordered set A and a cofinal map N(A) → C.

Proof. The proof uses the ideas introduced in §4.2.3 and, in particular,
Proposition 4.2.3.8. Let X be a set of cardinality at least κ, and regard
X as a category with a unique isomorphism between any pair of objects.
We note that N(X) is a contractible Kan complex; consequently, the pro-
jection C×N(X) → C is cofinal. Hence, it suffices to produce a cofinal map
N(A) → C×N(X) with the desired properties.
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Let {Kα}α∈A be the collection of all simplicial subsets of K = C×N(X)
which are κ-small and possess a final vertex. Regard A as a partially ordered
by inclusion. We first claim that A is κ-filtered and that

⋃
α∈AKα = K. To

prove both of these assertions, it suffices to show that any κ-small simplicial
subset L ⊆ K is contained in a κ-small simplicial subset L′ which has a final
vertex.

Since C is κ-filtered, the composition

L → C×N(X) → C

extends to a map p : L
 → C. Since X has cardinality at least κ, there exists
an element x ∈ X which is not in the image of L0 → N(X)0 = X. Lift
p to a map p̃ : L
 → K which extends the inclusion L ⊆ K × N(X) and
carries the cone point to the element x ∈ X = N(X)0. It is easy to see that
p̃ is injective, so that we may regard L
 as a simplicial subset of K × N(X).
Moreover, it is clearly κ-small and has a final vertex, as desired.

Now regard A as a category and let F : A → (Set∆)/K be the functor
which carries each α ∈ A to the simplicial set Kα. For each α ∈ A, choose
a final vertex xα of Kα. Let KF be defined as in §4.2.3. We claim next that
there exists a retraction r : KF → K with the property that r(Xα) = xα for
each I ∈ I.

The construction of r proceeds as in the proof of Proposition 4.2.3.4.
Namely, we well-order the finite linearly ordered subsets B ⊆ A and define
r|K′

B by induction on B. Moreover, we will select r so that it has the property
that if B is nonempty with largest element β, then r(K′

B) ⊆ Kβ.
If B is empty, then r|K ′

B = r|K is the identity map. Otherwise, B has
a least element α and a largest element β. We are required to construct a
map Kα ∆B → Kβ or a map rB : ∆B → Kid |Kα/, where the values of this
map on ∂∆B have already been determined. If B is a singleton, we define
this map to carry the vertex ∆B to a final object of Kid |Kα/ lying over xβ .
Otherwise, we are guaranteed that some extension exists by the fact that
rB | ∂∆B carries the final vertex of ∆B to a final object of Kid |Kα/.

Now let j : N(A) → K denote the restriction of the retraction of r to
N(A). Using Propositions 4.2.3.4 and 4.2.3.8, we deduce that j is a cofinal
map as desired.

A similar technique can be used to prove the following characterization of
κ-filtered ∞-categories:

Proposition 5.3.1.17. Let S be a simplicial set. The following conditions
are equivalent:

(1) The simplicial set S is κ-filtered.

(2) There exists a diagram of simplicial sets {Yα}α∈I having colimit Y and
a categorical equivalence S → Y , where each Yα is κ-filtered and the
indexing category I is κ-filtered.
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(3) There exists a categorical equivalence S → C, where C is a κ-filtered
union of simplicial subsets Cα ⊆ C such that each Cα is an ∞-category
with a final object.

Proof. Let T : Set∆ → Set∆ be the fibrant replacement functor given by

T (X) = N(|C[X]|).
There is a natural transformation jX : X → T (X) which is a categori-
cal equivalence for every simplicial set X. Moreover, each T (X) is an ∞-
category. Furthermore, the functor T preserves inclusions and commutes
with filtered colimits.

It is clear that (3) implies (2). Suppose that (2) is satisfied. Replacing the
diagram {Yα}α∈I by {T (Yα)}α∈I if necessary, we may suppose that each Yα
is an ∞-category. It follows that Y is an ∞-category. If p : K → Y is a
diagram indexed by a κ-small simplicial set, then p factors through a map
pα : K → Yα for some α ∈ I, by virtue of the assumption that I is κ-filtered.
Since Yα is a κ-filtered ∞-category, we can find an extension K
 → Yα of
pα, hence an extension K
 → Y of p.

Now suppose that (1) is satisfied. Replacing S by T (S) if necessary, we
may suppose that S is an ∞-category. Choose a set X of cardinality at least
κ and let N(X) be defined as in the proof of Proposition 5.3.1.16. The proof
of Proposition 5.3.1.16 shows that we may write S × N(X) as a κ-filtered
union of simplicial subsets {Yα}, where each Yα has a final vertex. We now
take C = T (S × N(X)) and let Cα = T (Yα): these choices satisfy (3), which
completes the proof.

By definition, an ∞-category C is κ-filtered if any map p : K → C whose
domain K is κ-small can be extended over the cone K
. We now consider
the possibility of constructing this extension uniformly in p. First, we need
a few lemmas.

Lemma 5.3.1.18. Let C be a filtered ∞-category. Then C is weakly con-
tractible.

Proof. Since C is filtered, it is nonempty. Fix an object C ∈ C. Let |C | denote
the geometric realization of C as a simplicial set. We identify C with a point
of the topological space |C |. By Whitehead’s theorem, to show that C is
weakly contractible, it suffices to show that for every i ≥ 0, the homotopy
set πi(|C |, C) consists of a single point. If not, we can find a finite simplicial
subset K ⊆ C containing C such that the map f : πi(|K|, C) → πi(|C |, C)
has a nontrivial image. But C is filtered, so the inclusion K ⊆ C factors
through a map K
 → C. It follows that f factors through πi(|K
|, C). But
this homotopy set is trivial since K
 is weakly contractible.

Lemma 5.3.1.19. Let C be a κ-filtered ∞-category and let p : K → C be a
diagram indexed by a κ-small simplicial set K. Then Cp/ is κ-filtered.
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Proof. Let K ′ be a κ-small simplicial set and p′ : K ′ → Cp/ a κ-small
diagram. Then we may identify p′ with a map q : K  K ′ → C, and we get
an isomorphism (Cp/)p′/ � Cq/. Since K K ′ is κ-small, the ∞-category Cq/
is nonempty.

Proposition 5.3.1.20. Let C be an ∞-category and κ a regular cardinal.
Then C is κ-filtered if and only if, for each κ-small simplicial set K, the
diagonal map d : C → Fun(K,C) is cofinal.

Proof. Suppose first that the diagonal map d : C → Fun(K,C) is cofinal for
every κ-small simplicial set K. Choose any map j : K → C; we wish to show
that j can be extended to K
. By Proposition A.2.3.1, it suffices to show that
j can be extended to the equivalent simplicial set K � ∆0. In other words,
we must produce an object C ∈ C and a morphism j → d(C) in Fun(K,C).
It will suffice to prove that the ∞-category D = C×Fun(K,C) Fun(K,C)j/
is nonempty. We now invoke Theorem 4.1.3.1 to deduce that D is weakly
contractible.

Now suppose that S is κ-filtered and that K is a κ-small simplicial set.
We wish to show that the diagonal map d : C → Fun(K,C) is cofinal. By
Theorem 4.1.3.1, it suffices to prove that for every object X ∈ Fun(K,C),
the ∞-category Fun(K,C)X/ ×Fun(K,C) C is weakly contractible. But if we
identify X with a map x : K → C, then we get a natural identification

Fun(K,C)X/ ×Fun(K,C) C � Cx/,

which is κ-filtered by Lemma 5.3.1.19 and therefore weakly contractible by
Lemma 5.3.1.18.

5.3.2 Right Exactness

Let A and B be abelian categories. In classical homological algebra, a functor
F : A → B is said to be right exact if it is additive, and whenever

A′ → A → A′′ → 0

is an exact sequence in A, the induced sequence

F (A′) → F (A) → F (A′′) → 0

is exact in B.
The notion of right exactness generalizes in a natural way to functors

between categories which are not assumed to be abelian. Let F : A → B

be a functor between abelian categories as above. Then F is additive if and
only if F preserves finite coproducts. Furthermore, an additive functor F
is right exact if and only if it preserves coequalizer diagrams. Since every
finite colimit can be built out of finite coproducts and coequalizers, right
exactness is equivalent to the requirement that F preserve all finite colimits.
This condition makes sense whenever the category A admits finite colimits.

It is possible to generalize even further to the case of a functor between
arbitrary categories. To simplify the discussion, let us suppose that B =
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Setop. Then we may regard a functor F : A → B as a presheaf of sets on
the category A. Using this presheaf, we can define a new category AF whose
objects are pairs (A, η), where A ∈ A and η ∈ F (A), and morphisms from
(A, η) to (A′, η′) are maps f : A → A′ such that f∗(η′) = η, where f∗ denotes
the induced map F (A′) → F (A). If A admits finite colimits, then the functor
F preserves finite colimits if and only if the category AF is filtered.

Our goal in this section is to adapt the notion of right exact functors to
the ∞-categorical context. We begin with the following:

Definition 5.3.2.1. Let F : A → B be a functor between ∞-categories and
κ a regular cardinal. We will say that F is κ-right exact if, for any right
fibration B′ → B where B′ is κ-filtered, the ∞-category A′ = A×B B′ is
also κ-filtered. We will say that F is right exact if it is ω-right exact.

Remark 5.3.2.2. We also have an dual theory of left exact functors.

Remark 5.3.2.3. If A admits finite colimits, then a functor F : A → B is
right exact if and only if F preserves finite colimits (see Proposition 5.3.2.9
below).

We note the following basic stability properties of κ-right exact maps.

Proposition 5.3.2.4. Let κ be a regular cardinal.

(1) If F : A → B and G : B → C are κ-right exact functors between
∞-categories, then G ◦ F : A → C is κ-right exact.

(2) Any equivalence of ∞-categories is κ-right exact.

(3) Let F : A → B be a κ-right exact functor and let F ′ : A → B be
homotopic to F . Then F ′ is κ-right exact.

Proof. Property (1) is immediate from the definition. We will establish (2)
and (3) as a consequence of the following more general assertion: if F : A →
B and G : B → C are functors such that F is a categorical equivalence, then
G is κ-right exact if and only if G ◦ F is κ-right exact. To prove this, let
C′ → C be a right fibration. Proposition 3.3.1.3 implies that the induced map

A′ = A×C C′ → B×C C′ = B′

is a categorical equivalence. Thus A′ is κ-filtered if and only if B′ is κ-filtered.
We now deduce (2) by specializing to the case where G is the identity

map. To prove (3), we choose a contractible Kan complex K containing a
pair of vertices {x, y} and a map g : K → BA with g(x) = F , g(y) = F ′.
Applying the above argument to the composition

A � A×{x} ⊆ A×K G→ B,

we deduce that G is κ-right exact. Applying the converse to the diagram

A � A×{y} ⊆ A×K G→ B,

we deduce that F ′ is κ-right exact.
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The next result shows that the κ-right exactness of a functor F : A → B

can be tested on a very small collection of right fibrations B′ → B.

Proposition 5.3.2.5. Let F : A → B be a functor between ∞-categories
and κ a regular cardinal. The following are equivalent:

(1) The functor F is κ-right exact.

(2) For every object B of B, the ∞-category A×B B/B is κ-filtered.

Proof. We observe that for every object B ∈ B, the ∞-category B/B is right
fibered over B and is κ-filtered (since it has a final object). Consequently, (1)
implies (2). Now suppose that (2) is satisfied. Let T : (Set∆)/B → (Set∆)/B

denote the composite functor

(Set∆)/B
StB→ (Set∆)C[Bop] Sing |•|→ (Set∆)C[Bop] UnB→ (Set∆)/B.

We will use the following properties of T :

(i) There is a natural transformation jX : X → T (X), where jX is a
contravariant equivalence in (Set∆)/B for every X ∈ (Set∆)/B.

(ii) For every X ∈ (Set∆)/B, the associated map T (X) → B is a right
fibration.

(iii) The functor T commutes with filtered colimits.

We will say that an object X ∈ (Set∆)/B is good if the ∞-category T (X)×B

A is κ-filtered. We now make the following observations:

(A) If X → Y is a contravariant equivalence in (Set∆)/B, then X is good
if and only if Y is good. This follows from the fact that T (X) →
T (Y ) is an equivalence of right fibrations, so that the induced map
T (X) ×B A → T (Y ) ×B A is an equivalence of right fibrations and
consequently a categorical equivalence of ∞-categories.

(B) If X → Y is a categorical equivalence in (Set∆)/B, then X is good if
and only if Y is good. This follows from (A) since every categorical
equivalence is a contravariant equivalence.

(C) The collection of good objects of (Set∆)B is stable under κ-filtered
colimits. This follows from the fact that the functor X �→ T (X) ×B A

commutes with κ-filtered colimits (in fact, with all filtered colimits)
and Proposition 5.3.1.17.

(D) If X ∈ (Set∆)/B corresponds to a right fibration X → B, then X is
good if and only if X ×B A is κ-filtered.

(E) For every object B ∈ B, the overcategory B/B is a good object of
(Set∆)/B. In view of (D), this is equivalent to assumption (2).
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(F ) If X consists of a single vertex x, then X is good. To see this, let B ∈ B

denote the image of X. The natural map X → B/B can be identified
with the inclusion of a final vertex; this map is right anodyne and
therefore a contravariant equivalence. We now conclude by applying
(A) and (E).

(G) IfX ∈ (Set∆)/B is an ∞-category with a final object x, thenX is good.
To prove this, we note that {x} is good by (F ) and the inclusion {x} ⊆
X is right anodyne, hence a contravariant equivalence. We conclude by
applying (A).

(H) If X ∈ (Set∆)/B is κ-filtered, then X is good. To prove this, we apply
Proposition 5.3.1.17 to deduce the existence of a categorical equiva-
lence i : X → C, where C is a κ-filtered union of ∞-categories with
final objects. Replacing C by C×K if necessary, where K is a con-
tractible Kan complex, we may suppose that i is a cofibration. Since
B is an ∞-category, the lifting problem

S ��

i

��

B

C

���
�

�
�

has a solution. Thus we may regard C as an object of (Set∆)/B. Ac-
cording to (B), it suffices to show that C is good. But C is a κ-filtered
colimit of good objects of (Set∆)B (by (G)) and is therefore itself good
(by (C)).

Now let B′ → B be a right fibration, where B′ is κ-filtered. By (H), B′ is
a good object of (Set∆)/B. Applying (D), we deduce that A′ = B′ ×B A is
κ-filtered. This proves (1).

Our next goal is to prove Proposition 5.3.2.9, which gives a very concrete
characterization of right exactness under the assumption that there is a
sufficient supply of colimits. We first need a few preliminary results.

Lemma 5.3.2.6. Let B′ → B be a Cartesian fibration. Suppose that B has
an initial object B and that B′ is filtered. Then the fiber B′

B = B′ ×B{B} is
a contractible Kan complex.

Proof. Since B is an initial object of B, the inclusion {B}op ⊆ Bop is cofinal.
Proposition 4.1.2.15 implies that the inclusion (B′

B)op ⊆ (B′)op is also cofinal
and therefore a weak homotopy equivalence. It now suffices to prove that B′

is weakly contractible, which follows from Lemma 5.3.1.18.

Lemma 5.3.2.7. Let f : A → B be a right exact functor between ∞-
categories and let A ∈ A be an initial object. Then f(A) is an initial object
of B.
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Proof. Let B be an object of B. Proposition 5.3.2.5 implies that A′ =
B/B ×B A is filtered. We may identify MapB(f(A), B) with the fiber of the
right fibration A′ → A over the object A. We now apply Lemma 5.3.2.6 to
deduce that MapB(f(A), B) is contractible.

Lemma 5.3.2.8. Let κ be a regular cardinal, f : A → B a κ-right exact
functor between ∞-categories, and p : K → A a diagram indexed by a κ-
small simplicial set K. The induced map Ap/ → Bfp/ is κ-right exact.

Proof. According to Proposition 5.3.2.5, it suffices to prove that for each
object B ∈ Bf◦p/, the ∞-category A′ = Ap/×Bfp/

(Bfp/)/B is κ-filtered. Let
B denote the image of B in B and let q : K′ → A′ be a diagram indexed by a
κ-small simplicial set K ′; we wish to show that q admits an extension to K′
.
We may regard p and q together as defining a diagram K K ′ → A×B B/B.
Since f is κ-filtered, we can extend this to a map (K  K′)
 → A×B B/B,
which can be identified with an extension q : K ′
 → A′ of q.

Proposition 5.3.2.9. Let f : A → B be a functor between ∞-categories
and let κ be a regular cardinal.

(1) If f is κ-right exact, then f preserves all κ-small colimits which exist
in A.

(2) Conversely, if A admits κ-small colimits and f preserves κ-small co-
limits, then f is right exact.

Proof. Suppose first that f is κ-right exact. Let K be a κ-small simplicial
set, and let p : K
 → A be a colimit of p = p|K. We wish to show that f ◦ p
is a colimit diagram. Using Lemma 5.3.2.8, we may replace A by Ap/ and
B by Bfp/ and thereby reduce to the case K = ∅. We are then reduced to
proving that f preserves initial objects, which follows from Lemma 5.3.2.7.

Now suppose that A admits κ-small colimits and that f preserves κ-small
colimits. We wish to prove that f is κ-right exact. LetB be an object of B and
set A′ = A×B B/B. We wish to prove that A′ is κ-filtered. Let p′ : K → A′

be a diagram indexed by a κ-small simplicial set K; we wish to prove that
p′ extends to a map p′ : K
 → A′. Let p : K → A be the composition of
p′ with the projection A′ → A and let p : K
 → A be a colimit of p. We
may identify f ◦ p and p′ with objects of Bfp/. Since f preserves κ-small
colimits, f ◦ p is an initial object of Bfp/, so that there exists a morphism
α : f ◦ p → p′ in Bf◦p/. The morphism α can be identified with the desired
extension p′ : K
 → A′.

Remark 5.3.2.10. The results of this section all dualize in an evident way:
a functor G : A → B is said to be κ-left exact if the induced functor Gop :
Aop → Bop is κ-right exact. In the case where A admits κ-small limits, this
is equivalent to the requirement that G preserve κ-small limits.
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Remark 5.3.2.11. Let C be an ∞-category, let F : C → Sop be a functor,
and let C̃ → C be the associated right fibration (the pullback of the universal
right fibration Q0 → Sop). If F is κ-right exact, then C̃ is κ-filtered (since Q0

has a final object). If C admits κ-small colimits, then the converse holds: if
C̃ is κ-filtered, then F preserves κ-small colimits by Proposition 5.3.5.3 and
is therefore κ-right exact by Proposition 5.3.2.5. The converse does not hold
in general: it is possible to give an example of right fibration C̃ → C such
that C̃ is filtered yet the classifying functor F : C → Sop is not right exact.

5.3.3 Filtered Colimits

Filtered categories tend not to be very interesting in themselves. Instead,
they are primarily useful for indexing diagrams in other categories. This is
because the colimits of filtered diagrams enjoy certain exactness properties
not shared by colimits in general. In this section, we will formulate and prove
these exactness properties in the ∞-categorical setting. First, we need a few
definitions.

Definition 5.3.3.1. Let κ be a regular cardinal. We will say that an ∞-
category C is κ-closed if every diagram p : K → C indexed by a κ-small
simplicial set K admits a colimit p : K
 → C.

In a κ-closed ∞-category, it is possible to construct κ-small colimits func-
torially. More precisely, suppose that C is an ∞-category and that K is a
simplicial set with the property that every diagram p : K → C has a co-
limit in C. Let D denote the full subcategory of Fun(K
,C) spanned by the
colimit diagrams. Proposition 4.3.2.15 implies that the restriction functor
D → Fun(K,C) is a trivial fibration. It therefore admits a section s (which
is unique up to a contractible ambiguity). Let e : Fun(K
,C) → C be the
functor given by evaluation at the cone point of K
. We will refer to the
composition

Fun(K,C) s→ D ⊆ Fun(K
,C) e→ C

as a colimit functor; it associates to each diagram p : K → C a colimit of p
in C. We will generally denote colimit functors by lim−→K

: Fun(K,C) → C.

Lemma 5.3.3.2. Let F ∈ Fun(K, S) be a corepresentable functor (that is,
F lies in the essential image of the Yoneda embedding Kop → Fun(K, S))
and let X ∈ S be a colimit of F . Then X is contractible.

Proof. Without loss of generality, we may suppose that K is an ∞-category.
Let K̃ → K be a left fibration classified by F . Since F is corepresentable, K̃
has an initial object and is therefore weakly contractible. Corollary 3.3.4.6
implies that there is an isomorphism K̃ � X in the homotopy category H,
so that X is also contractible.

Proposition 5.3.3.3. Let κ be a regular cardinal and let I be an ∞-category.
The following conditions are equivalent:
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(1) The ∞-category I is κ-filtered.

(2) The colimit functor lim−→I
: Fun(I, S) → S preserves κ-small limits.

Proof. Suppose that (1) is satisfied. According to Proposition 5.3.1.16, there
exists a κ-filtered partially ordered set A and a cofinal map i : N(A) → S.
Since i is cofinal, the colimit functor for I admits a factorization

Fun(I, S) i∗→ Fun(N(A), S)→ S .

Proposition 5.1.2.2 implies that i∗ preserves limits. We may therefore replace
I by N(A) and thereby reduce to the case where I is itself the nerve of a
κ-filtered partially ordered set A.

We note that the functor lim−→I
: Fun(I, S) → S can be characterized as

the left adjoint to the diagonal functor δ : S → Fun(I, S). Let A denote
the category of all functors from A to Set∆; we regard A as a simplicial
model category with respect to the projective model structure described in
§A.3.3. Let φ∗ : Set∆ → A denote the diagonal functor which associates
to each simplicial set K the constant functor A → Set∆ with value K,
and let φ! be a left adjoint of φ∗, so that the pair (φ∗, φ!) gives a Quillen
adjunction between A and Set∆. Proposition 4.2.4.4 implies that there is
an equivalence of ∞-categories N(A◦) → Fun(I, S), and δ may be identified
with the right derived functor of φ∗. Consequently, the functor lim−→I

may be
identified with the left derived functor of φ!. To prove that lim−→I

preserves
κ-small limits, it suffices to prove that lim−→I

preserves fiber products and
κ-small products. According to Theorem 4.2.4.1, it suffices to prove that φ!

preserves homotopy fiber products and κ-small homotopy products. For fiber
products, this reduces to the classical assertion that if we are given a family
of homotopy Cartesian squares

Wα
��

��

Xα

��
Yα �� Zα

in the category of Kan complexes, indexed by a filtered partially ordered set
A, then the colimit square

W ��

��

X

��
Y �� Z

is also homotopy Cartesian. The assertion regarding homotopy products is
handled similarly.

Now suppose that (2) is satisfied. Let K be a κ-small simplicial set and
p : K → Iop a diagram; we wish to prove that I

op
/p is nonempty. Suppose

otherwise. Let j : Iop → Fun(I, S) be the Yoneda embedding, let q = j ◦ p,
let q : K	 → Fun(I, S) be a limit of q, and let X ∈ Fun(I, S) be the image
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of the cone point of K	 under q. Since j is fully faithful and I
op
/p is empty,

we have MapSI(j(I), X) = ∅ for each I ∈ I. Using Lemma 5.1.5.2, we may
identify MapSI(j(I), X) with X(I) in the homotopy category H of spaces.
We therefore conclude that X is an initial object of Fun(I, S). Since the
functor lim−→I

: Fun(I, S) → S is a left adjoint, it preserves initial objects.
We conclude that lim−→I

X is an initial object of S. On the other hand, if
lim−→I

preserves κ-small limits, then lim−→I
◦q exhibits lim−→I

X as the limit of
the diagram lim−→I

◦q : K → S. For each vertex k in K, Lemmas 5.1.5.2 and
5.3.3.2 imply that lim−→I

q(k) is contractible and therefore a final object of S.
It follows that lim−→I

X is also a final object of S. This is a contradiction since
the initial object of S is not final.

5.3.4 Compact Objects

Let C be a category which admits filtered colimits. An object C ∈ C is said
to be compact if the corepresentable functor

HomC(C, •)
commutes with filtered colimits.

Example 5.3.4.1. Let C = Set be the category of sets. An object C ∈ C is
compact if and only if is finite.

Example 5.3.4.2. Let C be the category of groups. An object G of C is
compact if and only if it is finitely presented (as a group).

Example 5.3.4.3. Let X be a topological space and let C be the category of
open sets of X (with morphisms given by inclusions). Then an object U ∈ C

is compact if and only if U is compact when viewed as a topological space:
that is, every open cover of U admits a finite subcover.

Remark 5.3.4.4. Because of Example 5.3.4.2, many authors call an object
C of a category C finitely presented if HomC(C, •) preserves filtered colimits.
Our terminology is motivated instead by Example 5.3.4.3.

Definition 5.3.4.5. Let C be an ∞-category which admits small κ-filtered
colimits. We will say a functor f : C → D is κ-continuous if it preserves
κ-filtered colimits.

Let C be an ∞-category containing an object C and let jC : C → Ŝ denote
the functor corepresented by C. If C admits κ-filtered colimits, then we will
say that C is κ-compact if jC is κ-continuous. We will say that C is compact
if it is ω-compact (and C admits filtered colimits).

Let κ be a regular cardinal and let C be an ∞-category which admits small
κ-filtered colimits. We will say that a left fibration C̃ → C is κ-compact if it
is classified by a κ-continuous functor C → Ŝ.

Notation 5.3.4.6. Let C be an ∞-category and κ a regular cardinal. We
will generally let Cκ denote the full subcategory spanned by the κ-compact
objects of C.
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Lemma 5.3.4.7. Let C be an ∞-category which admits small κ-filtered
colimits and let D ⊆ Fun(C, Ŝ) be the full subcategory spanned by the κ-
continuous functors f : C → Ŝ. Then D is stable under κ-small limits in

Ŝ
C
.

Proof. Let K be a κ-small simplicial set, and let p : K → Fun(C, Ŝ) be
a diagram which we may identify with a map p′ : C → Fun(K, Ŝ). Using
Proposition 5.1.2.2, we may obtain a limit of the diagram p by composing
p′ with a limit functor

lim←− : Fun(K, Ŝ) → Ŝ

(that is, a right adjoint to the diagonal functor Ŝ → Fun(K, Ŝ); see §5.3.3). It
therefore suffices to show that the functor lim←− is κ-continuous. This is simply
a reformulation of Proposition 5.3.3.3.

The basic properties of κ-compact left fibrations are summarized in the
following Lemma:

Lemma 5.3.4.8. Fix a regular cardinal κ.

(1) Let C be an ∞-category which admits small κ-filtered colimits and let
C ∈ C be an object. Then C is κ-compact if and only if the left fibration
CC/ → C is κ-compact.

(2) Let f : C → D be a κ-continuous functor between ∞-categories which
admit small κ-filtered colimits and let D̃ → D be a κ-compact left
fibration. Then the associated left fibration C×DD̃ → C is also κ-
compact.

(3) Let C be an ∞-category which admits small κ-filtered colimits and let
A ⊆ (Set∆)/C denote the full subcategory spanned by the κ-compact left
fibrations over C. Then A is stable under κ-small homotopy limits (with
respect to the covariant model structure on (Set∆)/C). In particular, A
is stable under the formation of homotopy pullbacks, κ-small products,
and (if κ is uncountable) homotopy inverse limits of towers.

Proof. Assertions (1) and (2) are obvious. To prove (3), let us suppose that
C̃ is a κ-small homotopy limit of κ-compact left fibrations C̃α → C. Let J be
a small κ-filtered ∞-category and let p : J
 → C be a colimit diagram. We
wish to prove that the composition of p with the functor C → Ŝ classifying
C̃ is a colimit diagram. Applying Proposition 5.3.1.16, we may reduce to the
case where J is the nerve of a κ-filtered partially ordered set A. According
to Theorem 2.2.1.2, it will suffice to show that the collection of homotopy
colimit diagrams

A ∪ {∞} → Kan

is stable under κ-small homotopy limits in the category (Set∆)A∪{∞}, which
follows easily from our assumption that A is κ-filtered.
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Our next goal is to prove a very useful stability result for κ-compact
objects (Proposition 5.3.4.13). We first need to establish a few technical
lemmas.

Lemma 5.3.4.9. Let κ be a regular cardinal, let C be an ∞-category which
admits small κ-filtered colimits, and let f : C → D be a morphism in C.
Suppose that C and D are κ-compact objects of C. Then f is a κ-compact
object of Fun(∆1,C).

Proof. Let X = Fun(∆1,C) ×Fun({1},C) Cf/, Y = Fun(∆1,CC/) and Z =
Fun(∆1,C)×Fun({1},C) CC/, so that we have a (homotopy) pullback diagram

Fun(∆1,C)f/ ��

��

X

��
Y �� Z

of left fibrations over Fun(∆1,C). According to Lemma 5.3.4.8, it will suffice
to show that X, Y , and Z are κ-compact left fibrations. To show that X is
a κ-compact left fibration, it suffices to show that Cf/ → C is a κ-compact
left fibration, which follows since we have a trivial fibration Cf/ → CD/,
where D is κ-compact by assumption. Similarly, we have a trivial fibration
Y → Fun(∆1,C) ×C(0) CC/, so that the κ-compactness of C implies that
Y is a κ-compact left fibration. Lemma 5.3.4.8 and the compactness of C
immediately imply that Z is a κ-compact left fibration, which completes the
proof.

Lemma 5.3.4.10. Let κ be a regular cardinal and let {Cα} be a κ-small
family of ∞-categories having product C. Suppose that each C admits small
κ-filtered colimits. Then

(1) The ∞-category C admits κ-filtered colimits.

(2) If C ∈ C is an object whose image in each Cα is κ-compact, then C is
κ-compact as an object of C.

Proof. The first assertion is obvious since colimits in a product can be com-
puted pointwise. For the second, choose an object C ∈ C whose images
{Cα ∈ Cα} are κ-compact.

The left fibration CC/ → C can be obtained as a κ-small product of the
left fibrations C×Cα

(Cα)Cα/ → C. Lemma 5.3.4.8 implies that each factor is
κ-compact, so that the product is also κ-compact.

Lemma 5.3.4.11. Let S be a simplicial set and suppose we are given a
tower

· · · → X(1)
f1→ X(0)

f0→ S,

where each fi is a left fibration. Then the inverse limit X(∞) is a homotopy
inverse limit of the tower {X(i)} with respect to the covariant model structure
on (Set∆)/S.
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Proof. Construct a ladder

· · · �� X(1)
f1 ��

��

X(0)
f0 ��

��

S

��
· · · �� X ′(1)

f ′
1 �� X ′(0)

f ′
0 �� S

where the vertical maps are covariant equivalences and the tower {X ′(i)}
is fibrant (in the sense that each of the maps f ′

i is a covariant fibration).
We wish to show that the induced map on inverse limits X(∞) → X ′(∞) is
a covariant equivalence. Since both X(∞) and X ′(∞) are left fibered over
S, this can be tested by passing to the fibers over each vertex s of S. We
may therefore reduce to the case where S is a point, in which case the tower
{X(i)} is already fibrant (since a left fibration over a Kan complex is a Kan
fibration; see Lemma 2.1.3.3).

Lemma 5.3.4.12. Let κ be an uncountable regular cardinal and let

· · · → C2 f2→ C1 f1→ C0

be a tower of ∞-categories. Suppose that each Ci admits small κ-filtered
colimits and that each of the functors fi is a categorical fibration which pre-
serves κ-filtered colimits. Let C denote the inverse limit of the tower. Then

(1) The ∞-category C admits small κ-filtered colimits, and the projections
pn : C → Cn are κ-continuous.

(2) If C ∈ C has a κ-compact image in Ci for each i ≥ 0, then C is a
κ-compact object of C.

Proof. Let q : K
 → C be a diagram indexed by an arbitrary simplicial set,
let q = q|K, and set qn = pn ◦ q, qn = pn ◦ q. Suppose that each qn is a
colimit diagram in Cn. Then the map Cq/ → Cq/ is the inverse limit of a
tower of trivial fibrations Cnqn/

→ Cnqn/
and therefore a trivial fibration.

To complete the proof of (1), it will suffice to show that if K is a κ-
filtered ∞-category, then any diagram q : K → C can be extended to a map
q : K
 → C with the property described above. To construct q, it suffices
to construct a compatible family qn : K
 → Cn. We begin by selecting
arbitrary colimit diagrams q′n : K
 → Cn which extend qn. We now explain
how to adjust these choices to make them compatible with one another using
induction on n. Set q0 = q′0. Suppose next that n > 0. Since fn preserves
κ-filtered colimits, we may identify qn−1 and fn ◦ q′n with initial objects of
Cn−1
qn−1/

. It follows that there exists an equivalence e : qn−1 → fn ◦ q′n in
Cn−1
qn−1/

. The map fn induces a categorical fibration Cnqn/ → Cn−1
qn−1/

, so that e
lifts to an equivalence e : qn → q′n in Cnqn/. The existence of the equivalence
e proves that qn is a colimit diagram in Cn, and we have qn−1 = fn ◦ qn by
construction. This proves (1).
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Now suppose that C ∈ C is as in (2) and let Cn = pn(C) ∈ Cn. The left
fibration C/C is the inverse limit of a tower of left fibrations

· · · → C1
C1/×C1 C → C0

C0/×C0 C .

Using Lemma 5.3.4.8, we deduce that each term in this tower is a κ-compact
left fibration over C. Proposition 2.1.2.1 implies that each map in the tower
is a left fibration, so that CC/ is a homotopy inverse limit of a tower of κ-
compact left fibrations by Lemma 5.3.4.11. We now apply Lemma 5.3.4.8
again to deduce that CC/ is a κ-compact left fibration, so that C ∈ C is
κ-compact, as desired.

Proposition 5.3.4.13. Let κ be a regular cardinal, let C be an ∞-category
which admits small κ-filtered colimits, and let f : K → C be a diagram
indexed by a κ-small simplicial set K. Suppose that for each vertex x of K,
f(x) ∈ C is κ-compact. Then f is a κ-compact object of Fun(K,C).

Proof. Let us say that a simplicial set K is good if it satisfies the conclusions
of the lemma. We wish to prove that all κ-small simplicial sets are good.
The proof proceeds in several steps:

(1) Suppose we are given a pushout square

K′ ��

i

��

K

��
L′ �� L,

where i is a cofibration and the simplicial sets K ′, K, and L′ are good.
Then the simplicial set L is also good. To prove this, we observe that
the associated diagram of ∞-categories

Fun(L,C) ��

��

Fun(L′,C)

��
Fun(K,C) �� Fun(K ′,C)

is homotopy Cartesian and every arrow in the diagram preserves κ-
filtered colimits (by Proposition 5.1.2.2). Now apply Lemma 5.4.5.7.

(2) If K → K′ is a categorical equivalence and K is good, then K ′ is
good: the forgetful functor Fun(K ′,C) → Fun(K,C) is an equivalence
of ∞-categories and therefore detects κ-compact objects.

(3) Every simplex ∆n is good. To prove this, we observe that the inclusion

∆{0,1} ∐
{1}

· · ·
∐

{n−1}
∆{n−1,n} ⊆ ∆n

is a categorical equivalence. Applying (1) and (2), we can reduce to
the case n ≤ 1. If n = 0, there is nothing to prove, and if n = 1, we
apply Lemma 5.3.4.9.



398 CHAPTER 5

(4) If {Kα} is a κ-small collection of good simplicial sets having coproduct
K, then K is also good. To prove this, we observe that Fun(C) �∏
α Fun(Kα,C) and apply Lemma 5.3.4.10.

(5) If K is a κ-small simplicial set of dimension at most n, then K is
good. The proof is by induction on n. Let K(n−1) ⊆ K denote the
(n− 1)-skeleton of K, so that we have a pushout diagram∐

σ∈Kn
∂∆n ��

��

K(n−1)

��∐
σ∈Kn

∆n �� K.

The inductive hypothesis implies that
∐
σ∈Kn

∂∆n and K(n−1) are
good. Applying (3) and (4), we deduce that

∐
σ∈Kn

∆n is good. We
now apply (1) to deduce that K is good.

(6) Every κ-small simplicial setK is good. If κ = ω, then this follows imme-
diately from (5) since every κ-small simplicial set is finite-dimensional.
If κ is uncountable, then we have an increasing filtration

K(0) ⊆ K(1) ⊆ · · ·
which gives rise to a tower of ∞-categories

· · · → Fun(K(1),C) → Fun(K(0),C)

having (homotopy) inverse limit Fun(K,C). Using Proposition 5.1.2.2,
we deduce that the hypotheses of Lemma 5.3.4.12 are satisfied, so that
K is good.

Corollary 5.3.4.14. Let κ be a regular cardinal and let C be an ∞-category
which admits small κ-filtered colimits. Suppose that p : K → C is a κ-small
diagram with the property that for every vertex x of K, p(x) is a κ-compact
object of C. Then the left fibration Cp/ → C is κ-compact.

Proof. It will suffice to show that the equivalent left fibration Cp/ → C is
κ-compact. Let P be the object of Fun(K,C) corresponding to p. Then we
have an isomorphism of simplicial sets

Cp/ � C×Fun(K,C) Fun(K,C)P/.

Proposition 5.3.4.13 asserts that P is a κ-compact object of Fun(K,C), so
that the left fibration

Fun(K,C)P/ → Fun(K,C)

is κ-compact. Proposition 5.1.2.2 guarantees that the diagonal map C →
Fun(K,C) preserves κ-filtered colimits, so we can apply part (2) of Lemma
5.3.4.8 to deduce that Cp/ → C is κ-compact as well.
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Corollary 5.3.4.15. Let C be an ∞-category which admits small κ-filtered
colimits and let Cκ denote the full subcategory of C spanned by the κ-compact
objects. Then Cκ is stable under the formation of all κ-small colimits which
exist in C.

Proof. Let K be a κ-small simplicial set and let p : K
 → C be a colimit
diagram. Suppose that, for each vertex x of K, the object p(x) ∈ C is κ-
compact. We wish to show that C = p(∞) ∈ C is κ-compact, where ∞
denotes the cone point of K
. Let p = p|K and consider the maps

Cp/ ← Cp/ → CC/ .

Both are trivial fibrations (the first because p is a colimit diagram and the
second because the inclusion {∞} ⊆ K
 is right anodyne). Corollary 5.3.4.14
asserts that the left fibration Cp/ → C is κ-compact. It follows that the
equivalent left fibration CC/ is κ-compact, so that C is a κ-compact object
of C, as desired.

Remark 5.3.4.16. Let κ be a regular cardinal and let C be an ∞-category
which admits κ-filtered colimits. Then the full subcategory Cκ ⊆ C of κ-
compact objects is stable under retracts. If κ > ω, this follows from Proposi-
tion 4.4.5.15 and Corollary 5.3.4.15 (since every retract can be obtained as a
κ-small colimit). We give an alternative argument that also works in the most
important case κ = ω. Let C be κ-compact and let D be a retract of C. Let
j : Cop → Fun(C, Ŝ) be the Yoneda embedding. Then j(D) ∈ Fun(C, Ŝ) is a
retract of j(C). Since j(C) preserves κ-filtered colimits, then Lemma 5.1.6.3
implies that j(D) preserves κ-filtered colimits, so that D is κ-compact.

The following result gives a convenient description of the compact objects
of an ∞-category of presheaves:

Proposition 5.3.4.17. Let C be a small ∞-category, κ a regular cardinal,
and C ∈ P(C) an object. The following are equivalent:

(1) There exists a diagram p : K → C indexed by a κ-small simplicial set,
such that j ◦ p has a colimit D in P(C) and C is a retract of D.

(2) The object C is κ-compact.

Proof. Proposition 5.1.6.8 asserts that for every object A ∈ C, j(A) is
completely compact and, in particular, κ-compact. According to Corollary
5.3.4.15 and Remark 5.3.4.16, the collection of κ-compact objects of P(C) is
stable under κ-small colimits and retracts. Consequently, (1) ⇒ (2).

Now suppose that (2) is satisfied. Let C/C = C×P(C) P(C)/C . Lemma
5.1.5.3 implies that the composition

p : C
/C → P(S)
/C → P(S)
is a colimit diagram. As in the proof of Corollary 4.2.3.11, we can write C
as the colimit of a κ-filtered diagram q : I → P(C), where each object q(I) is
the colimit of p|C0, where C0 is a κ-small simplicial subset of C/C . Since C
is κ-compact, we may argue as in the proof of Proposition 5.1.6.8 to deduce
that C is a retract of q(I) for some object I ∈ I. This proves (1).
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We close with a result which we will need in §5.5. First, a bit of notation:
if C is a small ∞-category and κ a regular cardinal, we let Pκ(C) denote the
full subcategory consisting of κ-compact objects of P(C).

Proposition 5.3.4.18. Let C be a small idempotent complete ∞-category
and κ a regular cardinal. The following conditions are equivalent:

(1) The ∞-category C admits κ-small colimits.

(2) The Yoneda embedding j : C → Pκ(C) has a left adjoint.

Proof. Suppose that (1) is satisfied. For each object M ∈ P(C), let FM :
P(C) → Ŝ denote the associated corepresentable functor. Let D ⊆ P(C) de-
note the full subcategory of P(C) spanned by those objects M such that
FM ◦ j : C → Ŝ is corepresentable. According to Proposition 5.1.2.2, compo-
sition with j induces a limit-preserving functor

Fun(P(C), Ŝ) → Fun(C, Ŝ).
Applying Proposition 5.1.3.2 to Cop, we conclude that the collection of corep-
resentable functors on C is stable under retracts and κ-small limits. A second
application of Proposition 5.1.3.2 (this time to P(C)op) now shows that D

is stable under retracts and κ-small colimits in P(C). Since j is fully faith-
ful, D contains the essential image of j. It follows from Proposition 5.3.4.17
that D contains Pκ(C). We now apply Proposition 5.2.4.2 to deduce that
j : C → Pκ(C) admits a left adjoint.

Conversely, suppose that (2) is satisfied. Let L denote a left adjoint to the
Yoneda embedding, let p : K → C be a κ-small diagram, and let q = j ◦ p.
Using Corollary 5.3.4.15, we deduce that q has a colimit q : K
 → Pκ(C).
Since L is a left adjoint, L ◦ q is a colimit of L ◦ q. Since j is fully faithful,
the diagram p is equivalent to L ◦ q, so that p has a colimit as well.

5.3.5 Ind-Objects

Let S be a simplicial set. In §5.1.5, we proved that the ∞-category P(S) is
freely generated under small colimits by the image of the Yoneda embedding
j : S → P(S) (Theorem 5.1.5.6). Our goal in this section is to study the
analogous construction where we allow only filtered colimits.

Definition 5.3.5.1. Let C be a small ∞-category and let κ be a regular
cardinal. We let Indκ(C) denote the full subcategory of P(C) spanned by
those functors f : Cop → S which classify right fibrations C̃ → C, where the
∞-category C̃ is κ-filtered. In the case where κ = ω, we will simply write
Ind(C) for Indκ(C). We will refer to Ind(C) as the ∞-category of Ind-objects
of C.

Remark 5.3.5.2. Let C be a small ∞-category and κ a regular cardinal.
Then the Yoneda embedding j : C → P(C) factors through Indκ(C). This fol-
lows immediately from Lemma 5.1.5.2 since j(C) classifies the right fibration
C/C → C. The ∞-category C/C has a final object and is therefore κ-filtered
(Proposition 5.3.1.15).
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Proposition 5.3.5.3. Let C be a small ∞-category and let κ be a regu-
lar cardinal. The full subcategory Indκ(C) ⊆ P(C) is stable under κ-filtered
colimits.

Proof. Let P′
∆(C) denote the full subcategory of (Set∆)/C spanned by the

right fibrations C̃ → C. According to Proposition 5.1.1.1, the ∞-category
P(C) is equivalent to the simplicial nerve N(P′

∆(C)). Let Ind′
κ(C) denote the

full subcategory of P′
∆(C) spanned by right fibrations C̃ → C, where C̃ is

κ-filtered. It will suffice to prove that for any diagram p : I → N(Ind′
∆(C))

indexed by a small κ-filtered ∞-category I, the colimit of p in N(P′
∆(C)) also

belongs to Ind′
κ(C). Using Proposition 5.3.1.16, we may reduce to the case

where I is the nerve of a κ-filtered partially ordered set A. Using Proposition
4.2.4.4, we may further reduce to the case where p is the simplicial nerve
of a diagram taking values in the ordinary category Ind′

κ(C). By virtue of
Theorem 4.2.4.1, it will suffice to prove that Ind′

κ(C) ⊆ P′
∆(C) is stable under

κ-filtered homotopy colimits. We may identify P′
∆ with the collection of

fibrant objects of (Set∆)/C with respect to the contravariant model structure.
Since the class of contravariant equivalences is stable under filtered colimits,
any κ-filtered colimit in (Set∆)/C is also a homotopy colimit. Consequently, it
will suffice to prove that Ind′

κ(C) ⊆ P′
∆(C) is stable under κ-filtered colimits.

This follows immediately from the definition of a κ-filtered ∞-category.

Corollary 5.3.5.4. Let C be a small ∞-category, let κ be a regular cardinal,
and let F : Cop → S be an object of P(C). The following conditions are
equivalent:

(1) There exists a (small) κ-filtered ∞-category I and a diagram p : I → C

such that F is a colimit of the composition j ◦ p : I → P(C).

(2) The functor F belongs to Indκ(C).

If C admits κ-small colimits, then (1) and (2) are equivalent to

(3) The functor F preserves κ-small limits.

Proof. Lemma 5.1.5.3 implies that F is a colimit of the diagram

C/F → C
j→ P(C),

and Lemma 5.1.5.2 allows us to identify C/F = C×P(C) P(C)/F with the right
fibration associated to F . Thus (2) ⇒ (1). The converse follows from Propo-
sition 5.3.5.3 since every representable functor belongs to Indκ(C) (Remark
5.3.5.2).

Now suppose that C admits κ-small colimits. If (3) is satisfied, then F op :
C → Sop is κ-right exact by Proposition 5.3.3.3. The right fibration associated
to F is the pullback of the universal right fibration by F op. Using Corollary
3.3.2.7, the universal right fibration over Sop is representable by the final
object of S. Since F is κ-right exact, the fiber product (Sop)/∗ ×Sop C is
κ-filtered. Thus (3) ⇒ (2).
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We now complete the proof by showing that (1) ⇒ (3). First suppose
that F lies in the essential image of the Yoneda embedding j : C → P(C).
According to Lemma 5.1.5.2, j(C) is equivalent to the composition of the
opposite Yoneda embedding j′ : Cop → Fun(C, S) with the evaluation functor
e : Fun(C, S) → S associated to the object C ∈ C. Propositions 5.1.3.2 and
5.1.2.2 imply that j′ and e preserve κ-small limits, so that j(C) preserves κ-
small limits. To conclude the proof, it will suffice to show that the collection
of functors F : Cop → S which satisfy (3) is stable under κ-filtered colimits:
this follows easily from Proposition 5.3.3.3.

Proposition 5.3.5.5. Let C be a small ∞-category, let κ be a regular car-
dinal, and let j : C → Indκ(C) be the Yoneda embedding. For each object
C ∈ C, j(C) is a κ-compact object of Indκ(C).

Proof. The functor Indκ(C) → S corepresented by j(C) is equivalent to the
composition

Indκ(C) ⊆ P(C) → S,

where the first map is the canonical inclusion and the second is given by
evaluation at C. The second map preserves all colimits (Proposition 5.1.2.2),
and the first preserves κ-filtered colimits since Indκ(C) is stable under κ-
filtered colimits in P(C) (Proposition 5.3.5.3).

Remark 5.3.5.6. Let C be a small ∞-category and κ a regular cardinal.
Suppose that C is equivalent to an n-category, so that the Yoneda embedding
j : C → P(C) factors through P≤n−1(C) = Fun(Cop, τ≤n−1 S), where τ≤n−1 S

denotes the full subcategory of S spanned by the (n − 1)-truncated spaces:
that is, spaces whose homotopy groups vanish in dimensions n and above.
The class of (n − 1)-truncated spaces is stable under filtered colimits, so
that P≤n−1(C) is stable under filtered colimits in P(C). Corollary 5.3.5.4
implies that Ind(C) ⊆ P≤n−1(C). In particular, Ind(C) is itself equivalent to
an n-category. In particular, if C is the nerve of an ordinary category I, then
Ind(C) is equivalent to the nerve of an ordinary category J, which is uniquely
determined up to equivalence. Moreover, J admits filtered colimits, and there
is a fully faithful embedding I → J which generates J under filtered colimits
and whose essential image consists of compact objects of J. It follows that
J is equivalent to the category of Ind-objects of I in the sense of ordinary
category theory.

According to Corollary 5.3.5.4, we may characterize Indκ(C) as the small-
est full subcategory of P(C) which contains the image of the Yoneda em-
bedding j : C → P(C) and is stable under κ-filtered colimits. Our goal is to
obtain a more precise characterization of Indκ(C): namely, we will show that
it is freely generated by C under κ-filtered colimits.

Lemma 5.3.5.7. Let D be an ∞-category (not necessarily small). There
exists a fully faithful functor i : D → D′ with the following properties:
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(1) The ∞-category D′ admits small colimits.

(2) A small diagram K
 → D is a colimit if and only if the composite map
K
 → D′ is a colimit.

Proof. Let D′ = Fun(D, Ŝ)op and let i be the opposite of the Yoneda em-
bedding. Then (1) follows from Proposition 5.1.2.2 and (2) from Proposition
5.1.3.2.

We will need the following analogue of Lemma 5.1.5.5:

Lemma 5.3.5.8. Let C be a small ∞-category, κ a regular cardinal, j : C →
Indκ(C) the Yoneda embedding, and C′ ⊆ C the essential image of j. Let D

be an ∞-category which admits small κ-filtered colimits. Then

(1) Every functor f0 : C′ → D admits a left Kan extension f : Indκ(C) →
D.

(2) An arbitrary functor f : Indκ(C) → D is a left Kan extension of f |C′

if and only if f is κ-continuous.

Proof. Fix an arbitrary functor f0 : C′ → D. Without loss of generality, we
may assume that D is a full subcategory of a larger ∞-category D′, satisfying
the conclusions of Lemma 5.3.5.7; in particular, D is stable under small κ-
filtered colimits in D′. We may further assume that D coincides with its
essential image in D′. Lemma 5.1.5.5 guarantees the existence of a functor
F : P(C) → D′ which is a left Kan extension of f0 = F |C′ and such that
F preserves small colimits. Since Indκ(C) is generated by C′ under κ-filtered
colimits (Corollary 5.3.5.4), the restriction f = F | Indκ(C) factors through
D. It is then clear that f : Indκ(C) → D is a left Kan extension of f0 and
that f is κ-continuous. This proves (1) and the “only if” direction of (2)
(since left Kan extensions of f0 are unique up to equivalence).

We now prove the “if” direction of (2). Let f : Indκ(C) → D be the functor
constructed above and let f ′ : Indκ(C) → D be an arbitrary κ-continuous
functor such that f |C′ = f ′|C′. We wish to prove that f ′ is a left Kan
extension of f ′|C′. Since f is a left Kan extension of f |C′, there exists a
natural transformation α : f → f ′ which is an equivalence when restricted
to C′. Let E ⊆ Indκ(C) be the full subcategory spanned by those objects
C for which the morphism αC : f(C) → f ′(C) is an equivalence in D. By
hypothesis, C′ ⊆ E. Since both f and f ′ are κ-continuous, E is stable under
κ-filtered colimits in Indκ(C). We now apply Corollary 5.3.5.4 to conclude
that E = Indκ(C). It follows that f ′ and f are equivalent, so that f ′ is a left
Kan extension of f ′|C′, as desired.

Remark 5.3.5.9. The proof of Lemma 5.3.5.8 is very robust and can be
used to establish a number of analogous results. Roughly speaking, given
any class S of colimits, one can consider the smallest full subcategory C′′ of
P(C) which contains the essential image C′ of the Yoneda embedding and is
stable under colimits of type S. Given any functor f0 : C′ → D, where D
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is an ∞-category which admits colimits of type S, one can show that there
exists a functor f : C′′ → D which is a left Kan extension of f0 = f |C′.
Moreover, f is characterized by the fact that it preserves colimits of type
S. Taking S to be the class of all small colimits, we recover Lemma 5.1.5.5.
Taking S to be the class of all small κ-filtered colimits, we recover Lemma
5.3.5.8. Other variations are possible as well: we will exploit this idea further
in §5.3.6.

Proposition 5.3.5.10. Let C and D be ∞-categories and let κ be a regular
cardinal. Suppose that C is small and that D admits small κ-filtered colimits.
Then composition with the Yoneda embedding induces an equivalence of ∞-
categories

Mapκ(Indκ(C),D) → Fun(C,D),

where the left hand side denotes the ∞-category of all κ-continuous functors
from Indκ(C) to D.

Proof. Combine Lemma 5.3.5.8 with Corollary 4.3.2.16.

In other words, if C is small and D admits κ-filtered colimits, then any
functor f : C → D determines an essentially unique extension F : Indκ(C) →
D (such that f is equivalent to F ◦ j). We next give a criterion which will
allow us to determine when F is an equivalence.

Proposition 5.3.5.11. Let C be a small ∞-category, κ a regular cardinal,
and D an ∞-category which admits κ-filtered colimits. Let F : Indκ(C) → D

be a κ-continuous functor and f = F ◦ j its composition with the Yoneda
embedding j : C → Indκ(C). Then

(1) If f is fully faithful and its essential image consists of κ-compact objects
of D, then F is fully faithful.

(2) The functor F is an equivalence if and only if the following conditions
are satisfied:

(i) The functor f is fully faithful.

(ii) The functor f factors through Dκ.

(iii) The objects {f(C)}C∈C generate D under κ-filtered colimits.

Proof. We first prove (1) using the argument of Proposition 5.1.6.10. Let C
and D be objects of Indκ(C). We wish to prove that the map

ηC,D : MapP(C)(C,D) → MapD(F (C), F (D))

is an isomorphism in the homotopy category H. Suppose first that C belongs
to the essential image of j. Let G : P(C) → S be a functor corepresented by
C and let G′ : D → S be a functor corepresented by F (C). Then we have
a natural transformation of functors G → G′ ◦ F . Assumption (2) implies
that G′ preserves small κ-filtered colimits, so that G′ ◦ F preserves small κ-
filtered colimits. Proposition 5.3.5.5 implies that G preserves small κ-filtered
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colimits. It follows that the collection of objects D ∈ Indκ(C) such that ηC,D
is an equivalence is stable under small κ-filtered colimits. If D belongs to the
essential image of j, then the assumption that f is fully faithful implies that
ηC,D is a homotopy equivalence. Since the image of the Yoneda embedding
generates Indκ(C) under small κ-filtered colimits, we conclude that ηC,D is
a homotopy equivalence for every object D ∈ Indκ(C).

We now drop the assumption that C lies in the essential image of j. Fix
D ∈ Indκ(C). Let H : Indκ(C)op → S be a functor represented by D and
let H ′ : Dop → S be a functor represented by FD. Then we have a natu-
ral transformation of functors H → H ′ ◦ F op which we wish to prove is an
equivalence. By assumption, F op preserves small κ-filtered limits. Proposi-
tion 5.1.3.2 implies that H and H ′ preserve small limits. It follows that the
collection P of objects C ∈ P(S) such that ηC,D is an equivalence is sta-
ble under small κ-filtered colimits. The special case above established that
P contains the essential image of the Yoneda embedding. Since Indκ(C) is
generated under small κ-filtered colimits by the image of the Yoneda embed-
ding, we deduce that ηC,D is an equivalence in general. This completes the
proof of (1).

We now prove (2). Suppose first that F is an equivalence. Then (i) follows
from Proposition 5.1.3.1, (ii) from Proposition 5.3.5.5, and (iii) from Corol-
lary 5.3.5.4. Conversely, suppose that (i), (ii), and (iii) are satisfied. Using
(1), we deduce that F is fully faithful. The essential image of F contains the
essential image of f and is stable under small κ-filtered colimits. Therefore
F is essentially surjective, so that F is an equivalence as desired.

According to Corollary 4.2.3.11, an ∞-category C admits small colimits if
and only if C admits κ-small colimits and κ-filtered colimits. Using Proposi-
tion 5.3.5.11, we can make a much more precise statement:

Proposition 5.3.5.12. Let C be a small ∞-category and κ a regular cardi-
nal. The ∞-category Pκ(C) of κ-compact objects of P(C) is essentially small:
that is, there exists a small ∞-category D and an equivalence i : D → Pκ(C).
Let F : Indκ(D) → P(C) be a κ-continuous functor such that the composition
of f with the Yoneda embedding

D → Indκ(D) → P(C)

is equivalent to i (according to Proposition 5.3.5.10, F exists and is unique
up to equivalence). Then F is an equivalence of ∞-categories.

Proof. Since P(C) is locally small, to prove that Pκ(C) is small it will suffice
to show that the collection of isomorphism classes of objects in the homotopy
category hPκ(C) is small. For this, we invoke Proposition 5.3.4.17: every κ-
compact object X of P(C) is a retract of some object Y , which is itself the
colimit of some composition

K
p→ C → P(C),

where K is κ-small. Since there is a bounded collection of possibilities for K
and p (up to isomorphism in Set∆) and a bounded collection of idempotent
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maps Y → Y in hP(C), there is only a bounded number of possibilities for
X.

To prove that F is an equivalence, it will suffice to show that F satisfies
conditions (i), (ii), and (iii) of Proposition 5.3.5.11. Conditions (i) and (ii)
are obvious. For (iii), we must prove that every object of X ∈ P(C) can be
obtained as a small κ-filtered colimit of κ-compact objects of C. Using Lemma
5.1.5.3, we can write X as a small colimit taking values in the essential
image of j : C → P(C). The proof of Corollary 4.2.3.11 shows that X can be
written as a κ-filtered colimit of a diagram with values in a full subcategory
E ⊆ P(C), where each object of E is itself a κ-small colimit of some diagram
taking values in the essential image of j. Using Corollary 5.3.4.15, we deduce
that E ⊆ Pκ(C), so that X lies in the essential image of F , as desired.

Note that the construction C �→ Indκ(C) is functorial in C. Given a functor
f : C → C′, Proposition 5.3.5.10 implies that the composition of f with the
Yoneda embedding jC′ : C′ → Indκ C′ is equivalent to the composition

C
jC→ Indκ C

F→ Indκ C′,

where F is a κ-continuous functor. The functor F is well-defined up to equiv-
alence (in fact, up to contractible ambiguity). We will denote F by Indκ f
(though this is perhaps a slight abuse of notation since F is uniquely deter-
mined only up to equivalence).

Proposition 5.3.5.13. Let f : C → C′ be a functor between small ∞-
categories. The following are equivalent:

(1) The functor f is κ-right exact.

(2) The map G : P(C′) → P(C) given by composition with f restricts to a
functor g : Indκ(C′) → Indκ(C).

(3) The functor Indκ f has a right adjoint.

Moreover, if these conditions are satisfied, then g is a right adjoint to Indκ f .

Proof. The equivalence (1) ⇔ (2) is just a reformulation of the definition
of κ-right exactness. Let P(f) : P(C) → P(C′) be a functor which preserves
small colimits such that the diagram of ∞-categories

C

��

f �� C′

��
P(C)

P(f) �� P(C′)

is homotopy commutative. Then we may identify Indκ(f) with the restric-
tion P(f)| Indκ(C). Proposition 5.2.6.3 asserts that G is a right adjoint of
P(f). Consequently, if (2) is satisfied, then g is a right adjoint to Indκ(f).
We deduce in particular that (2) ⇒ (3). We will complete the proof by
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showing that (3) implies (2). Suppose that Indκ(f) admits a right adjoint
g′ : Indκ(C

′) → Indκ(C). Let X : (C′)op → S be an object of Indκ(C
′). Then

Xop is equivalent to the composition

C′ j→ Indκ(C′) cX→ Sop,

where cX denotes the functor represented by X. Since g′ is a left adjoint
to Indκ f , the functor cX ◦ Indκ(f) is represented by g′X. Consequently, we
have a homotopy commutative diagram

C
jC ��

f

��

Indκ(C) ��

Indκ(f)

��

cg′X �� Sop

��
C′ �� Indκ(C

′)
cX �� Sop,

so that G(X)op = f ◦Xop � cg′X ◦ jC and therefore belongs to Indκ(C).

Proposition 5.3.5.14. Let C be a small ∞-category and κ a regular cardi-
nal. The Yoneda embedding j : C → Indκ(C) preserves all κ-small colimits
which exist in C.

Proof. Let K be a κ-small simplicial set and p : K
 → C a colimit diagram.
We wish to show that j ◦ p : K
 → Indκ(C) is also a colimit diagram.
Let C ∈ Indκ(C) be an object and let F : Indκ(C)op → Ŝ be the functor
represented by F . According to Proposition 5.1.3.2, it will suffice to show
that F ◦(j ◦p)op is a limit diagram in S. We observe that F ◦jop is equivalent
to the object C ∈ Indκ(C) ⊆ Fun(Cop, S) and therefore κ-right exact. We now
conclude by invoking Proposition 5.3.2.9.

We conclude this section with a useful result concerning diagrams in ∞-
categories of Ind-objects:

Proposition 5.3.5.15. Let C be a small ∞-category, κ a regular cardinal,
and j : C → Indκ(C) the Yoneda embedding. Let A be a finite partially
ordered set and let j′ : Fun(N(A),C) → Fun(N(A), Indκ(C)) be the induced
map. Then j′ induces an equivalence

Indκ(Fun(N(A),C)) → Fun(N(A), Indκ(C)).

In other words, every diagram N(A) → Indκ(C) can be obtained, in an
essentially unique way, as a κ-filtered colimit of diagrams N(A) → C.

Warning 5.3.5.16. The statement of Proposition 5.3.5.15 fails if we replace
N(A) by an arbitrary finite simplicial set. For example, we may identify the
category of abelian groups with the category of Ind-objects of the category
of finitely generated abelian groups. If n > 1, then the map q �→ q

n from the
group of rational numbers Q to itself cannot be obtained as a filtered colimit
of endomorphisms of finitely generated abelian groups.
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Proof of Proposition 5.3.5.15. According to Proposition 5.3.5.11, it will suf-
fice to prove the following:

(i) The functor j′ is fully faithful.

(ii) The essential image of j′ is comprised of of κ-compact objects of
Fun(N(A), Indκ(C)).

(iii) The essential image of j′ generates Fun(N(A), Indκ(C)) under small
κ-filtered colimits.

Since the Yoneda embedding j : C → Indκ(C) satisfies the analogues of these
conditions, (i) is obvious and (ii) follows from Proposition 5.3.4.13. To prove
(iii), we fix an object F ∈ Fun(N(A), Indκ(C)). Let C′ denote the essential
image of j and form a pullback diagram of simplicial sets

D ��

��

Fun(N(A),C′)

��
Fun(N(A), Indκ(C))/F �� Fun(N(A), Indκ(C)).

Since D is essentially small, (iii) is a consequence of the following assertions:

(a) The ∞-category D is κ-filtered.

(b) The canonical map D
 → Fun(N(A),C) is a colimit diagram.

To prove (a), we need to show that D has the right lifting property with
respect to the inclusion N(B) ⊆ N(B ∪ {∞}) for every κ-small partially
ordered set B (Remark 5.3.1.10). Regard B∪{∞,∞′} as a partially ordered
set with b < ∞ < ∞′ for each b ∈ B. Unwinding the definitions, we see that
(a) is equivalent to the following assertion:

(a′) Let F : N(A×(B∪{∞′})) → Indκ(C) be such that F |N(A×{∞′}) = F

and F
′|N(A × B) factors through C′. Then there exists a map F

′
:

N(A×(B∪{∞,∞′})) → Indκ(C) which extends F , such that F
′|N(A×

(B ∪ {∞})) factors through C′.

To find F
′
, we write A = {a1, . . . , an}, where ai ≤ aj implies i ≤ j. We will

construct a compatible sequence of maps

F k : N((A× (B ∪ {∞′})) ∪ ({a1, . . . , ak} × {∞})) → C,

with F 0 = F and Fn = F
′
. For each a ∈ A, we let A≤a = {a′ ∈ A : a′ ≤

a}, and we define A<a, A≥a, A>a similarly. Supposing that F k−1 has been
constructed, we observe that constructing F k amounts to constructing an
object of the ∞-category

(C′
/F |N(A≥ak

))Fk−1|M/,

where M = (A≤ak
× B) ∪ (A<ak

× {∞}). The inclusion {ak} ⊆ N(A≥ak
) is

left anodyne. It will therefore suffice to construct an object in the equivalent
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∞-category (C′
/F (ak))F k−1|M/. Since M is κ-small, it suffices to show that

the ∞-category C′
/F (ak) is κ-filtered. This is simply a reformulation of the

fact that F (ak) ∈ Indκ(C).
We now prove (b). It will suffice to show that for each a ∈ A, the compo-

sition

D
 → Fun(N(A), Indκ(C)) → Indκ(C)

is a colimit diagram, where the second map is given by evaluation at a. Let
D(a) = C′ ×Indκ(C) Indκ(C)/F (a), so that D(a) is κ-filtered and the associated
map D(a)
 → Indκ(C) is a colimit diagram. It will therefore suffice to show
that the canonical map D → D(a) is cofinal. According to Theorem 4.1.3.1,
it will suffice to show that for each object D ∈ D(a), the fiber product
E = D×D(a) D(a)D/ is weakly contractible. In view of Lemma 5.3.1.18, it
will suffice to show that E is filtered. This can be established by a minor
variation of the argument given above.

5.3.6 Adjoining Colimits to ∞-Categories

Let C be a small ∞-category. According to Proposition 5.3.5.10, the ∞-
category Ind(C) enjoys the following properties, which characterize it up to
equivalence:

(1) There exists a functor j : C → Ind(C).

(2) The ∞-category Ind(C) admits small filtered colimits.

(3) Let D be an ∞-category which admits small filtered colimits and let
Fun′(Ind(C),D) be the full subcategory of Fun(Ind(C),D) spanned by
those functors which preserve filtered colimits. Then composition with
j induces an equivalence Fun′(Ind(C),D) → Fun(C,D).

We can summarize this characterization as follows: the ∞-category Ind(C) is
obtained from C by freely adjoining the colimits of all small filtered diagrams.
In this section, we will study a generalization of this construction which
allows us to freely adjoin to C the colimits of any collection of diagrams.

Notation 5.3.6.1. Let C and D be ∞-categories and let R be a collection
of diagrams {pα : K


α → C}. We let FunR(C,D) denote the full subcategory
of Fun(C,D) spanned by those functors which carry each diagram in R to a
colimit diagram in D.

Let K be a collection of simplicial sets. We will say that an ∞-category C

admits K-indexed colimits if it admits K-indexed colimits for each K ∈ K.
If f : C → D is a functor between ∞-categories which admit K-indexed
colimits, then we will say that f preserves K-indexed colimits if f preserves
K-indexed colimits for each K ∈ K. We let FunK(C,D) denote the full sub-
category of Fun(C,D) spanned by those functors which preserve K-indexed
colimits.
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Proposition 5.3.6.2. Let K be a collection of simplicial sets, C an ∞-
category, and R = {pα : K


α → C} a collection of diagrams in C. Assume
that each Kα belongs to K. Then there exists a new ∞-category PK

R (C) and
a map j : C → PK

R (C) with the following properties:

(1) The ∞-category PK
R (C) admits K-indexed colimits.

(2) For every ∞-category D which admits K-indexed colimits, composition
with j induces an equivalence of ∞-categories

FunK(PK
R (C),D) → FunR(C,D).

Moreover, if every member of R is already a colimit diagram in C, then we
have in addition:

(3) The functor j is fully faithful.

Remark 5.3.6.3. In the situation of Proposition 5.3.6.2, assertion (2) (ap-
plied in the case D = PK

R (C)) guarantees that j carries each diagram in
R to a colimit diagram in PK

R (C). We can informally summarize conditions
(1) and (2) as follows: the ∞-category PK

R (C) is freely generated by C un-
der K-indexed colimits, subject only to the relation that each diagram in R

determines a colimit diagram in PK
R (C). It is clear that this property char-

acterizes PK
R (C) (and the map j) up to equivalence.

Example 5.3.6.4. Suppose that K is the collection of all small simplicial
sets, that the ∞-category C is small, and that the set of diagrams R is
empty. Then the Yoneda embedding j : C → P(C) satisfies the conclusions of
Proposition 5.3.6.2. This is precisely the assertion of Theorem 5.1.5.6 (save
for assertion (3), which follows from Proposition 5.1.3.1). This justifies the
notation of Proposition 5.3.6.2; in the general case we can think of PK

R (C)
as a sort of generalized presheaf category C, and j as an analogue of the
Yoneda embedding.

Proof of Proposition 5.3.6.2: We will employ essentially the same argument
as in our proof of Proposition 5.3.5.10. First, we may enlarge the universe if
necessary to reduce to the case where every element of K is a small simplicial
set, the ∞-category C is small, and the collection of diagrams R is small.
Let j0 : C → P(C) denote the Yoneda embedding. For every diagram pα :
K
 → C, we let pα denote the restriction pα|K, Xα ∈ P(C) a colimit for
the induced diagram j ◦ pα : K → P(C), and Yα ∈ C the image of the cone
point under pα. The diagram j0 ◦ pα induces a map sα : Xα → j0(Yα) (well-
defined up to homotopy); let S = {sα} be the set of all such morphisms. We
let S−1 P(C) ⊆ P(C) denote the ∞-category of S-local objects of P(C) and
L : P(C) → S−1 P(C) a left adjoint to the inclusion. We define PK

R (C) to be
the smallest full subcategory of S−1 P(C) which contains the essential image
of the functor L◦j0 and is closed under K-indexed colimits and let j = L◦j0
be the induced map. We claim that the map j : C → PK

R (C) has the desired
properties.
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Assertion (1) is obvious. We now prove (2). Let D be an ∞-category
which admits K-indexed colimits. In view of Lemma 5.3.5.7, we can assume
that there exists a fully faithful inclusion D ⊆ D′, where D′ admits all
small colimits and D is stable under K-indexed colimits in D′. We have a
commutative diagram

FunK(PK
R (C),D)

φ ��

��

FunR(C,D)

��
FunK(PK

R (C),D′)
φ′

�� FunR(C,D′).

We claim that this diagram is homotopy Cartesian. Unwinding the defini-
tions, this is equivalent to the assertion that a functor f ∈ FunK(PK

R (C),D′)
factors through D if and only if f ◦ j : C → D′ factors through D. The
“only if” direction is obvious. Conversely, if f ◦ j factors through D, then
f−1 D is a full subcategory of PK

R (C) which is stable under K-indexed limits
(since f preserves K-indexed limits and D is stable under K-indexed limits
in D) and contains the essential image of j; by minimality, we conclude that
f−1 D = PK

R (C).
Our goal is to prove that the functor φ is an equivalence of ∞-categories.

In view of the preceding argument, it will suffice to show that φ′ is an
equivalence of ∞-categories. In other words, we may replace D by D′ and
thereby reduce to the case where D′ admits small colimits.

Let E ⊆ P(C) denote the inverse image L−1 PK
R (C) and let S denote the col-

lection of all morphisms α in E such that Lα is an equivalence. Composition
with L induces a fully faithful embedding Fun(PK

R (C),D) → Fun(E,D) whose
essential image consists of those functors E → D which carry every morphism
in S to an equivalence in D. Furthermore, a functor f : PK

R (C) → D preserves
K-indexed colimits if and only if the composition f ◦ L : E → D preserves
K-indexed colimits. The functor φ factors as a composition

FunK(PK
R (C),D) → Fun′(E,D)

ψ→ FunR(C,D),

where Fun′(E,D) denotes the full subcategory of Fun(E,D) spanned by those
functors which carry every morphism in S to an equivalence and preserve
K-indexed colimits. It will therefore suffice to show that ψ is an equivalence
of ∞-categories.

In view of Proposition 4.3.2.15, we need only show that if F : E → D is a
functor such that F ◦j0 belongs to FunR(C,D), then F belongs to Fun′(E,D)
if and only if F is a left Kan extension of F |C′, where C′ ⊆ E denotes the
essential image of the Yoneda embedding j0 : C → E. We first prove the
“if” direction. Let F0 = F |C′. Since D admits small colimits, the functor
F0 admits a left Kan extension F : P(C) → D; without loss of generality,
we may suppose that F = F |E. According to Lemma 5.1.5.5, the functor
F preserves small colimits. Since E is stable under K-indexed colimits in
P(C), it follows that F |E preserves K-indexed colimits. Furthermore, since
F ◦ j0 belongs to FunR(C,D), the functor F carries each morphism in S to
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an equivalence in D. It follows that F factors (up to homotopy) through
the localization functor L, so that F |E carries each morphism in S to an
equivalence in D.

For the converse, let us suppose that F ∈ Fun′(E,D); we wish to show
that F is a left Kan extension of F |C′. Let F ′ denote an arbitrary left Kan
extension of F |C′, so that the identification F |C′ = F ′|C′ induces a natural
transformation α : F ′ → F . We wish to prove that α is an equivalence. Since
F ′ and F both carry each morphism in S to an equivalence, we may assume
without loss of generality that F = f ◦ L, F ′ = f ′ ◦ L, and α = β ◦ L,
where β : f ′ → f is a natural transformation of functors from PK

R (C) to
D. Let X ⊆ PK

R (C) denote the full subcategory spanned by those objects
X such that βX : f ′(X) → f(X) is an equivalence. Since both f ′ and f
preserve K-indexed colimits, we conclude that X is stable under K-indexed
colimits in PK

R (C). It is clear that X contains the essential image of the
functor j : C → PK

R (C). It follows by construction that X = PK
R (C), so that

β is an equivalence, as desired. This completes the proof of (2).
It remains to prove (3). Suppose that every element of R is already a

colimit diagram in C. We note that the functor j factors as a composition
L ◦ j0, where the Yoneda embedding j0 : C → E is already known to be fully
faithful (Proposition 5.1.3.1). Since the functor L|S−1 P(C) is equivalent to
the identity, it will suffice to show that the essential image of j0 is contained
in S−1 P(C). In other words, we must show that if sα : Xα → j0Yα belongs
to S, and C ∈ C, then the induced map

MapP(C)(j0Yα, j0C) → MapP(C)(Xα, j0C)

is a homotopy equivalence. Let p : K

α → C be the corresponding diagram

(so that p carries the cone point of K

α to Yα), let p = p|Kα, and let q :

K

α → P(C) be a colimit diagram extending q = q|Kα = j0 ◦ p. Consider the

diagram

P(C)j0Yα/
g0← P(C)j0p/

g1→ P(C)j0p/
g2← P(C)q/

g3→ P(C)Xα/.

The maps g0 and g3 are trivial Kan fibrations (since the inclusion of the cone
point into K


α is cofinal), and the map g2 is a trivial Kan fibration since q is
a colimit diagram. Moreover, for every object Z ∈ P(C), the above diagram
determines the map MapP(C)(j0Yα, Z) → MapP(C)(Xα, Z). Consequently, to
prove that this map is an equivalence, it suffices to show that g1 induces a
trivial Kan fibration

P(C)j0p/ ×P(C) {Z} → P(C)j0p/ ×P(C) {Z}.
Assuming Z belongs to the essential image C′ of the Yoneda embedding j0,
we may reduce to proving that the induced map C′

j0p/
→ C′

j0p/
is a trivial

Kan fibration, which is equivalent to the assertion that j0 ◦ p is a colimit
diagram in C′. This is clear since p is a colimit diagram by assumption and
j0 induces an equivalence of ∞-categories from C to C′.

Definition 5.3.6.5. Let K ⊆ K′ be collections of simplicial sets and let C

be an ∞-category which admits K-indexed limits. We let PK′
K (C) denote the
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∞-category PK′
R (C), where R is the set of all colimit diagrams p : K
 → C

such that K ∈ K.

Example 5.3.6.6. Let K = ∅ and let K′ denote the class of all small sim-
plicial sets. If C is a small ∞-category, then we have a canonical equivalence
PK′

K (C) � P(C) (Theorem 5.1.5.6).

Example 5.3.6.7. Let K = ∅ and let K′ denote the class of all small
κ-filtered simplicial sets for some regular cardinal κ. Then for any small ∞-
category C, we have a canonical equivalence PK′

K (C) � Indκ(C) (Proposition
5.3.5.10).

Example 5.3.6.8. Let K denote the collection of all κ-small simplicial sets
for some regular cardinal κ and let K′ be the class of all small simplicial
sets. Let C be a small ∞-category which admits κ-small colimits. Then we
have a canonical equivalence PK′

K (C) � Indκ(C). This follows from Theorem
5.5.1.1 and Proposition 5.5.1.9.

Example 5.3.6.9. Let K = ∅ and let K′ = {Idem}, where Idem is the
simplicial set defined in §4.4.5. Then, for any ∞-category C, PK′

K (C) is an
idempotent competion of C.

Corollary 5.3.6.10. Let K ⊆ K′ be classes of simplicial sets. Let Ĉat∞
denote the ∞-category of (not necessarily small) ∞-categories, let Ĉat

K

∞ de-
note the subcategory spanned by those ∞-categories which admit K-indexed

colimits and those functors which preserve K-indexed colimits, and let Ĉat
K′

∞
be defined likewise. Then the inclusion

Ĉat
K′

∞ ⊆ Ĉat
K

∞
admits a left adjoint given by C �→ PK′

K (C).

Proof. Combine Proposition 5.3.6.2 with Proposition 5.2.2.12.

We conclude this section by noting the following transitivity property of
the construction C �→ PK

R (C):

Proposition 5.3.6.11. Let K ⊆ K′ be collections of simplicial sets and
let C1, . . . ,Cn be a sequence of ∞-categories. For 1 ≤ i ≤ n, let Ri be a
collection of diagrams {pα : K


α → Ci}, where each Kα belongs to K, and let
R′
i denote the collection of all colimit diagrams {qα : K


α → PK
Ri

(Ci)} such
that Kα ∈ K. Then the canonical map

PK′
R1 �···�Rn

(C1 × · · · × Cn) → PK′
R′

1 �···�R′
n
(PK

R1
(C1) × · · · × PK

Rn
(Cn))

is an equivalence of ∞-categories. Here R1 � · · · � Rn denotes the collection
of all diagrams of the form

K

α

pα→ Ci � {C1} × · · · × {Ci−1} × Ci× · · · × {Cn} ⊆ C1 × · · · × Cn,

where pα ∈ Ri and Cj is an object of Cj for j �= i, and the collection
R′

1 � · · · � R′
n is defined likewise.
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Proof. Let D be an ∞-category which admits K′-indexed colimits. It will
suffice to show that the functor

FunK′(PK′
R′

1 �···�R′
n
(PK

R1
(C1) × · · · × PK

Rn
(Cn)),D)

��
FunK′(PK′

R1 �···�Rn
(C1 × · · · × Cn),D)

is an equivalence of ∞-categories. Unwinding the definitions, we are reduced
to proving that the functor

FunR′
1 �···�R′

n
(PK

R1
(C1) × · · · × PK

Rn
(Cn),D)

φ

��
FunR �···�Rn

(C1 × · · · × Cn,D)

is an equivalence of ∞-categories. The proof goes by induction on n. If n = 0,
then both sides are equivalent to D and there is nothing to prove. If n > 0,
then set D′ = FunRn

(Cn,D) and D′′ = FunK(PK
R1

(Cn),D). Proposition
5.3.6.2 implies that the canonical map D′′ → D′ is an equivalence of ∞-
categories. We can identify φ with the functor

FunR′
1 �···�R′

n−1
(PK

R1
(C) × · · · × PK

Rn−1
(C),D′′)

��
FunR1 �···�Rn−1(C1 × · · · × Cn−1,D

′).

The desired result now follows from the inductive hypothesis.

5.4 ACCESSIBLE ∞-CATEGORIES

Many of the categories which commonly arise in mathematics can be realized
as categories of Ind-objects. For example, the category of sets is equivalent
to Ind(C), where C is the category of finite sets; the category of rings is
equivalent to Ind(C), where C is the category of finitely presented rings. The
theory of accessible categories is an axiomatization of this situation. We refer
the reader to [1] for an exposition of the theory of accessible categories. In
this section, we will describe an ∞-categorical generalization of the theory
of accessible categories.

We will begin in §5.4.1 by introducing the notion of a locally small ∞-
category. A locally small ∞-category C need not be small but has small
morphism spaces MapC(X,Y ) for any fixed pair of objects X,Y ∈ C. This
is analogous to the usual set-theoretic conventions taken in category theory:
one allows categories which have a proper class of objects but requires that
morphisms between any pair of objects form a set.
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In §5.4.2, we will introduce the definition of an accessible ∞-category.
An ∞-category C is accessible if it is locally small and has a good supply
of filtered colimits and compact objects. Equivalently, C is accessible if it
is equivalent to Indκ(C

0) for some small ∞-category C0 and some regular
cardinal κ (Proposition 5.4.2.2).

The theory of accessible ∞-categories will play an important technical role
throughout the remainder of this book. To understand the usefulness of the
hypothesis of accessibility, let us consider the following example. Suppose
that C is an ordinary category, that F : C → Set is a functor, and that we
would like to prove that F is representable by an object C ∈ C. The functor
F determines a category C̃ = {(C, η) : C ∈ C, η ∈ F (C)}, which is fibered
over C in sets. We would like to prove that C̃ is equivalent to C/C for some
C ∈ C. The object C can then be characterized as the colimit of the diagram
p : C̃ → C. If C admits colimits, then we can attempt to construct C by
forming the colimit lim−→(p).

We now encounter a set-theoretic difficulty. Suppose that we try to ensure
the existence of lim−→(p) by assuming that C admits all small colimits. In this
case, it is not reasonable to expect C itself to be small. The category C̃ is
roughly the same size as C (or larger), so our assumption will not allow us to
construct lim−→(p). On the other hand, if we assume C and C̃ are small, then it
is not reasonable to expect C to admit colimits of arbitrary small diagrams.

An accessibility hypothesis can be used to circumvent the difficulty de-
scribed above. An accessible category C is generally not small but is “con-
trolled” by a small subcategory C0 ⊆ C: it therefore enjoys the best features
of both the “small” and “large” worlds. More precisely, the fiber product
C̃ ×C C0 is small enough that we might expect the colimit lim−→(p|C̃ ×C C0) to
exist on general grounds yet large enough to expect a natural isomorphism

lim−→(p) � lim−→(p|C̃ ×C C0).

We refer the reader to §5.5.2 for a detailed account of this argument, which
we will use to prove an ∞-categorical version of the adjoint functor theorem.

The discussion above can be summarized as follows: the theory of accessi-
ble ∞-categories is a tool which allows us to manipulate large ∞-categories
as if they were small without fear of encountering any set-theoretic para-
doxes. This theory is quite useful because the condition of accessibility is
very robust: the class of accessible ∞-categories is stable under most of the
basic constructions of higher category theory. To illustrate this, we will prove
the following results:

(1) A small ∞-category C is accessible if and only if C is idempotent com-
plete (§5.4.3).

(2) If C is an accessible ∞-category and K is a small simplicial set, then
Fun(K,C) is accessible (§5.4.4).

(3) If C is an accessible ∞-category and p : K → C is a small diagram,
then Cp/ and C/p are accessible (§5.4.5 and §5.4.6).
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(4) The collection of accessible ∞-categories is stable under homotopy fiber
products (§5.4.6).

We will apply these facts in §5.4.7 to deduce a miscellany of further sta-
bility results which will be needed throughout §5.5 and Chapter 6.

5.4.1 Locally Small ∞-Categories

In mathematical practice, it is very common to encounter categories C for
which the collection of all objects is large (too big to form a set), but the
collection of morphisms HomC(X,Y ) is small for every X,Y ∈ C. The same
situation arises frequently in higher category theory. However, it is a slightly
trickier to describe because the formalism of ∞-categories blurs the distinc-
tion between objects and morphisms. Nevertheless, there is an adequate no-
tion of “local smallness” in the ∞-categorical setting, which we will describe
in this section.

Our first step is to give a characterization of the class of essentially small
∞-categories. We will need the following lemma.

Lemma 5.4.1.1. Let C be a simplicial category, n a positive integer, and
f0 : ∂∆n → N(C) a map. Let X = f0({0}), Y = f0({n}), and g0 denote the
induced map

∂(∆1)n−1 → MapC(X,Y ).

Let f, f ′ : ∆n → N(C) be extensions of f0, and let g, g′ : (∆1)n−1 →
MapC(X,Y ) be the corresponding extensions of g0. The following conditions
are equivalent:

(1) The maps f and f ′ are homotopic relative to ∂∆n.

(2) The maps g and g′ are homotopic relative to ∂(∆1)n−1.

Proof. It is not difficult to show that (1) is equivalent to the assertion that
f and f ′ are left homotopic in the model category (Set∆)∂∆n/ (with the
Joyal model structure) and that (2) is equivalent to the assertion that C[f ]
and C[f ′] are left homotopic in the model category (Cat∆)C[∂∆n]/. We now
invoke the Quillen equivalence of Theorem 2.2.5.1 to complete the proof.

Proposition 5.4.1.2. Let C be an ∞-category and κ an uncountable regular
cardinal. The following conditions are equivalent:

(1) The collection of equivalence classes of objects of C is κ-small, and for
every morphism f : C → D in C and every n ≥ 0, the homotopy set
πi(HomR

C(C,D), f) is κ-small.

(2) If C′ ⊆ C is a minimal model for C, then C′ is κ-small.

(3) There exists a κ-small ∞-category C′ and an equivalence C′ → C of
∞-categories.
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(4) There exists a κ-small simplicial set K and a categorical equivalence
K → C.

(5) The ∞-category C is κ-compact when regarded as an object of Cat∞.

Proof. We begin by proving that (1) ⇒ (2). Without loss of generality, we
may suppose that C = N(D), where D is a topological category. Let C′ ⊆ C

be a minimal model for C. We will prove by induction on n ≥ 0 that the set
HomSet∆(∆n,C′) is κ-small. If n = 0, this reduces to the assertion that C has
fewer than κ equivalence classes of objects. Suppose therefore that n > 0.
By the inductive hypothesis, the set HomSet∆(∂∆n,C′) is κ-small. Since κ
is regular, it will suffice to prove that for each map f0 : ∂∆n → C′, the set
S = {f ∈ HomSet∆(∆n,C′) : f | ∂∆n = f0} is κ-small. Let C = f0({0}), let
D = f0({n}), and let g0 : ∂(∆1)n−1 → MapD(C,D) be the corresponding
map. Assumption (1) ensures that there are fewer than κ extensions g :
(∆1)n−1 → MapD(C,D) modulo homotopy relative to ∂(∆1)n−1. Invoking
Lemma 5.4.1.1, we deduce that there are fewer than κ maps f : ∆n → C

modulo homotopy relative to ∂∆n. Since C′ is minimal, no two distinct
elements of S are homotopic in C relative to ∂∆n; therefore S is κ-small, as
desired.

It is clear that (2) ⇒ (3) ⇒ (4). We next show that (4) ⇒ (3). Let K → C

be a categorical equivalence, where K is κ-small. We construct a sequence
of inner anodyne inclusions

K = K(0) ⊆ K(1) ⊆ · · · .
Supposing that K(n) has been defined, we form a pushout diagram∐

Λni
� � ��

��

∐
∆n

��
K(n) � � �� K(n+ 1),

where the coproduct is taken over all 0 < i < n and all maps Λni → K(n).
It follows by induction on n that each K(n) is κ-small. Since κ is regu-
lar and uncountable, the limit K(∞) =

⋃
nK(n) is κ-small. The inclusion

K ⊆ K(∞) is inner anodyne; therefore the map K → C factors through an
equivalence K(∞) → C of ∞-categories; thus (3) is satisfied.

We next show that (3) ⇒ (5). Suppose that (3) is satisfied. Without
loss of generality, we may replace C by C′ and thereby suppose that C is
itself κ-small. Let F : Cat∞ → S denote the functor corepresented by C.
According to Lemma 5.1.5.2, we may identify F with the simplicial nerve
of the functor f : Cat∆∞ → Kan, which carries an ∞-category D to the
largest Kan complex contained in DC. Let I be a κ-filtered ∞-category and
p : I → Cat∞ a diagram. We wish to prove that p has a colimit p : I
 → Cat∞
such that F ◦ p is a colimit diagram in S. According to Proposition 5.3.1.16,
we may suppose that I is the nerve of a κ-filtered partially ordered set A.
Using Proposition 4.2.4.4, we may further reduce to the case where p is the
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simplicial nerve of a diagram P : A → Cat∆∞ ⊆ Set+∆ taking values in the
ordinary category of marked simplicial sets. Let P be a colimit of P . Since
the class of weak equivalences in Set+∆ is stable under filtered colimits, P is
a homotopy colimit. Theorem 4.2.4.1 implies that p = N(P ) is a colimit of
p. It therefore suffices to show that F ◦ p = N(f ◦ P ) is a colimit diagram.
Using Theorem 4.2.4.1, it suffices to show that f ◦ P is a homotopy colimit
diagram in Set∆. Since the class of weak homotopy equivalences in Set∆ is
stable under filtered colimits, it will suffice to prove that f ◦ P is a colimit
diagram in the ordinary category Set∆. It now suffices to observe that f
preserves κ-filtered colimits because C is κ-small.

We now complete the proof by showing that (5) ⇒ (1). Let A denote
the collection of all κ-small simplicial subsets Kα ⊆ C and let A′ ⊆ A be
the subcollection consisting of indices α such that Kα is an ∞-category. It
is clear that A is a κ-filtered partially ordered set and that C =

⋃
α∈AKα.

Using the fact that κ > ω, it is easy to see that A′ is cofinal in A, so that A′ is
also κ-filtered and C =

⋃
α∈A′ Kα. We may therefore regard C as the colimit

of a diagram P : A′ → Set+∆ in the ordinary category of fibrant objects of
Set+∆. Since A′ is filtered, we may also regard C as a homotopy colimit of P .
The above argument shows that CC = f C can be identified with a homotopy
colimit of the diagram f ◦P : A′ → Set∆. In particular, the vertex idC ∈ CC

must be homotopic to the image of some map KC
α → CC for some α ∈ A′.

It follows that C is a retract of Kα in the homotopy category hCat∞. Since
Kα is κ-small, we easily deduce that Kα satisfies condition (1). Therefore C,
being a retract of Kα, satisfies condition (1) as well.

Definition 5.4.1.3. An ∞-category C is essentially κ-small if it satisfies the
equivalent conditions of Proposition 5.4.1.2. We will say that C is essentially
small if it is essentially κ-small for some (small) regular cardinal κ.

The following criterion for essential smallness is occasionally useful:

Proposition 5.4.1.4. Let p : C → D be a Cartesian fibration of ∞-
categories and κ an uncountable regular cardinal. Suppose that D is essen-
tially κ-small and that, for each object D ∈ D, the fiber CD = C×D{D} is
essentially κ-small. Then C is essentially κ-small.

Proof. We will apply criterion (1) of Proposition 5.4.1.2. Choose a κ-small
set of representatives {Dα} for the equivalence classes of objects of D. For
each α, choose a κ-small set of representatives {Cα,β} for the equivalence
classes of objects of CDα

. The collection of all objects Cα,β is κ-small (since κ
is regular) and contains representatives for all equivalence classes of objects
of C.

Now suppose that C and C′ are objects of C having images D,D′ ∈ D.
Since D is essentially κ-small, the set π0 MapD(D,D′) is κ-small. Let f :
D → D′ be a morphism and choose a p-Cartesian morphism f̃ : C̃ →
D′ covering f . According to Proposition 2.4.4.2, we have a homotopy fiber
sequence

MapCD
(C, C̃) → MapC(C,C ′) → MapD(D,D′)
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in the homotopy category H. In particular, we see that MapC(C,C ′) contains
fewer than κ connected components lying over f ∈ π0 MapD(D,D′) and
therefore fewer than κ components in total (since κ is regular). Moreover,
the long exact sequence of homotopy groups shows that for every f : C → C′

lifting f , the homotopy sets πi(Homr
C(C,C ′), f) are κ-small as desired.

By restricting our attention to Kan complexes, we obtain an analogue of
Proposition 5.4.1.2 for spaces:

Corollary 5.4.1.5. Let X be a Kan complex and κ an uncountable regular
cardinal. The following conditions are equivalent:

(1) For each vertex x ∈ X and each n ≥ 0, the homotopy set πn(X,x) is
κ-small.

(2) If X ′ ⊆ X is a minimal model for X, then X ′ is κ-small.

(3) There exists a κ-small Kan complex X ′ and a homotopy equivalence
X ′ → X.

(4) There exists a κ-small simplicial set K and a weak homotopy equiva-
lence K → X.

(5) The ∞-category C is κ-compact when regarded as an object of S.

(6) The Kan complex X is essentially small (when regarded as an ∞-
category).

Proof. The equivalences (1) ⇔ (2) ⇔ (3) ⇔ (6) follow from Proposition
5.4.1.2. The implication (3) ⇒ (4) is obvious. We next prove that (4) ⇒ (5).
Let p : K → S be the constant diagram taking the value ∗, let p : K
 → S be
a colimit of p and let X ′ ∈ S be the image under p of the cone point of K
. It
follows from Proposition 5.1.6.8 that ∗ is a κ-compact object of S. Corollary
5.3.4.15 implies that X ′ is a κ-compact object of S. Let K̃ → K
 denote
the left fibration associated to p, and let X ′′ ⊆ K̃ denote the fiber lying
over the cone point of K
. The inclusion of the cone point in K
 is right
anodyne. It follows from Proposition 4.1.2.15 that the inclusion X ′′ ⊆ K̃
is right anodyne. Since p is a colimit diagram, Proposition 3.3.4.5 implies
that the inclusion K � K ×K
 K̃ ⊆ K̃ is a weak homotopy equivalence. We
therefore have a chain of weak homotopy equivalences

X ← K ⊆ K̃ ← X ′′ ← X ′,

so that X and X ′ are equivalent objects of S. Since X ′ is κ-compact, it
follows that X is κ-compact.

To complete the proof, we will show that (5) ⇒ (1). We employ the ar-
gument used in the proof of Proposition 5.4.1.2. Let F : S → S be the
functor corepresented by X. Using Lemma 5.1.5.2, we can identify F with
the simplicial nerve of the functor f : Kan → Kan given by

Y �→ Y X .
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Let A denote the collection of κ-small simplicial subsets Xα ⊆ X which are
Kan complexes. Since κ is uncountable, A is κ-filtered and X =

⋃
α∈AKα.

We may regard X as the colimit of a diagram P : A → Set∆. Since A is
filtered, X is also a homotopy colimit of this diagram. Since F preserves
κ-filtered colimits, f preserves κ-filtered homotopy colimits; therefore XX is
a homotopy colimit of the diagram f ◦P . In particular, the vertex idX ∈ XX

must be homotopic to the image of the map XX
α → XX for some α ∈ A. It

follows that X is a retract of Xα in the homotopy category H. Since Xα is
κ-small, we can readily verify that Xα satisfies (1). Because X is a retract
of Xα, X satisfies (1) as well.

Remark 5.4.1.6. When κ = ω, the situation is quite a bit more compli-
cated. Suppose that X is a Kan complex representing a compact object of S.
Then there exists a simplicial set Y with only finitely many nondegenerate
simplices and a map i : Y → X which realizes X as a retract of Y in the
homotopy category H of spaces. However, one cannot generally assume that
Y is a Kan complex or that i is a weak homotopy equivalence. The latter can
be achieved if X is connected and simply connected, or more generally if a
certain K-theoretic invariant of X (the Wall finiteness obstruction) vanishes:
we refer the reader to [81] for a discussion.

For many applications, it is important to be able to slightly relax the
condition that an ∞-category be essentiall small.

Proposition 5.4.1.7. Let C be an ∞-category. The following conditions are
equivalent:

(1) For every pair of objects X,Y ∈ C, the space MapC(X,Y ) is essentially
small.

(2) For every small collection S of objects of C, the full subcategory of C

spanned by the elements of S is essentially small.

Proof. This follows immediately from criterion (1) in Propositions 5.4.1.2
and 5.4.1.5.

We will say that an ∞-category C is locally small if it satisfies the equiv-
alent conditions of Proposition 5.4.1.7.

Example 5.4.1.8. Let C and D be ∞-categories. Suppose that C is locally
small and that D is essentially small. Then CD is essentially small. To prove
this, we may assume without loss of generality that C and D are minimal.
Let {Cα} denote the collection of all full subcategories of C spanned by small
collections of objects. Since D is small, every finite collection of functors
D → C factors through some small Cα ⊆ C. It follows that Fun(D,C) is the
union of small full subcategories Fun(D,Cα) and is therefore locally small. In
particular, for every small ∞-category D, the ∞-category P(D) of presheaves
is locally small.
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5.4.2 Accessibility

In this section, we will begin our study of the class of accessible ∞-categories.

Definition 5.4.2.1. Let κ be a regular cardinal. An ∞-category C is κ-
accessible if there exists a small ∞-category C0 and an equivalence

Indκ(C0) → C .

We will say that C is accessible if it is κ-accessible for some regular cardinal
κ.

The following result gives a few alternative characterizations of the class
of accessible ∞-categories.

Proposition 5.4.2.2. Let C be an ∞-category and κ a regular cardinal. The
following conditions are equivalent:

(1) The ∞-category C is κ-accessible.

(2) The ∞-category C is locally small and admits κ-filtered colimits, the
full subcategory Cκ ⊆ C of κ-compact objects is essentially small, and
Cκ generates C under small, κ-filtered colimits.

(3) The ∞-category C admits small κ-filtered colimits and contains an es-
sentially small full subcategory C′′ ⊆ C which consists of κ-compact
objects and generates C under small κ-filtered colimits.

The main obstacle to proving Proposition 5.4.2.2 is in verifying that if C0

is small, then Indκ(C0) has only a bounded number of κ-compact objects
up to equivalence. It is tempting to guess that any such object must be
equivalent to an object of C0. The following example shows that this is not
necessarily the case.

Example 5.4.2.3. Let R be a ring and let C0 denote the (ordinary) cat-
egory of finitely generated free R-modules. Then C = Ind(C0) is equivalent
to the category of flat R-modules (by Lazard’s theorem; see, for example,
the appendix of [47]). The compact objects of C are precisely the finitely
generated projective R-modules, which need not be free.

Nevertheless, the naive guess is not far off, by virtue of the following result:

Lemma 5.4.2.4. Let C be a small ∞-category, κ a regular cardinal, and
C′ ⊆ Indκ(C) the full subcategory of Indκ(C) spanned by the κ-compact ob-
jects. Then the Yoneda embedding j : C → C′ exhibits C′ as an idempotent
completion of C. In particular, C′ is essentially small.

Proof. Corollary 4.4.5.16 implies that Indκ(C) is idempotent complete. Since
C′ is stable under retracts in Indκ(C), C′ is also idempotent complete. Propo-
sition 5.1.3.1 implies that j is fully faithful. It therefore suffices to prove that
every object C ′ ∈ C′ is a retract of j(C) for some C ∈ C.
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Let C/C′ = C×Indκ(C) Indκ(C)/C′ . Lemma 5.1.5.3 implies that the diagram

p : C
/C′ → Indκ(C)
/C′ → Indκ(C)

is a colimit of p = p|C/C′ . Let F : Indκ(C) → S be the functor corepre-
sented by C ′; we note that the left fibration associated to F is equivalent
to Indκ(C)C′/. Since F is κ-continuous, Proposition 3.3.4.5 implies that the
inclusion

C/C′ ×Indκ(C) Indκ(C)C′/ ⊆ C
/C′ ×Indκ(C) Indκ(C)C′/

is a weak homotopy equivalence. The simplicial set on the right has a canon-
ical vertex, corresponding to the identity map idC′ . It follows that there
exists a vertex on the left hand side belonging to the same path component.
Such a vertex classifies a diagram

j(C)

���
��

��
��

�

C′

��%%%%%%%% f �� C ′,

where f is homotopic to the identity, which proves that C ′ is a retract of
j(C) in Indκ(C).

Proof of Proposition 5.4.2.2. Suppose that (1) is satisfied. Without loss of
generality, we may suppose that C = Indκ C′, where C′ is small. Since C is a
full subcategory of P(C′), it is locally small (see Example 5.4.1.8). Proposi-
tion 5.3.5.3 implies that C admits small κ-filtered colimits. Corollary 5.3.5.4
shows that C is generated under κ-filtered colimits by the essential image
of the Yoneda embedding j : C′ → C, which consists of κ-compact objects
by Proposition 5.3.5.5. Lemma 5.4.2.4 implies that the full subcategory of
Indκ(C′) consisting of compact objects is essentially small. We conclude that
(1) ⇒ (2).

It is clear that (2) ⇒ (3). Suppose that (3) is satisfied. Choose a small
∞-category C′ and an equivalence i : C′ → C′′. Using Proposition 5.3.5.10,
we may suppose that i factors as a composition

C′ j→ Indκ(C′)
f→ C,

where f preserves small κ-filtered colimits. Proposition 5.3.5.11 implies that
f is a categorical equivalence. This shows that (3) ⇒ (1) and completes the
proof.

Definition 5.4.2.5. If C is an accessible ∞-category, then a functor F :
C → C′ is accessible if it is κ-continuous for some regular cardinal κ (and
therefore for all regular cardinals τ ≥ κ).

Remark 5.4.2.6. Generally, we will only speak of the accessibility of a
functor F : C → C′ in the case where both C and C′ are accessible. However,
it is occasionally convenient to use the terminology of Definition 5.4.2.5 in
the case where C is accessible and C′ is not (or C′ is not yet known to be
accessible).
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Example 5.4.2.7. The ∞-category S of spaces is accessible. More generally,
for any small ∞-category C, the ∞-category P(C) is accessible: this follows
immediately from Proposition 5.3.5.12.

If C is a κ-accessible ∞-category and τ > κ, then C is not necessarily
τ -accessible. Nevertheless, this is true for many values of τ .

Definition 5.4.2.8. Let κ and τ be regular cardinals. We write τ � κ if
the following condition is satisfied: for every τ0 < τ and every κ0 < κ, we
have κτ00 < κ.

Note that there exist arbitrarily large regular cardinals κ′ with κ′ � κ:
for example, one may take κ′ to be the successor of any cardinal having the
form τκ.

Remark 5.4.2.9. Every (infinite) regular cardinal κ satisfies ω � κ. An
uncountable regular cardinal κ satisfies κ � κ if and only if κ is strongly
inaccessible.

Lemma 5.4.2.10. If κ′ � κ, then any κ′-filtered partially ordered set I may
be written as a union of κ-filtered subsets which are κ′-small. Moreover, the
family of all such subsets is κ′-filtered.

Proof. It will suffice to show that every κ′-small subset S ⊆ I can be included
in a larger κ′-small subset S′ ⊆ I, where S′ is κ-filtered.

We define a transfinite sequence of subsets Sα ⊆ I by induction. Let
S0 = S. When λ is a limit ordinal, we let Sλ =

⋃
α<λ Sα. Finally, we let

Sα+1 denote a set obtained from Sα by adjoining an upper bound for every
κ-small subset of Sα (which exists because I is κ′-filtered). It follows from
the assumption κ′ � κ that if Sα is κ′-small, then so is Sα+1. Since κ′ is
regular, we deduce easily by induction that |Sα| < κ′ for all α < κ′. It is
easy to check that the set S′ = Sκ has the desired properties.

Proposition 5.4.2.11. Let C be a κ-accessible ∞-category. Then C is κ′-
accessible for any κ′ � κ.

Proof. Let Cκ ⊆ C denote the full subcategory consisting of κ-compact ob-
jects and let C′ ⊆ C denote the full subcategory spanned by the colimits of all
κ′-small κ-filtered diagrams in Cκ. Since C is locally small and the collection
of all equivalence classes of such diagrams is bounded, we conclude that C′

is essentially small. Corollary 5.3.4.15 implies that C′ consists of κ′-compact
objects of C. According to Proposition 5.4.2.2, it will suffice to prove that
C′ generates C under small κ′-filtered colimits. Let X be an object of C and
let p : I → Cκ be a small κ-filtered diagram with colimit X. Using Proposi-
tion 5.3.1.16, we may reduce to the case where I is the nerve of a κ-filtered
partially ordered set A. Lemma 5.4.2.10 implies that A can be written as a
κ′-filtered union of κ′-small κ-filtered subsets {Aβ ⊆ A}β∈B . Using Propo-
sitions 4.2.3.4 and 4.2.3.8, we deduce that X can also be obtained as the
colimit of a diagram indexed by N(B) which takes values in C′.
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Remark 5.4.2.12. If C is a κ-accessible ∞-category and κ′ > κ, then C

is generally not κ′-accessible. There are counterexamples even in ordinary
category theory: see [1].

Remark 5.4.2.13. Let C be an accessible ∞-category and κ a regular car-
dinal. Then the full subcategory Cκ ⊆ C consisting of κ-compact objects is
essentially small. To prove this, we are free to enlarge κ. Invoking Propo-
sition 5.4.2.11, we can reduce to the case where C is κ-accessible, in which
case the desired result is a consequence of Proposition 5.4.2.2.

Notation 5.4.2.14. If C and D are accessible ∞-categories, we will write
FunA(C,D) to denote the full subcategory of Fun(C,D) spanned by accessi-
ble functors from C to D.

Remark 5.4.2.15. Accessible ∞-categories are usually not small. However,
they are determined by a “small” amount of data: namely, they always have
the form Indκ(C), where C is a small ∞-category. Similarly, an accessible
functor F : C → D between accessible categories is determined by a “small”
amount of data in the sense that there always exists a regular cardinal κ such
that F is κ-continuous and maps Cκ into Dκ. The restriction F |Cκ then de-
termines F up to equivalence (Proposition 5.3.5.10). To prove the existence
of κ, we first choose a regular cardinal τ such that F is τ -continuous. En-
larging τ if necessary, we may suppose that C and D are τ -accessible. The
collection of equivalence classes of τ -compact objects of C is small; conse-
quently, by Remark 5.4.2.13, there exists a (small) regular cardinal τ ′ such
that F carries Cτ into Dτ ′

. We may now choose κ to be any regular cardinal
such that κ � τ ′.

Definition 5.4.2.16. Let κ be a regular cardinal. We let Accκ ⊆ Ĉat∞
denote the subcategory defined as follows:

(1) The objects of Accκ are the κ-accessible ∞-categories.

(2) A functor F : C → D between accessible ∞-categories belongs to Acc
if and only if F is κ-continuous and preserves κ-compact objects.

Let Acc =
⋃
κAccκ. We will refer to Acc as the ∞-category of accessible

∞-categories.

Proposition 5.4.2.17. Let κ be a regular cardinal and let θ : Accκ → Ĉat∞
be the simplicial nerve of the functor which associates to each C ∈ Accκ the
full subcategory of C spanned by the κ-compact objects. Then

(1) The functor θ is fully faithful.

(2) An ∞-category C ∈ Ĉat∞ belongs to the essential image of θ if and
only if C is essentially small and idempotent complete.

Proof. Assertion (1) follows immediately from Proposition 5.3.5.10. If C ∈
Ĉat∞ belongs to the essential image of θ, then C is essentially small and
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idempotent complete (because C is stable under retracts in an idempotent
complete ∞-category). Conversely, suppose that C is essentially small and
idempotent complete and choose a minimal model C′ ⊆ C. Then Indκ(C′) is
κ-accessible. Moreover, the collection of κ-compact objects of Indκ(C

′) is an
idempotent completion of C′ (Lemma 5.4.2.4) and therefore equivalent to C

(since C′ is already idempotent complete).

Let Cat∨∞ denote the full subcategory of Cat∞ spanned by the idempotent
complete ∞-categories.

Proposition 5.4.2.18. The inclusion Cat∨∞ ⊆ Cat∞ has a left adjoint.

Proof. Combine Propositions 5.1.4.2, 5.1.4.9, and 5.2.7.8.

We will refer to a left adjoint to the inclusion Cat∨∞ ⊆ Cat∞ as the idempo-
tent completion functor. Proposition 5.4.2.17 implies that we have fully faith-
ful embeddings Accκ → Ĉat∞ ←↩ Cat∨∞ with the same essential image. Con-
sequently, there is a (canonical) equivalence of ∞-categories e : Cat∨∞ � Accκ
which is well-defined up to homotopy. We let Indκ : Cat∞ → Accκ denote
the composition of e with the idempotent completion functor. In summary:

Proposition 5.4.2.19. There is a functor Indκ : Cat∞ → Accκ which
exhibits Accκ as a localization of the ∞-category Cat∞.

Remark 5.4.2.20. There is a slight danger of confusion with our termi-
nology. The functor Indκ : Cat∞ → Accκ is well-defined only up to a con-
tractible space of choices. Consequently, if C is an ∞-category which admits
finite colimits, then the image of C under Indκ is well-defined only up to
equivalence. Definition 5.3.5.1 produces a canonical representative for this
image.

5.4.3 Accessibility and Idempotent Completeness

Let C be an accessible ∞-category. Then there exists a regular cardinal κ
such that C admits κ-filtered colimits. It follows from Corollary 4.4.5.16 that
C is idempotent complete. Our goal in this section is to prove a converse to
this result: if C is small and idempotent complete, then C is accessible.

Let C be a small ∞-category and suppose we want to prove that C is
accessible. The main problem is to show that C admits κ-filtered colimits
provided that κ is sufficiently large. The idea is that if κ is much larger
than the size of C, then any κ-filtered diagram J → C is necessarily very
“redundant” (Proposition 5.4.3.4). Before making this precise, we will need
a few preliminary results.

Lemma 5.4.3.1. Let κ < τ be uncountable regular cardinals, let A a τ -
filtered partially ordered set, and let F : A → Kan a diagram of Kan com-
plexes indexed by A. Suppose that for each α ∈ A, the Kan complex F (α) is
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essentially κ-small. For every τ -small subset A0 ⊆ A, there exists a filtered
τ -small subset A′

0 ⊆ A containing A0, with the property that the map

lim−→α∈A′
0
F (α) → lim−→α∈A F (α)

is a homotopy equivalence.

Proof. Let X = lim−→α∈A F (α). Since F is a filtered diagram, X is also a Kan
complex. Let K be a simplicial set with only finitely many nondegenerate
simplices. Our first claim is that the set [K,X] of homotopy classes of maps
from K into X is κ-small. Suppose we are given a collection {gβ : K → X}
of pairwise nonhomotopic maps, having cardinality κ. Since A is τ -filtered,
we may suppose that there is a fixed index α ∈ A such that each gβ factors
as a composition

K
g′β→ F (α) → X.

The maps g′β are also pairwise nonhomotopic, which contracts our assump-
tion that F (α) is weakly homotopy equivalent to a κ-small simplicial set.

We now define an increasing sequence

α0 ≤ α1 ≤ · · ·
of elements of A. Let α0 be any upper bound for A0. Assuming that αi has
already been selected, choose a representative for every homotopy class of
diagrams

∂∆n
� �

��

�� F (αi)

��
∆n

hγ �� X.

The argument above proves that we can take the set of all such representa-
tives to be κ-small, so that there exists αi+1 ≥ αi such that each hγ factors
as a composition

∆n
h′

γ→ F (αi+1) → X

and the associated diagram

∂∆n
� �

��

�� F (αi)

��
∆n

h′
γ �� F (αi+1)

is commutative. We now set A′
0 = A0 ∪ {α0, α1, . . .}; it is easy to check that

this set has the desired properties.

Lemma 5.4.3.2. Let κ < τ be uncountable regular cardinals, let A be a
τ -filtered partially ordered set, and let {Fβ}β∈B be a collection of diagrams
A → Set∆ indexed by a τ -small set B. Suppose that for each α ∈ A and each
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β ∈ B, the Kan complex Fβ(α) is essentially κ-small. Then there exists a
filtered τ -small subset A′ ⊆ A such that for each β ∈ B, the map

lim−→A′ Fβ(α) → lim−→A
Fβ(α)

is a homotopy equivalence of Kan complexes.

Proof. Without loss of generality, we may suppose that B = {β : β < β0}
is a set of ordinals. We will define a sequence of filtered τ -small subsets
A(n) ⊆ A by induction on n. For n = 0, choose an element α ∈ A and set
A(0) = {α}. Suppose next that A(n) has been defined. We define a sequence
of enlargements {A(n)β}β≤β0 by induction on β. Let A(n)0 = A(n), let
A(n)λ =

⋃
β<λA(n)β when λ is a nonzero limit ordinal, and let A(n)β+1 be

a τ -small filtered subset of A such that the map

lim−→A(n)β+1
Fβ(α) → lim−→A

Fβ(α)

is a weak homotopy equivalence (such a subset exists by virtue of Lemma
5.4.3.1). We now take A(n + 1) = A(n)β0 and A′ =

⋃
nA(n); it is easy to

check that A′ ⊆ A has the desired properties.

Lemma 5.4.3.3. Let κ < τ be uncountable regular cardinals. Let C be a
τ -small ∞-category with the property that each of the spaces MapC(C,D)
is essentially κ-small and let j : C → P(C) denote the Yoneda embedding.
Let p : K → C be a diagram indexed by a τ -filtered ∞-category K and let
p : K
 → P(C) be a colimit of j ◦ p. Then there exists a map i : K → K such
that K is τ -small and the composition p ◦ i
 : K
 → K
 → P(C) is a colimit
diagram.

Proof. In view of Proposition 5.3.1.16, we may suppose that K is the nerve
of a τ -filtered partially ordered set A. According to Proposition 5.1.2.2, p
induces a colimit diagram

pC : K
 → P(C) eC→ S,

where eC denotes the evaluation functor associated to an object C ∈ C.
We will identify K
 with the nerve of the partially ordered set A ∪ {∞}.
Proposition 4.2.4.4 implies that we may replace pC with the simplicial nerve
of a functor FC : A ∪ {∞} → Kan. Our hypothesis on C implies that FC |A
takes values in κ-small simplicial sets. Applying Theorem 4.2.4.1, we see that
the map lim−→A

FC(α) → FC(∞) is a homotopy equivalence. We now apply
Lemma 5.4.3.1 to deduce the existence of a filtered τ -small subset A′ ⊆ A
such that each of the maps

lim−→A′ FC(α) → FC(∞)

is a homotopy equivalence. Let K = N(A′) and let i : K → K denote
the inclusion. Using Theorem 4.2.4.1 again, we deduce that the composition
eC ◦p◦i
 : K
 → S is a colimit diagram for each C ∈ C. Applying Proposition
5.1.2.2, we deduce that p ◦ i
 is a colimit diagram, as desired.
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Proposition 5.4.3.4. Let κ < τ be uncountable regular cardinals. Let C be
an ∞-category which is τ -small, such that the morphism spaces MapC(C,D)
are essentially κ-small. Let j : C → P(C) denote the Yoneda embedding,
let p : K → C be a diagram indexed by a τ -filtered ∞-category K, and let
X ∈ P(C) be a colimit of j ◦p : K → P(C). Then there exists an object C ∈ C

such that X is a retract of j(C).

Proof. Let i : K → K be a map satisfying the conclusions of Lemma 5.4.3.3.
Since K is τ -small and K is τ -filtered, there exists an extension i : K
 → K

of i. Let C be the image of the cone point of K
 under p◦ i and let C̃ ∈ Cp◦i/
be the corresponding lift. Let p : K
 → P(C) be a colimit of j ◦ p carrying
the cone point of K
 to X. Let q = j ◦ p ◦ i : K → P(C), let X̃ ∈ P(C)q/ be
the corresponding lift of X, and let Ỹ ∈ P(C)q/ be a colimit of q. Since Ỹ is
an initial object of P(C)q/, there is a commutative triangle

j(C̃)

���
��

��
��

�

Ỹ ��

��								
X̃

in the ∞-category P(C)q/. Moreover, Lemma 5.4.3.3 asserts that the hori-
zontal map is an equivalence. Thus X̃ is a retract of j(C̃) in the homotopy
category of P(C)q/, so that X is a retract of j(C) in P(C).

Corollary 5.4.3.5. Let κ < τ be uncountable regular cardinals and let C

be a τ -small ∞-category whose morphism spaces MapC(C,D) are essentially
κ-small. Then the Yoneda embedding j : C → Indτ (C) exhibits Indτ (C) as an
idempotent completion of C.

Proof. Since Indτ (C) admits τ -filtered colimits, it is idempotent complete by
Corollary 4.4.5.16. Proposition 5.4.3.4 implies that every object of Indτ (C)
is a retract of j(C) for some object C ∈ C.

Corollary 5.4.3.6. A small ∞-category C is accessible if and only if it is
idempotent complete. Moreover, if these conditions are satisfied and D is an
any accessible ∞-category, then every functor f : C → D is accessible.

Proof. The “only if” direction follows from Corollary 4.4.5.16, and the “if”
direction follows from Corollary 5.4.3.5. Now suppose that C is small and
accessible, and let D be a κ-accessible ∞-category and f : C → D any
functor; we wish to prove that f is accessible. By Proposition 5.3.5.10, we
may suppose that f = F ◦j, where j : C → Indκ(C) is the Yoneda embedding
and F : Indκ(C) → D is a κ-continuous functor and therefore accessible.
Enlarging κ if necessary, we may suppose that j is an equivalence of ∞-
categories, so that f is accessible as well.
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5.4.4 Accessibility of Functor ∞-Categories

Let C be an accessible ∞-category and let K be a small simplicial set. Our
goal in this section is to prove that Fun(K,C) is accessible (Proposition
5.4.4.3). In §5.4.7, we will prove a much more general stability result of this
kind (Corollary 5.4.7.17), but the proof of that result ultimately rests on the
ideas presented here.

Our proof proceeds roughly as follows. If C is accessible, then C has many
τ -compact objects provided that τ is sufficiently large. Using Proposition
5.3.4.13, we deduce the existence of many τ -compact objects in Fun(K,C).
Our main problem is to show that these objects generate Fun(K,C) under τ -
filtered colimits. To prove this, we will use a rather technical cofinality result
(Lemma 5.4.4.2 below). We begin with the following preliminary observation:

Lemma 5.4.4.1. Let τ be a regular cardinal and let q : Y → X be a co-
Cartesian fibration with the property that for every vertex x of X, the fiber
Yx = Y ×X {x} is τ -filtered. Then q has the right lifting property with respect
to K ⊆ K
 for every τ -small simplicial set K.

Proof. Using Proposition A.2.3.1, we can reduce to the problem of showing
that q has the right lifting property with respect to the inclusionK ⊆ K�∆0.
In other words, we must show that given any edge e : C → D in XK , where
D is a constant map, and any vertex C̃ of Y K lifting C, there exists an edge
ẽ : C̃ → D̃ lifting ẽ, where D̃ is a constant map from K to Y . We first choose
an arbitrary edge ẽ′ : C̃ → D̃′ lifting e (since the map qK : Y K → XK is a
coCartesian fibration, we can even choose ẽ′ to be qK-coCartesian, though
we will not need this). Suppose that D takes the constant value x : ∆0 → X.
Since the fiber Yx is τ -filtered, there exists an edge ẽ′′ : D̃′ → D̃ in Y Kx , where
D̃ is a constant map from K to Yx. We now invoke the fact that qK is an
inner fibration to supply the dotted arrow in the diagram

Λ2
1

(ee′,•,ee′′) ��
� �

��

Y K

��
∆2

σ

��&&&&&&& s1e �� XK .

We now define ẽ = σ|∆{0,2}.

Lemma 5.4.4.2. Let κ < τ be regular cardinals. Let q : Y → X be a map
of simplicial sets with the following properties:

(i) The simplicial set X is τ -small.

(ii) The map q is a coCartesian fibration.

(iii) For every vertex x ∈ X, the fiber Yx = Y ×X {x} is τ -filtered and
admits τ -small κ-filtered colimits.
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(iv) For every edge e : x → y in X, the associated functor Yx → Yy pre-
serves τ -small κ-filtered colimits.

Then

(1) The ∞-category C = Map/X(X,Y ) of sections of q is τ -filtered.

(2) For each vertex x of X, the evaluation map ex : C → Yx is cofinal.

Proof. Choose a categorical equivalence X → M , where M is a minimal
∞-category. Since τ is uncountable, Proposition 5.4.1.2 implies that M is
τ -small. According to Corollary 3.3.1.2, Y is equivalent to the pullback of
a coCartesian fibration Y ′ → M . We may therefore replace X by M and
thereby reduce to the case whereX is a minimal ∞-category. For each ordinal
α, let (α) = {β < α}.

Let K be a τ -small simplicial set equipped with a map f : K → Y . We
define a new object K ′

X ∈ (Set∆)/X as follows. For every finite nonempty
linearly ordered set J , a map ∆J → K′

X is determined by the following data:

• A map χ : ∆J → X.

• A map ∆J → ∆2 corresponding to a decomposition J = J0

∐
J1

∐
J2.

• A map ∆J0 → K.

• An order-preserving map m : J1 → (κ) having the property that if
m(i) = m(j), then χ(∆{i,j}) is a degenerate edge of X.

We will prove the existence of a dotted arrow F ′
X as indicated in the

diagram

K

��

f �� Y

q

��
K ′
X

F ′
X

��%
%

%
%

�� X.

Let K ′′ ⊆ K ′
X be the simplicial subset corresponding to simplices as above,

where J1 = ∅, and let F ′′ = F ′
X |K ′′. Specializing to the case where K =

Z ×X, Z a τ -small simplicial set, we will deduce that any diagram Z → C

extends to a map Z
 → C (given by F ′′), which proves (1). Similarly, by
specializing to the case K = (Z × X)

∐
Z×{x}(Z

	 × {x}), we will deduce
that for every object y ∈ Y with q(y) = x, the ∞-category C×Yx

(Yx)y/ is
τ -filtered and therefore weakly contractible. Applying Theorem 4.1.3.1, we
deduce (2).

It remains to construct the map F ′
X . There is no harm in enlarging K.

We may therefore apply the small object argument to replace K by an ∞-
category (which we may also suppose is τ -small since τ is uncountable). We
begin by defining, for each α ≤ κ, a simplicial subset K(α) ⊆ K′

X . The
definition is as follows: we will say that a simplex ∆J → K ′

X factors through
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K(α) if, in the corresponding decomposition J = J0

∐
J1

∐
J2, we have J2 =

∅ and the map J1 → (κ) factors through (α). Our first task is to construct
F (α) = F ′

X |K(α), which we do by induction on α. If α = 0, K(α) = K and
we set F (0) = f . When α is a limit ordinal, we have K(α) =

⋃
β<αK(β)

and we set F (α) =
⋃
β<α F (β). It therefore suffices to construct F (α + 1),

assuming that F (α) has already been constructed. For each vertex x of X,
let x̃ = (x, α) denote the unique vertex of K(α+ 1) lying over x which does
not belong to K(α). Since X is minimal, Proposition 2.3.3.9 implies that we
have a pushout diagram∐

xK(α)/ex � � ��

��

∐
x(K(α)/ex)


��
K(α) � � �� K(α+ 1).

Therefore, to construct fα+1, it suffices to prove that q has the right lifting
property with respect to each inclusion K(α)/ex ⊆ (K(α)/ex)
, which follows
from Lemma 5.4.4.1.

We now define, for each simplicial subset X ′ ⊆ X, a corresponding sim-
plicial subset K ′

X′ ⊆ K ′
X . The definition is as follows: let σ : ∆J → K ′

X be a
simplex corresponding to a decomposition J = J0

∐
J1

∐
J2. Then σ factors

through K′
X′ if and only if the induced map ∆J2 → X factors through X ′.

Our next job is to extend the definition of F ′
X from K ′

∅ = K(κ) to K ′
X by

adjoining simplices to X one at a time.
Let F ′

∅ = F (κ) and let x be a vertex of X. We begin by defining a map
F ′
{x} : K ′

{x} → Y which extends F ′
∅. Since X is minimal, there is a pushout

diagram

K(κ)/x
� � ��

��

K(κ)
/x

��
K∅

� � �� K{x}

where K(κ)/x denotes the fiber product K(κ) ×X X/x. Constructing an
extension F ′

{x} of F ′
∅ is therefore equivalent to providing the dotted arrow

indicated in the diagram

K(κ)/x� �

��

px �� Y

��
K(κ)
/x ��

px

		�
�

�
�

�
X.

We will choose px to be a relative colimit of px over X (see §4.3.1). To prove
that such a relative colimit exists, we consider the inclusion ix : N(κ) ⊆
K(κ)/x×X/x

{idx} ⊆ K(κ)/x. Using Proposition 2.3.3.9, it is not difficult to
see that K(κ)/x is an ∞-category. For each object y ∈ K(κ)/x, the minimal-
ity of X implies that N(κ)×K/x

(K/x)y/ is isomorphic to N({α : β < α < κ})
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for some β < κ and therefore weakly contractible. Theorem 4.1.3.1 implies
that ix is cofinal. Invoking Proposition 4.3.1.8, it will suffice to prove that
px ◦ ix : N(κ) → Y admits a relative colimit over X. Using conditions (ii)
and (iv) together with Proposition 4.3.1.10, we may reduce to producing
a colimit of px ◦ ix in the ∞-category Yx, which is possible by virtue of
assumption (iii).

Applying the above argument separately to each vertex of X, we may
suppose that F ′

X(0) has been constructed, where X(0) denotes the 0-skeleton
of X. We now consider the collection of all pairs (X ′, F ′

X′), where X ′ is a
simplicial subset of X containing all vertices of X, and F ′

X′ : KX′ → Y is a
map over X whose restriction to KX0 coincides with F ′

X(0) . This collection is
partially ordered if we write (X ′, F ′

X′) ≤ (X ′′, F ′
X′′) to mean that X ′ ⊆ X ′′

and F ′
X′′ |KX′ = F ′

X′ . The hypotheses of Zorn’s lemma are satisfied, so that
there exists a maximal such pair (X ′, F ′

X′). To complete the proof, it suffices
to show that X ′ = X. If not, we can choose X ′ ⊆ X ′′ ⊆ X, where X ′′ is
obtained from X ′ by adjoining a single nondegenerate simplex σ : ∆n → X
whose boundary already belongs to X ′. Since X ′ contains X(0), we may
suppose that n > 0. Let K(κ)/σ = K(κ) ×X X/σ and let x = σ(0). Since X
is minimal, we have a pushout diagram

K(κ)/σ  ∂∆n � � ��

��

K(κ)/σ ∆n

��
K ′
X′

� � �� K′
X′′ .

Let s : K(κ)/σ → Y denote the composition of the projectionK(κ)/σ → K ′
X′

with F ′
X′ . We obtain a commutative diagram

∂∆n r ��
� �

��

Ys/

��
∆n ��

���
�

�
�

�
Xq◦s/,

and supplying the indicated dotted arrow is tantamount to giving a map
F ′
X′′ : KX′′ → Y over X which extends F ′

X′ . To prove the existence of F ′
X′′ ,

it suffices to prove that the map s : K ′
 → Y associated to r(0) is a q-colimit
diagram. We note that s is given as a composition

K ′
 → K

/x

s′→ Y,

where s′ is a q-colimit diagram by construction. According to Proposition
4.3.1.7, it will suffice to show that the map K(κ)/σ → K(κ)/x is cofinal. We
have a pullback diagram

K(κ)/σ ��

��

K(κ)/x

��
X/σ �� X/x,
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where the lower horizontal map is a trivial fibration of simplicial sets. It fol-
lows that the upper horizontal map is a trivial fibration and, in particular,
cofinal. Consequently, there exists an extension FX′′ of FX′ , which contra-
dicts the maximality of (X ′, FX′) and completes the proof.

Proposition 5.4.4.3. Let C be an accessible ∞-category and let K be a
small simplicial set. Then Fun(K,C) is accessible.

Proof. Without loss of generality, we may suppose that K is an ∞-category.
Choose a regular cardinal κ such that C admits small κ-filtered colimits
and choose a second regular cardinal τ > κ such that C is also τ -accessible
and K is τ -small. We will prove that Fun(K,C) is τ -accessible. Let C′ =
Fun(K,Cτ ) ⊆ Fun(K,C). It is clear that C′ is essentially small. Proposition
5.1.2.2 implies that Fun(K,C) admits small τ -filtered colimits, and Propo-
sition 5.3.4.13 asserts that C′ consists of τ -compact objects of Fun(K,C).
According to Proposition 5.4.2.2, it will suffice to prove that C′ generates
Fun(K,C) under small τ -filtered colimits.

Without loss of generality, we may suppose that C = Indτ D′, where
D′ is a small ∞-category. Let D ⊆ C denote the essential image of the
Yoneda embedding. Let F : K → C be an arbitrary object of CK and let
Fun(K,D)/F = Fun(K,D) ×Fun(K,C) Fun(K,C)/F . Consider the composite
diagram

p : Fun(K,D)/F � ∆0 → Fun(K,C)/F � ∆0 → Fun(K,C).

The ∞-category Fun(K,D)/F is equivalent to

Fun(K,D′) ×Fun(K,C) Fun(K,C)/F

and therefore essentially small. To complete the proof, it will suffice to show
that Fun(K,D)/F is τ -filtered and that p is a colimit diagram.

We may identify F with a map fK : K → C×K in (Set∆)/K . According
to Proposition 4.2.2.4, we obtain a coCartesian fibration q : (C×K)/fK →
K, and the q-coCartesian morphisms are precisely those which project to
equivalences in C. Let X denote the full subcategory of (C×K)/fK consisting
of those objects whose projection to C belongs to D. It follows that q′ = q|X :
X → K is a coCartesian fibration. We may identify the fiber of q′ over a
vertex x ∈ K with D/F (x) = D×C C/F (x). It follows that the fibers of q′ are
τ -filtered ∞-categories; Lemma 5.4.4.2 now guarantees that Fun(K,D)/F �
Map/K(K,X) is τ -filtered.

According to Proposition 5.1.2.2, to prove that p is a colimit diagram,
it will suffice to prove that for every vertex x of K, the composition of p
with the evaluation map ex : Fun(K,C) → C is a colimit diagram. The
composition ex ◦ p admits a factorization

Fun(K,D)/F � ∆0 → D/F (x) �∆0 → C

where D/F (x) = D×C C/F (x) and the second map is a colimit diagram in
C by Lemma 5.1.5.3. It will therefore suffice to prove that the map gx :
Fun(K,D)/F → D/F (x) is cofinal, which follows from Lemma 5.4.4.2.
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5.4.5 Accessibility of Undercategories

Let C be an accessible ∞-category and let p : K → C be a small diagram.
Our goal in this section is to prove that the ∞-category Cp/ is accessible
(Corollary 5.4.5.16).

Remark 5.4.5.1. The analogous result for the ∞-category C/p will be
proven in §5.4.6 using Propositions 5.4.4.3 and 5.4.6.6. It is possible to use
the same argument to give a second proof of Corollary 5.4.5.16; however, we
will need Corollary 5.4.5.16 in our proof of Proposition 5.4.6.6.

We begin by studying the behavior of colimits with respect to (homotopy)
fiber products of ∞-categories.

Lemma 5.4.5.2. Let

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure). Suppose that X and Y have initial objects and that
p and q preserve initial objects. An object X ′ ∈ X′ is initial if and only if
p′(X ′) is an initial object of Y′ and q′(X ′) is an initial object of X. Moreover,
there exists an initial object of X′.

Proof. Without loss of generality, we may suppose that p and q are categor-
ical fibrations and that X′ = X×Y Y′. Suppose first that X ′ is an object of
X′ with the property that X = q′(X ′) and Y ′ = p′(X ′) are initial objects of
X and Y′. Then Y = p(X) = q(Y ′) is an initial object of Y. Let Z be another
object of X′. We have a pullback diagram of Kan complexes

HomR
X′(X ′, Z) ��

��

HomR
X(X, q′(Z))

��
HomR

Y′(Y ′, p′(Z)) �� HomR
Y (Y, (q ◦ p′)(Z)).

Since the maps p and q are inner fibrations, Lemma 2.4.4.1 implies that this
diagram is homotopy Cartesian (with respect to the usual model structure on
Set∆). Since X, Y ′, and Y are initial objects, each one of the Kan complexes
HomR

X(X, q′(Z)), HomR
Y′(Y ′, p′(Z)), and HomR

Y(Y, (q◦p′)(Z)) is contractible.
It follows that HomR

X′(X ′, Z) is contractible as well, so that X ′ is an initial
object of X′.

We now prove that there exists an object X ′ ∈ X′ such that p′(X ′) and
q′(X ′) are initial. The above argument shows that X ′ is an initial object of
X′. Since all initial objects of X′ are equivalent, this will prove that for any
initial object X ′′ ∈ X′, the objects p′(X ′′) and q′(X ′′) are initial.
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We begin by selecting arbitrary initial objects X ∈ X and Y ∈ Y′. Then
p(X) and q(Y ) are both initial objects of Y, so there is an equivalence e :
p(X) → q(Y ). Since q is a categorical fibration, there exists an equivalence
e : Y ′ → Y in Y such that q(e) = e. It follows that Y ′ is an initial object
of Y′ with q(Y ′) = p(X), so that the pair (X,Y ′) can be identified with an
object of X′ which has the desired properties.

Lemma 5.4.5.3. Let p : X → Y be a categorical fibration of ∞-categories,
and let f : K → X be a diagram. Then the induced map p′ : Xf/ → Ypf/ is
a categorical fibration.

Proof. It suffices to show that p′ has the right lifting property with respect
to every inclusion A ⊆ B which is a categorical equivalence. Unwinding
the definitions, it suffices to show that p has the right lifting property with
respect to i : K  A ⊆ K  B. This is immediate since p is a categorical
fibration and i is a categorical equivalence.

Lemma 5.4.5.4. Let

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure) and let f : K → X′ be a diagram in X′. Then the
induced diagram

X′
f/

��

��

Xq′f/

��
Y′
p′f/

�� Yqp′f/

is also homotopy Cartesian.

Proof. Without loss of generality, we may suppose that p and q are categori-
cal fibrations and that X′ = X×Y Y′. Then X′

f/ � Xq′f/×Yqp′f/
Y′
p′f/, so the

result follows immediately from Lemma 5.4.5.3.

Lemma 5.4.5.5. Let

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure) and let K be a simplicial set. Suppose that X and
Y′ admit colimits for all diagrams indexed by K and that p and q preserve
colimits of diagrams indexed by K. Then
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(1) A diagram f : K
 → X′ is a colimit of f = f |K if and only if p′◦f and
q′ ◦ f are colimit diagrams. In particular, p′ and q′ preserve colimits
indexed by K.

(2) Every diagram f : K → X′ has a colimit in X′.

Proof. Replacing X′ by X′
f/, X by Xq′f/, Y′ by Y′

p′f/, and Y by Yqp′f/, we
may apply Lemma 5.4.5.4 to reduce to the case K = ∅. Now apply Lemma
5.4.5.2.

Lemma 5.4.5.6. Let C be a small filtered category and let C
 be the category
obtained by adjoining a (new) final object to C. Suppose we are given a
homotopy pullback diagram

F ′ ��

��

F

p

��
G′ q �� G

in the diagram category SetC


∆ (which we endow with the projective model
structure). Suppose further that the diagrams F,G,G′ : C
 → Set∆ are homo-
topy colimits. Then F ′ is also a homotopy colimit diagram.

Proof. Without loss of generality, we may suppose that G is fibrant, that p
and q are fibrations, and that F ′ = F ×G G

′. Let ∗ denote the cone point
of C
 and let F (∞), G(∞), F ′(∞), and G′(∞) denote the colimits of the
diagrams F |C, G|C, F ′|C, and G′|C. Since fibrations in Set∆ are stable
under filtered colimits, the pullback diagram

F ′(∞) ��

��

F (∞)

��
G′(∞) �� G(∞)

exhibits F ′(∞) as a homotopy fiber product of F (∞) and G′(∞) over G(∞)
in Set∆. Since weak homotopy equivalences are stable under filtered colimits,
the natural maps G(∞) → G(∗), F ′(∞) → F ′(∗), and G′(∞) → G′(∗) are
weak homotopy equivalences. Consequently, the diagram

F ′(∞)
f

 ! 
  

  
  

  

F ′(∗) ��

��

F (∗)

��
G′(∗) �� G(∗)

exhibits both F ′(∞) and F ′(∗) as homotopy fiber products of F (∗) and G′(∗)
over G(∗). It follows that f is a weak homotopy equivalence, so that F is a
homotopy colimit diagram, as desired.
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Lemma 5.4.5.7. Let

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure) and let κ be a regular cardinal. Suppose that X and
Y′ admit small κ-filtered colimits and that p and q preserve small κ-filtered
colimits. Then

(1) The ∞-category X′ admits small κ-filtered colimits.

(2) If X ′ is an object of X′ such that Y ′ = p′(X ′) and X = q′(X ′), and
Y = p(X) = q(Y ′) are κ-compact, then X ′ is a κ-compact object of X′.

Proof. Claim (1) follows immediately from Lemma 5.4.5.5. To prove (2), con-
sider a colimit diagram f : I
 → X′. We wish to prove that the composition
of f with the functor X′ → Ŝ corepresented by X ′ is also a colimit diagram.
Using Proposition 5.3.1.16, we may assume without loss of generality that I

is the nerve of a κ-filtered partially ordered set A. We may further suppose
that p and q are categorical fibrations and that X′ = X×Y Y′. Let I
X′/ de-
note the fiber product I
×X′ XX′/ and define I
X/, I
Y ′/, and I
Y/ similarly.
We have a pullback diagram

I
X′/ ��

��

I
X/

��
I
Y ′/ �� I
Y/

of left fibrations over I
. Proposition 2.1.2.1 implies that every arrow in this
diagram is a left fibration, so that Corollary 3.3.1.6 implies that I
X′/ is a
homotopy fiber product of I
X/ and I
Y ′/ over I
Y/ in the covariant model cate-
gory (Set∆)/ I
 . Let G : (Set∆)A∪{∞} → (Set∆)I
 denote the unstraightening
functor of §2.1.4. Since G is the right Quillen functor of a Quillen equiva-
lence, the above diagram is weakly equivalent to the image under G of a
homotopy pullback diagram

FX′ ��

��

FX

��
FY ′ �� FY

of (weakly) fibrant objects of (Set∆)A∪{∞}. Moreover, the simplicial nerve
of each FZ can be identified with the composition of f with the functor
corepresented by Z. According to Theorem 4.2.4.1, it will suffice to show
that FX′ is a homotopy colimit diagram. We now observe that FX , FY ′ , and
FY are homotopy colimit diagrams (since X, Y ′, and Y are assumed to be
κ-compact) and conclude by applying Lemma 5.4.5.6.
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In some of the arguments below, it will be important to be able to replace
colimits of a diagram J → C by colimits of some composition I

f→ J → C.
According to Proposition 4.1.1.8, this maneuver is justified provided that f
is cofinal. Unfortunately, the class of cofinal morphisms is not sufficiently
robust for our purposes. We will therefore introduce a property somewhat
stronger than cofinality which has better stability properties.

Definition 5.4.5.8. Let f : I → J denote a functor between filtered ∞-
categories. We will say that f is weakly cofinal if, for every object J ∈ J,
there exists an object I ∈ I and a morphism J → f(I) in J. We will say that
f is κ-cofinal if, for every diagram p : K → I where K is κ-small and weakly
contractible, the induced functor Ip/ → Jfp/ is weakly cofinal.

Example 5.4.5.9. Let I be a τ -filtered ∞-category and let p : K → I

be a τ -small diagram. Then the projection Ip/ → I is τ -cofinal. To prove
this, consider a τ -small diagram K ′ → Ip/, where K′ is weakly contractible,
corresponding to a map q : K  K′ → I. According to Lemma 4.2.3.6, the
inclusion K′ ⊆ K  K ′ is right anodyne, so that the map Iq/ → Iq|K′/ is a
trivial fibration (and therefore weakly cofinal).

Lemma 5.4.5.10. Let A, B, and C be simplicial sets and suppose that B
is weakly contractible. Then the inclusion

(A  B)
∐
B

(B  C) ⊆ A  B  C

is a categorical equivalence.

Proof. Let F (A,B,C) = (AB)
∐
B(B C) and let G(A,B,C) = AB C.

We first observe that both F and G preserve filtered colimits and homotopy
pushout squares separately in each argument. Using standard arguments
(see, for example, the proof of Proposition 2.2.2.7), we can reduce to the
case where A and C are simplices.

Let us say that a simplicial set B is good if the inclusion F (A,B,C) ⊆
G(A,B,C) is a categorical equivalence. We now make the following obser-
vations:

(1) Every simplex is good. Unwinding the definitions, this is equivalent to
the assertion that for 0 ≤ m ≤ n ≤ p, the diagram

∆{m,...n} � � ��
� �

��

∆{0,...,n}
� �

��
∆{m,...,p} � � �� ∆{0,...,p}

is a homotopy pushout square (with respect to the Joyal model struc-
ture). For 0 ≤ i ≤ j ≤ p, set

Xij = ∆{i,i+1} ∐
{i}

· · ·
∐

{j−1}
∆{j−1,j} ⊆ ∆{i,...,j}
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(by convention, we agree that Xij = {i} if i = j). Since each of the
inclusions Xij ⊆ ∆{i,...,j} is inner anodyne, it will suffice to show that
the diagram

Xmn
��

��

X0n

��
Xmp

�� X0p

is a homotopy pushout square, which is clear.

(2) Given a pushout diagram of simplicial sets

B ��
� �

��

B′
� �

��
B′′ �� B′′′

in which the vertical arrows are cofibrations, if B, B′, and B′′ are good,
then B′′′ is good. This follows from the compatibility of the functors
F and G with homotopy pushouts in B.

(3) Every horn Λni is good. This follows by induction on n using (1) and
(2).

(4) The collection of good simplicial sets is stable under filtered colimits;
this follows from the compatibility of F and G with filtered colimits
and the stability of categorical equivalences under filtered colimits.

(5) Every retract of a good simplicial set is good (since the collection of
categorical equivalences is stable under the formation of retracts).

(6) If i : B → B′ is an anodyne map of simplicial sets and B is good, then
B′ is good. This follows by combining observations (1) through (5).

(7) If B is weakly contractible, then B is good. To see this, choose a vertex
b of B. The simplicial set {b} � ∆0 is good (by (1) ), and the inclusion
{b} ⊆ B is anodyne. Now apply (6).

Lemma 5.4.5.11. Let κ and τ be regular cardinals, let f : I → J be a
κ-cofinal functor between τ -filtered ∞-categories, and let p : K → J be a
κ-small diagram. Then

(1) The ∞-category Ip/ = I×J Jp/ is τ -filtered.

(2) The induced functor Ip/ → Jp/ is κ-cofinal.
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Proof. We first prove (1). Let q̃ : K ′ → Ip/ be a τ -small diagram classifying a
compatible pair of maps q : K ′ → I and q′ : KK′ → J. Since I is τ -filtered,
we can find an extension q : (K ′)
 → I of q. To find a compatible extension
of q̃, it suffices to solve the lifting problem

(K K′)
∐
K′(K′)
� �

i

��

�� J

(K K ′)
,

��&&&&&&&

which is possible since i is a categorical equivalence (Lemma 5.4.5.10) and J

is an ∞-category.
To prove (2), we consider a map q̃ : K′ → Ip/ as above, where K is now

κ-small and weakly contractible. We have a pullback diagram

(Ip/)q/ ��

��

Iq/

��
Jq′/ �� Jq′|K′/ .

Lemma 4.2.3.6 implies that the inclusion K ′ ⊆ K  K ′ is right anodyne,
so that the lower horizontal map is a trivial fibration. It follows that the
upper horizontal map is also a trivial fibration. Since f is κ-cofinal, the right
vertical map is weakly cofinal, so that the left vertical map is weakly cofinal
as well.

Lemma 5.4.5.12. Let κ be a regular cardinal and let f : I → J be an
κ-cofinal map of filtered ∞-categories. Then f is cofinal.

Proof. According to Theorem 4.1.3.1, to prove that f is cofinal it suffices to
show that for every object J ∈ J, the fiber product IJ/ = I×J JJ/ is weakly
contractible. Lemma 5.4.5.11 asserts that IJ/ is κ-filtered; now apply Lemma
5.3.1.18.

Lemma 5.4.5.13. Let κ be a regular cardinal, let C be an ∞-category which
admits κ-filtered colimits, let p : K
 → Cτ be a κ-small diagram in the ∞-
category of κ-compact objects of C, and let p = p|K. Then p is a κ-compact
object of Cp/.

Proof. Let p′ denote the composition

K � ∆0 → K
 p→ Cκ;

it will suffice to prove that p′ is a τ -compact object of Cp/. Consider the
pullback diagram

Cp/
��

��

Fun(K × ∆1,C)

f

��
∗ p �� Fun(K × {0},C).
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Corollary 2.4.7.12 implies that the f is a Cartesian fibration, so we can ap-
ply Proposition 3.3.1.3 to deduce that the diagram is homotopy Cartesian
(with respect to the Joyal model structure). Using Proposition 5.1.2.2, we
deduce that f preserves κ-filtered colimits and that any functor ∗ → D pre-
serves filtered colimits (since filtered ∞-categories are weakly contractible;
see §4.4.4). Consequently, Lemma 5.4.5.7 implies that p′ is a κ-compact ob-
ject of Cp/ provided that its images in ∗ and Fun(K×∆1,C) are κ-compact.
The former condition is obvious, and the latter follows from Proposition
5.3.4.13.

Lemma 5.4.5.14. Let C be an ∞-category which admits small τ -filtered
colimits and let p : K → C be a small diagram. Then Cp/ admits small
τ -filtered colimits.

Proof. Without loss of generality, we may suppose that K is an ∞-category.
Let I be a τ -filtered ∞-category and let q0 : I → Cp/ be a diagram cor-
responding to a map q : K  I → C. We observe that K  I is small and
τ -filtered, so that q admits a colimit q : (K  I)
 → C. The map q can also
be identified with a colimit of q0.

Proposition 5.4.5.15. Let τ � κ be regular cardinals, let C be a τ -accessible
∞-category, and let p : K → Cτ be a κ-small diagram. Then Cp/ is τ -
accessible, and an object of Cp/ is τ -compact if and only if its image in C is
τ -compact.

Proof. Let D = Cp/×C Cτ be the full subcategory of Cp/ spanned by those
objects whose images in C are τ -compact. Since Cp/ is idempotent complete
and the collection of τ -compact objects of C is stable under the formation of
retracts, we conclude that D is idempotent complete. We also note that D is
essentially small; replacing C by a minimal model if necessary, we may sup-
pose that D is actually small. Proposition 5.3.5.10 and Lemma 5.4.5.14 imply
that there is an (essentially unique) τ -continuous functor F : Indτ (D) → Cp/

such that the composition D → Indτ (D) F→ Cp/ is equivalent to the inclu-
sion of D in Cp/. To complete the proof, it will suffice to show that F is an
equivalence of ∞-categories. According to Proposition 5.3.5.11, it will suffice
to show that D consists of τ -compact objects of Cp/ and generates Cp/ under
τ -filtered colimits. The first assertion follows from Lemma 5.4.5.13.

To complete the proof, choose an object p : K
 → C of Cp/ and let C ∈ C

denote the image under p of the cone point of K
. Then we may identify
p with a diagram p̃ : K → Cτ/C . Since C is τ -accessible, the ∞-category
E = Cτ/C is τ -filtered. It follows that Eep/ is τ -filtered and essentially small;
to complete the proof, it will suffice to show that the associated map

E
ep/ → Cp/

is a colimit diagram. Equivalently, we must show that the compositition

K  E
ep/
θ

0→ E


θ1→ C
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is a colimit diagram. Since θ1 is a colimit diagram, it suffices to prove that
θ0 is cofinal. For this, we consider the composition

q : Eep/
i→ K  Eep/

θ0→ E .

The ∞-category E is τ -filtered, so that Eep/ is also τ -filtered and therefore
weakly contractible (Lemma 5.3.1.18). It follows that i is right anodyne
(Lemma 4.2.3.6) and therefore cofinal. Applying Proposition 4.1.1.3, we con-
clude that θ0 is cofinal if and only if q is cofinal. We now observe that that
q is τ -cofinal (Example 5.4.5.9) and therefore cofinal (Lemma 5.4.5.12).

Corollary 5.4.5.16. Let C be an accessible ∞-category and let p : K → C

be a diagram indexed by a small simplicial set K. Then Cp/ is accessible.

Proof. Choose appropriate cardinals τ � κ and apply Proposition 5.4.5.15.

5.4.6 Accessibility of Fiber Products

Our goal in this section is to prove that the class of accessible ∞-categories is
stable under (homotopy) fiber products (Proposition 5.4.6.6). The strategy
of proof should now be familiar from §5.4.4 and §5.4.5. Suppose we are given
a homotopy Cartesian diagram

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

of ∞-categories, where X, Y′, and Y are accessible ∞-categories, and the func-
tors p and q are likewise accessible. If κ is a sufficiently large regular cardinal,
then we can use Lemma 5.4.5.7 to produce a good supply of κ-compact ob-
jects of X′. Our problem is then to prove that these objects generate X′ under
κ-filtered colimits. This requires some rather delicate cofinality arguments.

Lemma 5.4.6.1. Let τ � κ be regular cardinals and let f : C → D be
a τ -continuous functor between τ -accessible ∞-categories which carries τ -
compact objects of C to τ -compact objects of D. Let C be an object of C,
let Cτ/C denote the full subcategory of C/C spanned by those objects C′ → C,
where C′ is τ -compact, and let Dτ

/f(C) the full subcategory of D/f(C) spanned
by those objects D → f(C), where D ∈ D is τ -compact. Then f induces a
κ-cofinal functor f ′ : Cτ/C → Dτ

/f(C).

Proof. Let p̃ : K → Cτ/C be a diagram indexed by a τ -small weakly con-
tractible simplicial set K and let p : K → C be the underlying map. We
need to show that the induced functor (Cτ/C)ep/ → (Dτ

/f(C))f ′ep/ is weakly
cofinal. Using Proposition 5.4.5.15, we may replace C by Cp/ and D by Dfp/

and thereby reduce to the problem of showing that f is weakly cofinal. Let
φ : D → f(C) be an object of Dτ

/f(C) and let FD : D → S be the functor
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corepresented by D. Since D is τ -compact, the functor FD is τ -continuous,
so that FD ◦ f is τ -continuous. Consequently, the space FD(f(C)) can be
obtained as a colimit of the τ -filtered diagram

p : Cτ/C → Dτ
/f(C) → D

FD→ S .

In particular, the path component of FD(f(C)) containing φ lies in the
image of p(η) for some η : C′ → C as above. It follows that there exists
a commutative diagram

D
φ ��

��!
!!

!!
!!

! f(C)

f(C ′)

f(η)
����������

in D, which can be identified with a morphism in Dτ
/f(C) having the desired

properties.

Lemma 5.4.6.2. Let A = A′ ∪ {∞} be a linearly ordered set containing a
largest element ∞ and let B ⊆ A′ be a cofinal subset (in other words, for
every α ∈ A′, there exists β ∈ B such that α ≤ β). The inclusion

φ : N(A′)
∐

N(B)

N(B ∪ {∞}) ⊆ N(A)

is a categorical equivalence.

Proof. For each β ∈ B, let φβ denote the inclusion of

N({α ∈ A′ : α ≤ β})
∐

N({α∈B:α≤β})
N({α ∈ B : α ≤ β} ∪ {∞})

into N({α ∈ A′ : α ≤ β} ∪ {∞}). Since B is cofinal in A′, φ is a filtered
colimit of the inclusions φβ . Replacing A′ by {α ∈ A′ : α ≤ β} and B by
{α ∈ B : α ≤ β}, we may reduce to the case where A′ has a largest element
(which we will continue to denote by β).

We have a categorical equivalence

N(B)
∐
{β}

N({β,∞}) ⊆ N(B ∪ {∞}).

Consequently, to prove that φ is a categorical equivalence, it will suffice to
show that the composition

N(A′)
∐
{β}

N({β,∞}) ⊆ N(A′)
∐

N(B)

N(B ∪ {∞}) ⊆ N(A)

is a categorical equivalence, which is clear.

Lemma 5.4.6.3. Let τ > κ be regular cardinals and let

X
p→ Y

p′← X′

be functors between ∞-categories. Assume that the following conditions are
satisfied:
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(1) The ∞-categories X, X′, and Y are κ-filtered, and admit τ -small κ-
filtered colimits.

(2) The functors p and p′ preserve τ -small κ-filtered colimits.

(3) The functors p and p′ are κ-cofinal.

Then there exist objects X ∈ X, X ′ ∈ X′ such that p(X) and p′(X ′) are
equivalent in Y.

Proof. For every ordinal α, we let [α] = {β : β ≤ α} and (α) = {β : β < α}.
Let us say that an ordinal α is even if it is of the form λ + n, where λ is a
limit ordinal and n is an even integer; otherwise, we will say that α is odd.
Let A denote the set of all even ordinals smaller than κ and A′ the set of all
odd ordinals smaller than κ. We regard A and A′ as subsets of the linearly
ordered set A ∪A′ = (κ). We will construct a commutative diagram

N(A) ��

q

��

N(κ)

Q

��

N(A′)

q′

��

��

X
p �� Y X′ .

p′
��

Supposing that this is possible, we choose colimits X ∈ X, X ′ ∈ X′, and
Y ∈ Y for q, q′, and Q, respectively. Since the inclusion N(A) ⊆ N(κ) is
cofinal and p preserves κ-filtered colimits, we conclude that p(X) and Y are
equivalent. Similarly, p′(X ′) and Y are equivalent, so that p(X) and p′(X ′)
are equivalent, as desired.

The construction of q, q′, and Q is given by induction. Let α < κ and
suppose that q|N({β ∈ A : β < α}), q′|N({β ∈ A′ : β < α}) and Q|N(α)
have already been constructed. We will show how to extend the definitions
of q, q′, and Q to include the ordinal α. We will suppose that α is even; the
case where α is odd is similar (but easier).

Suppose first that α is a limit ordinal. In this case, define q|N({β ∈ A :
β ≤ α}) to be an arbitrary extension of q|N({β ∈ A : β < α}): such an
extension exists by virtue of our assumption that X is κ-filtered. In order to
define Q|N(α), it suffices to verify that Y has the extension property with
respect to the inclusion

N(α)
∐

N({β∈A:β<α})
N({β ∈ A : β ≤ α}) ⊆ N[α].

Since Y is an ∞-category, this follows immediately from Lemma 5.4.6.2.
We now treat the case where α = α′ + 1 is a successor ordinal. Let q<α =

q|{β ∈ A : β < α}, and regard Q|N({α′} ∪ {β ∈ A : β < α}) as an
object of Yfq<α/. We now observe that N({β ∈ A : β < α}) is κ-small and
weakly contractible. Since p is κ-cofinal, we can construct q|{β ∈ A : β ≤ α}
extending q<α and a compatible map Q|N({α′} ∪ {β ∈ A : β ≤ α}). To
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complete the construction of Q, it suffices to show that Y has the extension
property with respect to the inclusion

N(α)
∐

N({β∈A:β<α}∪{α′})
N({β ∈ A : β ≤ α} ∪ {α′}) ⊆ N[α].

Once again, this follows from Lemma 5.4.6.2.

Lemma 5.4.6.4. Let κ and τ be regular cardinals, let f : I → J be a
κ-cofinal functor between τ -filtered ∞-categories, and let p : K → I be a
diagram indexed by a τ -small simplicial set K. Then the induced functor

Ip/ → Jfp/

is κ-cofinal.

Proof. Let K′ be a simplicial set which is κ-small and weakly contractible
and let q : K K ′ → I be a diagram. We have a commutative diagram

Iq/ ��

��

Jfq/

��
Iq|K′/ �� Ifq|K′/ .

Lemma 4.2.3.6 implies that K′ ⊆ K  K ′ is a right anodyne inclusion, so
that the vertical maps are trivial fibrations. Since f is κ-cofinal, the lower
horizontal map is weakly cofinal; it follows that the upper horizontal map is
weakly cofinal as well.

Lemma 5.4.6.5. Let τ > κ be regular cardinals and let

I′
q′ ��

p′

��

I

p

��
J′

q �� J

be a diagram of ∞-categories which is homotopy Cartesian (with respect
to the Joyal model structure). Suppose that I, J, and J′ are τ -filtered ∞-
categories which admit τ -small κ-filtered colimits. Suppose further that p
and q are κ-cofinal functors which preserve τ -small κ-filtered colimits. Then
I′ is τ -filtered, and the functors p′ and q′ are κ-cofinal.

Proof. Without loss of generality, we may suppose that p and q are cate-
gorical fibrations and that I′ = I×J J′. To prove that I′ is τ -filtered, we
must show that I′f/ is nonempty for every diagram f : K → I′ indexed by a
τ -small simplicial set K. We have a (homotopy) pullback diagram

I′f/ ��

��

Iq′f/

g

��
J′p′f/

h �� Jpq′f/ .
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Lemma 5.3.1.19 implies that the ∞-categories Iq′f/, J′p′f/, and Jpq′f/ are
τ -filtered, and Lemma 5.4.6.4 implies that g and h are κ-cofinal. We may
therefore apply Lemma 5.4.6.3 to deduce that I′f/ is nonempty, as desired.

We now prove that q′ is κ-cofinal; the analogous assertion for p′ is proven
by the same argument. We must show that for every diagram f : K → I′,
where K is κ-small and weakly contractible, the induced map I′f/ → Iq′f/ is
weakly cofinal. Replacing I′ by I′f/ as above, we may reduce to the problem
of showing that q′ itself is weakly cofinal. Let I be an object of I, let J =
p(I) ∈ J and consider the (homotopy) pullback diagram

I′I/ ��

��

II/

u

��
J′J/

v �� JJ/ .

We wish to show that I′I/ is nonempty. This follows from Lemma 5.4.6.3
because u and v are τ -cofinal (Lemmas 5.4.6.4 and 5.4.5.11, respectively).

Proposition 5.4.6.6. Let

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure). Suppose further that X, Y, and Y′ are accessible
and that both p and q are accessible functors. Then X′ is accessible. Moreover,
for any accessible ∞-category C and any functor f : C → X, f is accessible
if and only if the compositions p′ ◦ f and q′ ◦ f are accessible. In particular
(taking f = idX), the functors p′ and q′ are accessible.

Proof. Choose a regular cardinal κ such that X, Y′, and Y are κ-accessible.
Enlarging κ if necessary, we may suppose that p and q are κ-continuous.
It follows from Lemma 5.4.5.5 that X′ admits small κ-filtered colimits and
that for any κ′ > κ, a functor f : C → X is κ′-continuous if and only if
p′ ◦ f and q′ ◦ f are κ′-continuous. This proves the second claim; it now
suffices to show that X′ is accessible. For this, we will use characterization
(3) of Proposition 5.4.2.2. Without loss of generality, we may suppose that
p and q are categorical fibrations and that X′ = X×Y Y′. It then follows
easily that X′ is locally small. It will therefore suffice to show that there
exists a regular cardinal τ such that X′ is generated by a small collection of
τ -compact objects under small τ -filtered colimits.

Since the ∞-categories of κ-compact objects of X and Y′ are essentially
small, there exists τ > κ such that p|Xκ ⊆ Yτ and q|Y′κ ⊆ Yτ . Enlarging τ
if necessary, we may suppose that τ � κ. The proof of Proposition 5.4.2.11
shows that every τ -compact object of X can be written as a τ -small κ-filtered
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colimit of objects belonging to Xκ. Since p is κ-continuous, it follows that
p(Xτ ) ⊆ Yτ , and similarly q(Y′τ ) ⊆ Yτ . Let X′′ = Xτ ×Yτ Y′τ . Then X′′ is
an essentially small full subcategory of X′. Lemma 5.4.5.7 implies that X′′

consists of τ -compact objects of X′. To complete the proof, it will suffice to
show that X′′ generates X′ under small τ -filtered colimits.

Let X ′ = (X,Y ′) be an object of X′ and set Y = pX = qY ′. We have a
(homotopy) pullback diagram

X′′
/X′

f ′
��

g′

��

Xτ/X

g

��
Y′τ
/Y ′

f �� Yτ/Y

of essentially small ∞-categories. Lemma 5.4.6.1 asserts that f and g are
κ-cofinal. We apply Lemma 5.4.6.5 to conclude that X′′

/X′ is τ -filtered and
that f ′ and g′ are κ-cofinal. Now consider the diagram

(X′′
/X′)


��

h

��*
**

**
**

**
�� (Xτ/X)


��
X′ q′ ��

p′

��

X

p

��
(Y′τ

/Y )

q �� Y′ �� Y .

Lemma 5.4.5.12 allows us to conclude that f ′ and g′ are cofinal, so that p′ ◦h
and q′ ◦ h are colimit diagrams. Lemma 5.4.5.5 implies that h is a colimit
diagram as well, so that X ′ is the colimit of an essentially small τ -filtered
diagram taking values in X′′.

Corollary 5.4.6.7. Let C be an accessible ∞-category and let p : K → C be
a diagram indexed by a small simplicial set K. Then the ∞-category C/p is
accessible.

Proof. Since the map C/p → C/p is a categorical equivalence, it will suffice
to prove that C/p is accessible. We have a pullback diagram

C/p
��

��

Fun(K × ∆1,C)

p

��
∗ q �� Fun(K × {1},C)

of ∞-categories. Since p is a coCartesian fibration, Proposition 3.3.1.3 im-
plies that this diagram is homotopy Cartesian. According to Proposition
5.4.4.3, the ∞-categories CK×∆1

and CK×{1} are accessible. Using Proposi-
tion 5.1.2.2, we conclude that for every regular cardinal κ such that C admits
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κ-filtered colimits, p is κ-continuous; in particular, p is accessible. Corollary
5.4.3.6 implies that ∗ is accessible and that q is an accessible functor. Ap-
plying Proposition 5.4.6.6, we deduce that C/p is accessible.

5.4.7 Applications

In §5.4.4 through §5.4.6, we established some of the basic stability properties
enjoyed by the class of accessible ∞-categories. In this section, we will reap
some of the rewards for our hard work.

Lemma 5.4.7.1. Let {Cα}α∈A be a family of ∞-categories indexed by a
small set A and let C =

∐
α∈A Cα be their coproduct. Then C is an accessible

if and only if each Cα is accessible.

Proof. This is immediate from the definitions.

Lemma 5.4.7.2. Let {Cα}α∈A be a family of ∞-categories indexed by a
small set A and let C =

∏
α∈A Cα be their product. If each Cα is accessi-

ble, then C is accessible. Moreover, if D is an accessible ∞-category, then a
functor D → C is accessible if and only if each of the compositions

D → C → Cα

is accessible.

Proof. Let D =
∐
α∈A Cα. By Lemma 5.4.7.1, D is accessible. Let N(A)

denote the constant simplicial set with value A. Proposition 5.4.4.3 implies
that Fun(N(A),D) is accessible. We now observe that Fun(N(A),D) can be
written as a disjoint union of C with another ∞-category; applying Lemma
5.4.7.1 again, we deduce that C is accessible. The second claim follows im-
mediately from the definitions.

Proposition 5.4.7.3. The ∞-category Acc of accessible ∞-categories ad-
mits small limits, and the inclusion i : Acc ⊆ Ĉat∞ preserves small limits.

Proof. By Proposition 4.4.2.6, it suffices to prove that Acc admits pullbacks
and small products and that i preserves pullbacks and (small) products. Let
Acc∆ be the (simplicial) subcategory of Ŝet∆ defined as follows:

(1) The objects of Acc∆ are the accessible ∞-categories.

(2) If C and D are accessible ∞-categories, then MapAcc∆(C,D) is the
subcategory of Fun(C,D) whose objects are accessible functors and
whose morphisms are equivalences of functors.

The ∞-category Acc is isomorphic to the simplicial nerve N(Acc∆). In view
of Theorem 4.2.4.1, it will suffice to prove that the simplicial category Acc∆

admits homotopy fiber products and (small) homotopy products and that the

inclusion Acc∆ ⊆ (Ŝet+∆)◦ preserves homotopy fiber products and homotopy
products. The case of homotopy fiber products follows from Proposition
5.4.6.6, and the case of (small) homotopy products follows from Lemma
5.4.7.2.
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If C is an accessible ∞-category, then C is the union of full subcategories
{Cτ ⊆ C}, where τ ranges over all (small) regular cardinals. It seems rea-
sonable to expect that if τ is sufficiently large, then the properties of C are
mirrored by properties of Cτ . The following result provides an illustration of
this philosophy:

Proposition 5.4.7.4. Let C be a κ-accessible ∞-category and let τ � κ be
an uncountable regular cardinal such that Cκ is essentially τ -small. Then the
full subcategory Cτ ⊆ C is stable under all κ-small limits which exist in C.

Before giving the proof, we will need to establish a few lemmas.

Lemma 5.4.7.5. Let τ � κ be regular cardinals and assume that τ is
uncountable. Let C be a τ -small ∞-category and let D be an object of Indκ(C).
The following are equivalent:

(1) The object D is τ -compact in Indκ(C).

(2) For every C ∈ C, the space MapIndκ(C)(j(C), D) is essentially τ -small,
where j : C → Indκ(C) denotes the Yoneda embedding.

Proof. Suppose first that (1) is satisfied. Using Lemma 5.1.5.3, we can write
D as the colimit of the κ-filtered diagram

C/D = C×Indκ(C) Indκ(C)/D → Indκ(C).

Since τ � κ, we also write D as a small τ -filtered colimit of objects {Dα},
where each Dα is the colimit of a τ -small κ-filtered diagram

C̃ → C → Indκ(C).

Since D is τ -compact, we conclude that D is a retract of Dα. Let F :
Indκ(C) → S denote the functor corepresented by j(C). According to Propo-
sition 5.3.5.5, F is κ-continuous. It follows that F (D) is a retract of F (Dα),
which is itself a τ -small colimit of spaces equivalent to

MapIndκ(C)(j(C), j(C ′)) � MapC(C,C ′),

which is essentially τ -small by assumption and therefore a τ -compact object
of S. It follows that D is also a τ -compact object of S.

Now assume (2). Once again, we observe that D can be obtained as the
colimit of a diagram C/D → Indκ(C). By assumption, C is τ -small and the
fibers of the right fibration C/D → C are essentially τ -small. Proposition
5.4.1.4 implies that C/D is essentially τ -small, so that D is a τ -small colimit
of κ-compact objects of Indκ(C) and therefore τ -compact.

Lemma 5.4.7.6. Let τ � κ be regular cardinals such that τ is uncountable
and let Sτ be the full subcategory of S consisting of essentially τ -small spaces.
Then Sτ is stable under κ-small limits in S.

Proof. In view of Proposition 4.4.2.6, it suffices to prove that Sτ is stable
under pullbacks and κ-small products. Using Theorem 4.2.4.1, it will suffice
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to show that the full subcategory of Kan spanned by essentially τ -small
spaces is stable under κ-small products and homotopy fiber products. This
follows immediately from characterization (1) given in Proposition 5.4.1.5.

Proof of Proposition 5.4.7.4. Let K be a κ-small simplicial set and let p :
K → Cτ be a diagram which admits a limit X ∈ C. We wish to show that
X is τ -compact. According to Lemma 5.4.7.5, it suffices to prove that the
space F (X) is essentially τ -small, where F : C → S denotes the functor
corepresented by a κ-compact object C ∈ C. Since F preserves limits, we
note that F (X) is a limit of F ◦ p. Lemma 5.4.7.5 implies that the diagram
F◦p takes values in Sτ ⊆ S. We now conclude by applying Lemma 5.4.7.6.

We note the following useful criterion for establishing that a functor is
accessible:

Proposition 5.4.7.7. Let G : C → C′ be a functor between accessible ∞-
categories. If G admits a right or a left adjoint, then G is accessible.

Proof. If G is a left adjoint, then G commutes with all colimits which exist
in C. Therefore G is κ-continuous for any cardinal κ having the property that
C is κ-accessible. Let us therefore assume that G is a right adjoint; choose a
left adjoint F for G.

Choose a regular cardinal κ such that C′ is κ-accessible. We may suppose
without loss of generality that C′ = IndκD, where D is a small ∞-category.
Consider the composite functor

D
j→ Indκ(D) F→ C .

Since D is small, there exists a regular cardinal τ � κ such that C is τ -
accessible and the essential image of F ◦ j consists of τ -compact objects of
C. We will show that G is τ -continuous.

Since Indκ(D) ⊆ P(D) is stable under small τ -filtered colimits, it will
suffice to prove that the composition

G′ : C
G→ Indκ(D) → P(D)

is τ -continuous. For each object D ∈ D, let G′
D : C → Ŝ denote the compo-

sition of G′ with the functor given by evaluation at D. According to Propo-
sition 5.1.2.2, it will suffice to show that each G′

D is τ -continuous. Lemma
5.1.5.2 implies that G′

D is equivalent to the composition of G with the func-
tor C′ → Ŝ corepresented by j(D). Since F is left adjoint to G, we may
identify this with the functor corepresented by F (j(D)). Since F (j(D)) is
τ -compact by construction, this functor is τ -continuous.

Definition 5.4.7.8. Let C be an accessible category. A full subcategory
D ⊆ C is an accessible subcategory of C if D is accessible, and the inclusion
of D into C is an accessible functor.
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Example 5.4.7.9. Let C be an accessible ∞-category and K a simplicial
set. Suppose that every diagramK → C has a limit in C. Let D ⊆ Fun(K	,C)
be the full subcategory spanned by the limit diagrams. Then D is equivalent
to Fun(K,C) and is therefore accessible (Proposition 5.4.4.3). The inclu-
sion D ⊆ Fun(K	,C) is a right adjoint and therefore accessible (Proposition
5.4.7.7). Thus D is an accessible subcategory of Fun(K	,C). Similarly, if ev-
ery diagramK → C has a colimit, then the full subcategory D′ ⊆ Fun(K
,C)
spanned by the colimit diagrams is an accessible subcategory of Fun(K
,C).

Proposition 5.4.7.10. Let C be an accessible category and let {Dα ⊆ C}α∈A
be a (small) collection of accessible subcategories of C. Then

⋂
α∈A Dα is an

accessible subcategory of C.

Proof. We have a homotopy Cartesian diagram⋂
α∈A Dα

i′ ��

��

C

f

��∏
α∈A Dα

i ��
CA .

Lemma 5.4.7.2 implies that
∏
α∈A Dα and CA are accessible, and it is easy

to see that f and i are accessible functors. Applying Proposition 5.4.6.6, we
conclude that

⋂
α∈ADα is accessible and that i′ is an accessible functor, as

desired.

We conclude this chapter by establishing a generalization of Proposition
5.4.4.3.

Proposition 5.4.7.11. Let C be a subcategory of the ∞-category Ĉat∞ of
(not necessarily small) ∞-categories satisfying the following conditions:

(a) The ∞-category C admits small limits, and the inclusion C ⊆ Ĉat∞
preserves small limits.

(b) If X belongs to C, then Fun(∆1, X) belongs to C.

(c) If X and Y belong to C, then a functor X → Fun(∆1, Y ) is a morphism
of C if and only if, for every vertex v of ∆1, the composite functor
X → Fun(∆1, Y ) → Fun({v}, Y ) � Y is a morphism of C.

Let p : X → S be a map of simplicial sets, where S is small. Assume that

(i) The map p is a categorical fibration and a locally coCartesian fibration.

(ii) For each vertex s in S, the fiber Xs belongs to C.

(iii) For each edge s → s′ in S, the associated functor Xs → Xs′ is a
morphism in C.
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Let E be a set of edges of S and let Y be the full subcategory of MapS(S,X)
spanned by those sections f : S → X of p which satisfy the following condi-
tion:

(∗) For every edge e : ∆1 → S belonging to E, f carries e to a pe-
coCartesian edge of ∆1 ×S X, where pe : ∆1 ×S X → ∆1 is the
projection.

Then Y belongs to C. Moreover, if Z ∈ C, then a functor Z → Y belongs to
C if and only if, for every vertex s in S, the composite map Z → Y → Xs

belongs to C.

Remark 5.4.7.12. Hypotheses (i) through (iii) of Proposition 5.4.7.11 are
satisfied, in particular, if p : X → S is a coCartesian fibration classified by
a functor S → C ⊆ Ĉat∞.

Remark 5.4.7.13. Hypotheses (a), (b), and (c) of Proposition 5.4.7.11 are
satisfied for the following subcategories C ⊆ Ĉat∞:

• Fix a class of simplicial sets {Kα}α∈A. Then we can take C to be the
subcategory of Ĉat∞ whose objects are ∞-categories which admit Kα-
indexed (co)limits for each α ∈ A, and whose morphisms are functors
which preserve Kα-indexed (co)limits for each α ∈ A.

• We can take the objects of C to be accessible ∞-categories and the mor-
phisms in C to be accessible functors (in view of Propositions 5.4.4.3
and 5.4.7.3).

We will meet some other examples in §5.5.

Remark 5.4.7.14. In the situation of Proposition 5.4.7.11, we can replace
“coCartesian” by “Cartesian” everywhere to obtain a dual result. This fol-
lows by applying Proposition 5.4.7.11 to the map Xop → Sop after replacing
C by its preimage under the “opposition” involution of hĈat∞.

The proof of Proposition 5.4.7.11 makes use of the following observation:

Lemma 5.4.7.15. Let p : M → ∆1 be a coCartesian fibration classify-
ing a functor F : C → D, where C = p−1{0} and D = p−1{1}. Let
X = Map∆1(∆1,M) be the ∞-category of sections of p. Then X can be
identified with a homotopy limit of the diagram

C
F→ Fun({0},D) ← Fun(∆1,D).

Proof. We first replace the diagram in question by a fibrant one. Let C′

denote the ∞-category of coCartesian sections of p. Then the evaluation
map e : C′ → C is a trivial fibration of simplicial sets. Moreover, since F is
associated to the correspondence M, the map e admits a section s such that
the composition

C
s→ C′ → D



PRESENTABLE AND ACCESSIBLE ∞-CATEGORIES 453

coincides with F . It follows that we have a weak equivalence of diagrams

C
F ��

s

��

Fun({0},D) Fun(∆1,D)��

C′ F ′
�� Fun({0},D) Fun(∆1,D),��

where F ′ is given by evaluation at {1} and is therefore a categorical fibration.
Let X′ denote the pullback of the lower diagram, which we can identify with
the full subcategory of Map∆1(Λ2

1,M) spanned by those functors which carry
the first edge of Λ2

1 to a coCartesian edge of M.
Regard ∆2 as an object of (Set∆)/∆1 via the unique retraction r : ∆2 →

∆1 onto the simplicial subset ∆{0,1} ⊆ ∆{0,1,2}. Let X′′ denote the full
subcategory of Map∆1(∆2,M) spanned by those maps ∆2 → M which carry
the initial edge of ∆2 to a p-coCartesian edge of M.

Let T denote the marked simplicial set whose underlying simplicial set
is ∆2, whose sole nondegenerate marked edge is ∆1 ⊆ ∆2, and let T ′ =
T ×(∆2)� (Λ2

1)
�. Since the opposites of the inclusions T ′ ⊆ T , (∆{0,2})� ⊆ T

are marked anodyne, we conclude that the evaluation maps

X ← X′′ → X′

are trivial fibrations of simplicial sets. It follows that X and X′ are (canoni-
cally) homotopy equivalent, as desired.

Remark 5.4.7.16. In the situation of Lemma 5.4.7.15, the full subcategory
of X spanned by the coCartesian sections of p is equivalent (via evaluation
at {0}) to C.

Proof of Proposition 5.4.7.11. Let us first suppose that E = ∅. Let skn S
denote the n-skeleton of S. We observe that MapS(S,X) coincides with the
(homotopy) inverse limit

lim←−{MapS(skn S,X)}.
In view of assumption (a), it will suffice to prove the result after replacing S
by skn S. In other words, we may reduce to the case where S is n-dimensional.

We now work by induction on n and observe that there is a homotopy
pushout diagram of simplicial sets

Sn × ∂∆n � � ��

��

Sn × ∆n

��
skn−1 S

� � �� S.

We therefore obtain a homotopy pullback diagram of ∞-categories

MapS(S,X) ��

��

MapS(skn−1 S,X)

��
MapS(Sn × ∆n, X) �� MapS(Sn × ∂∆n, X).
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Invoking assumption (a) again, we are reduced to proving the same result
after replacing S by skn−1 S, Sn × ∂∆n, and Sn × ∆n. The first two cases
follow from the inductive hypothesis; we may therefore assume that S is a
disjoint union of copies of ∆n. Applying (a) once more, we can reduce to the
case S = ∆n.

If n = 0, there is nothing to prove. If n > 1, then we have a trivial fibration

MapS(S,X) → MapS(Λn1 , X).

Since the horn Λn1 is of dimension less than n, we may conclude by applying
the inductive hypothesis. We are therefore reduced to the case S = ∆1.

According to Lemma 5.4.7.15, the ∞-category Map∆1(∆1, X) can be iden-
tified with a homotopy limit of the diagram

X{0}
F→ X{1} ← X∆1

{1}.

In view of (a), it will suffice to prove that all of the ∞-categories and functors
in the above diagram belong to C. This follows immediately from (b) and
(c).

We now consider the general case where E is not required to be empty.
For each edge e ∈ E, let Y (e) denote the full subcategory of MapS(S,X)
spanned by those sections f : S → X which satisfy the condition (∗) for the
edge e. We wish to prove:

(1) The intersection
⋂
e∈E Y (e) belongs to C.

(2) If Z ∈ C, then a functor Z → ⋂
e∈E Y (e) is a morphism of C if and

only if the induced map Z → MapS(S,X) is a morphism of C.

In view of (a), it will suffice to prove the corresponding results when the inter-
section

⋂
e∈E Y (e) is replaced by a single subcategory Y (e) ⊆ MapS(S,X).

Let e : s → s′ be an edge belonging to E. Lemma 5.4.7.15 implies the
existence of a homotopy pullback diagram We now observe that there is a
homotopy pullback diagram

Y (e) ��

��

MapS(S,X)

��
Fun′(∆1, Xs′) �� Fun(∆1, Xs′),

where Fun′(∆1, Xs′) � Xs′ is the full subcategory of Fun(∆1, Xs′) spanned
by the equivalences. In view of (a), it suffices to prove the following analogues
of (1) and (2):

(1′) For each s′ ∈ S, the ∞-categories Fun′(∆1, Xs′) and Fun(∆1, Xs′)
belong to C.

(2′) Given an object Z ∈ C, a functor Z → Fun′(∆1, Xs′) is a morphism in
C if and only if the induced map Z → Fun(∆1, Xs′) is a morphism of
C.
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These assertions follow immediately from (b) and (c), respectively.

Corollary 5.4.7.17. Let p : X → S be a map of simplicial sets which is a
coCartesian fibration (or a Cartesian fibration). Assume that the following
conditions are satisfied:

(1) The simplicial set S is small.

(2) For each vertex s of S, the ∞-category Xs = X ×S {s} is accessible.

(3) For each edge e : s → s′ of S, the associated functor Xs → Xs′ (or
Xs′ → Xs) is accessible.

Then MapS(S,X) is an accessible ∞-category. Moreover, if C is accessible,
then a functor

C → MapS(S,X)

is accessible if and only if, for every vertex s of S, the induced map C → Xs

is accessible.

5.5 PRESENTABLE ∞-CATEGORIES

Our final object of study in this chapter is the theory of presentable ∞-
categories.

Definition 5.5.0.1. An ∞-category C is presentable if C is accessible and
admits small colimits.

We will begin in §5.5.1 by giving a number of equivalent reformulations of
Definition 5.5.0.1. The main result, Theorem 5.5.1.1, is due to Carlos Simp-
son: an ∞-category C is presentable if and only if it arises as an (accessible)
localization of an ∞-category of presheaves.

Let C be an ∞-category and let F : C → Sop be a functor. If F is
representable by an object of C, then F preserves colimits (Proposition
5.1.3.2). In §5.5.2, we will prove that the converse holds when C is present-
able. This representability criterion has a number of consequences: it implies
that C admits (small) limits (Corollary 5.5.2.4) and leads to an ∞-categorical
analogue of the adjoint functor theorem (Corollary 5.5.2.9).

In §5.5.3, we will see that the collection of all presentable ∞-categories
can be organized into an ∞-category PrL. Moreover, we will explain how to
compute limits and colimits in PrL. In the course of doing so, we will prove
that the class of presentable ∞-categories is stable under most of the basic
constructions of higher category theory.

In view of Theorem 5.5.1.1, the theory of localizations plays a central role
in the study of presentable ∞-categories. In §5.5.4, we will show that the
collection of all (accessible) localizations of a presentable ∞-category C can
be parametrized in a very simple way. Moreover, there is a good supply of



456 CHAPTER 5

localizations of C: given any (small) collection of morphisms S of C, one can
construct a corresponding localization functor

C
L→ S−1 C ⊆ C,

where S−1 C is the full subcategory of C spanned by the S-local objects. These
ideas are due to Bousfield, who works in the setting of model categories; we
will give an exposition here in the language of ∞-categories. In §5.5.5, we will
employ the same techniques to produce examples of factorization systems on
the ∞-category C.

Let C be an ∞-category and let C ∈ C be an object. We will say that C ∈ C

is discrete if, for every D ∈ C, the nonzero homotopy groups of the mapping
space MapC(D,C) vanish. If we let τ≤0 C denote the full subcategory of C

spanned by the discrete objects, then τ≤0 C is (equivalent to) an ordinary
category. If C is the ∞-category of spaces, then we can identify the discrete
objects of C with the ordinary category of sets. Moreover, the inclusion
τ≤0 S ⊆ S has a left adjoint given by

X �→ π0X.

In §5.5.6, we will show that the preceding remark generalizes to an arbi-
trary presentable ∞-category C: the discrete objects of C constitute an (ac-
cessible) localization of C. We will also consider a more general condition
of k-truncatedness (which specializes to the condition of discreteness when
k = 0). The truncation functors which we construct will play an important
role throughout Chapter 6.

In §5.5.7, we will study the theory of compactly generated ∞-categories:
∞-categories which are generated (under colimits) by their compact objects.
This class of ∞-categories includes some of the most important examples,
such as S and Cat∞. In fact, the ∞-category S satisfies an even stronger con-
dition: it is generated by compact projective objects (see Definition 5.5.8.18).
The presence of enough compact projective objects in an ∞-category al-
lows us to construct projective resolutions, which gives rise to the theory
of nonabelian homological algebra (or “homotopical algebra”). We will re-
view the rudiments of this theory in §5.5.8. Finally, in §5.5.9 we will present
the same ideas in a more classical form following Quillen’s manuscript [63].
The comparison of these two perspectives is based on a rectification result
(Proposition 5.5.9.2) which is of some independent interest.

Remark 5.5.0.2. We refer the reader to [1] for a study of presentability in
the setting of ordinary category theory. Note that [1] uses the term “locally
presentable category” for what we have chosen to call a presentable category.

5.5.1 Presentability

Our main goal in this section is to establish the following characterization
of presentable ∞-categories:

Theorem 5.5.1.1 (Simpson [70]). Let C be an ∞-category. The following
conditions are equivalent:
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(1) The ∞-category C is presentable.

(2) The ∞-category C is accessible, and for every regular cardinal κ the
full subcategory Cκ admits κ-small colimits.

(3) There exists a regular cardinal κ such C is κ-accessible and Cκ admits
κ-small colimits.

(4) There exists a regular cardinal κ, a small ∞-category D which admits
κ-small colimits, and an equivalence IndκD → C.

(5) There exists a small ∞-category D such that C is an accessible local-
ization of P(D).

(6) The ∞-category C is locally small and admits small colimits, and there
exists a regular cardinal κ and a (small) set S of κ-compact objects of
C such that every object of C is a colimit of a small diagram taking
values in the full subcategory of C spanned by S.

Before giving the proof, we need a few preliminart remarks. We first ob-
serve that condition (5) is potentially ambiguous: it is unclear whether the
accessibility hypothesis is on C or on the associated localization functor
L : P(D) → P(D). The distinction turns out to be irrelevant by virtue
of the following:

Proposition 5.5.1.2. Let C be an accessible ∞-category and let L : C → C

be a functor satisfying the equivalent conditions of Proposition 5.2.7.4. The
following conditions are equivalent:

(1) The essential image LC of L is accessible.

(2) There exists a localization f : C → D, where D is accessible, and an
equivalence L � g ◦ f .

(3) The functor L is accessible (when regarded as a functor from C to
itself).

Proof. Suppose (1) is satisfied. Then we may take D = LC, f = L, and g to
be the inclusion LC ⊆ C; this proves (2). If (2) is satisfied, then Proposition
5.4.7.7 shows that f and g are accessible functors, so their composite g◦f � L
is also accessible; this proves (3). Now suppose that (3) is satisfied. Choose
a regular cardinal κ such that C is κ-accessible and L is κ-continuous. The
full subcategory Cκ consisting of κ-compact objects of C is essentially small,
so there exists a regular cardinal τ � κ such that LC is τ -compact for every
C ∈ Cκ. Let C′ denote the full subcategory of C spanned by the colimits
of all τ -small κ-filtered diagrams in Cκ and let LC′ denote the essential
image of C′ under L. We note that LC′ is essentially small. Since L is κ-
continuous, LC is stable under small κ-filtered colimits in C. It follows that
any τ -compact object of C which belongs to LC is also τ -compact when
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viewed as an object of LC, so that LC′ consists of τ -compact objects of LC.
According to Proposition 5.4.2.2, to complete the proof that LC is accessible,
it will suffice to show that LC′ generates LC under small τ -filtered colimits.

Let X be an object of C. Then X can be written as a small κ-filtered
colimit of objects of Cκ. The proof of Proposition 5.4.2.11 shows that we
can also write X as the colimit of a small τ -filtered diagram in C′. Since L
preserves colimits, it follows that LX can be obtained as the colimit of a
small τ -filtered diagram in LC′.

The proof of Theorem 5.5.1.1 will require a few easy lemmas:

Lemma 5.5.1.3. Let f : C → D be a functor between small ∞-categories
which exhibits D as an idempotent completion of C and let κ be a regular car-
dinal. Then Indκ(f) : Indκ(C) → Indκ(D) is an equivalence of ∞-categories.

Proof. We first apply Proposition 5.3.5.11 to conclude that Indκ(f) is fully
faithful. To prove that Indκ(f) is an equivalence, we must show that it gen-
erates Indκ(D) under κ-filtered colimits. Since Indκ(D) is generated under
κ-filtered colimits by the essential image of the Yoneda embedding jD : D →
Indκ(D), it will suffice to show that the essential image of jD is contained in
the essential image of Indκ(f). Let D be an object of D. Then D is a retract
of f(C) for some object C ∈ C. Then jD(D) is a retract of (Indκ(f)◦jC)(C).
Since Indκ(C) is idempotent complete (Corollary 4.4.5.16), we conclude that
jD(D) belongs to the essential image of Indκ(f).

Lemma 5.5.1.4. Let F : C → D be a functor between ∞-categories which
admit small κ-filtered colimits and let G be a right adjoint to F . Suppose
that G is κ-continuous. Then F carries κ-compact objects of C to κ-compact
objects of D.

Proof. Let C be a κ-compact object of C, eC : C → Ŝ the functor corepre-
sented by C, and eF (C) : D → Ŝ the functor corepresented by F (C). Since
G is a right adjoint to F , we have an equivalence eF (C) = eC ◦G. Since eC
and G are both κ-continuous, eFC is κ-continuous. It follows that F (C) is
κ-compact, as desired.

Proof of Theorem 5.5.1.1. Corollary 5.3.4.15 asserts that the full subcate-
gory Cκ is stable under all κ-small colimits which exist in C. This proves
that (1) implies (2). The implications (2) ⇒ (3) ⇒ (4) are obvious. We next
prove that (4) implies (5). According to Lemma 5.5.1.3, we may suppose
without loss of generality that D is idempotent complete. Let Pκ(D) denote
the full subcategory of P(D) spanned by the κ-compact objects, let D′ be a
minimal model for Pκ(D), and let g denote the composition

D
j→ Pκ(D) → D′,

where the second map is a homotopy inverse to the inclusion D′ ⊆ Pκ(D).
Proposition 5.1.3.1 implies that g is fully faithful, and Proposition 5.3.4.18
implies that g admits a left adjoint f . It follows that F = Indκ(f) and
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G = Indκ(g) are adjoint functors, and Proposition 5.3.5.11 implies that
G is fully faithful. Moreover, Proposition 5.3.5.12 implies that IndκD′ is
equivalent to P(D), so that C is equivalent to an accessible localization of
P(D′).

We now prove that (5) implies (6). Let D be a small ∞-category and
L : P(D) → C an accessible localization. Remark 5.2.7.5 implies that C

admits small colimits and that C is generated under colimits by the essential
image of the composition

T : D
j→ P(D) L→ C .

To complete the proof of (6), it will suffice to show that there exists a regular
cardinal κ such that the essential image of T consists of κ-compact objects.
Let G denote a left adjoint to L. By assumption, G is an accessible functor
so that there exists a regular cardinal κ such that G is κ-continuous. For
each object D ∈ D, the Yoneda image j(D) is a completely compact object
of P(D) and, in particular, κ-compact. Lemma 5.5.1.4 implies that T (D) is
a κ-compact object of C.

We now complete the proof by showing that (6) ⇒ (1). Assume that
there exists a regular cardinal κ and a set S of κ-compact objects of C such
that every object of C is a colimit of objects in S. Let C′ ⊆ C be the full
subcategory of C spanned by S and let C′′ ⊆ C be the full subcategory of C

spanned by the colimits of all κ-small diagrams with values in C′′. Since C′

is essentially small, there is only a bounded number of such diagrams up to
equivalence, so that C′′ is essentially small. Moreover, since every object of
C is a colimit of a small diagram with values in C′, the proof of Corollary
4.2.3.11 shows that every object of C can also be obtained as the colimit of a
small κ-filtered diagram with values in C′′. Corollary 5.3.4.15 implies that C′′

consists of κ-compact objects of C (a slightly more refined argument shows
that, if κ > ω, then C′′ consists of precisely the κ-compact objects of C). We
may therefore apply Proposition 5.4.2.2 to deduce that C is accessible.

Remark 5.5.1.5. The characterization of presentable ∞-categories as local-
izations of presheaf ∞-categories was established by Simpson in [70] (using
a somewhat different language). The theory of presentable ∞-categories is
essentially equivalent to the theory of combinatorial model categories (see
§A.3.7 and Proposition A.3.7.6). Since most of the ∞-categories we will meet
are presentable, our study could also be phrased in the language of model
categories. However, we will try to avoid this language since for many pur-
poses the restriction to presentable ∞-categories seems unnatural and is
often technically inconvenient.

Remark 5.5.1.6. Let C be a presentable ∞-category and let D be an ac-
cessible localization of C. Then D is presentable: this follows immediately
from characterization (5) of Proposition 5.5.1.1.

Remark 5.5.1.7. Let C be a presentable ∞-category. Since C admits ar-
bitrary colimits, it is “tensored over spaces,” as we explained in §4.4.4. In
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particular, the homotopy category of C is naturally tensored over the homo-
topy category H: for each object C of C and every simplicial set S, there
exists an object C ⊗ S of C, well-defined up to equivalence, equipped with
isomorphisms

MapC(C ⊗ S,C ′) � MapC(C,C ′)S

in the homotopy category H.

Example 5.5.1.8. The ∞-category S of spaces is presentable. This follows
from characterization (1) of Theorem 5.5.1.1 since S is accessible (Example
5.4.2.7) and admits (small) colimits by Corollary 4.2.4.8.

According to Theorem 5.5.1.1, if C is κ-accessible, then C admits small
colimits if and only if the full subcategory Cκ ⊆ C admits κ-small colimits.
Roughly speaking, this is because arbitrary colimits in C can be rewritten
in terms of κ-filtered colimits and κ-small colimits of κ-compact objects.
Our next result is another variation on this idea; it may also be regarded
as an analogue of Theorem 5.5.1.1 (which describes functors rather than
∞-categories):

Proposition 5.5.1.9. Let f : C → D be a functor between presentable
∞-categories. Suppose that C is κ-accessible. The following conditions are
equivalent:

(1) The functor f preserves small colimits.

(2) The functor f is κ-continuous, and the restriction f |Cκ preserves κ-
small colimits.

Proof. Without loss of generality, we may suppose C = Indκ(C′), where C′ is
a small idempotent complete ∞-category which admits κ-small colimits. The
proof of Theorem 5.5.1.1 shows that the inclusion Indκ(C′) ⊆ P(C′) admits
a left adjoint L. Let α : idP(C′) → L be a unit for the adjunction and let f ′ :
C′ → D denote the composition of f with the Yoneda embedding j : Indκ(C′).
According to Theorem 5.1.5.6, there exists a colimit-preserving functor F :
P(C′) → D and an equivalence of f ′ with F ◦ j. Proposition 5.3.5.10 implies
that f and F | Indκ(C) are equivalent; we may therefore assume without loss
of generality that f = F | Indκ(C). Let F ′ = f ◦ L, so that α induces a
natural transformation β : F → F ′ of functors from P(C′) to D. We will
show that β is an equivalence. Consequently, we deduce that the functor F ′

is colimit-preserving. It then follows that f is colimit-preserving. To see this,
we consider an arbitrary diagram p : K → Indκ(C′) and choose a colimit
p : K
 → P(C′). Then q = L ◦ p is a colimit diagram in Indκ(C′), and
f ◦ q = F ′ ◦ p is a colimit diagram in D. Since q = q|K is equivalent (via α)
to the original diagram p, we conclude that f preserves the colimit of p in
Indκ(C′) as well.

It remains to prove that β is an equivalence of functors. Let E ⊆ P(C′)
denote the full subcategory spanned by those objects X ∈ P(C′) for which
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β(X) : F (X) → F ′(X) is an equivalence in D. We wish to prove that
E = P(C′). Since F and F ′ are both κ-continuous functors, E is stable under
κ-filtered colimits in P(C′). It will therefore suffice to prove that E contains
Pκ(C′).

It is clear that E contains Indκ(C′); in particular, E contains the essential
image E′ of the Yoneda embedding j : C′ → P(C′). According to Proposition
5.3.4.17, every object of Pκ(C′) is a retract of the colimit of a κ-small diagram
p : K → E′. Since C′ is idempotent complete, we may identify E′ with the
full subcategory of Indκ(C′) consisting of κ-compact objects. In particular,
E′ is stable under κ-small colimits and retracts in Indκ(C′). It follows that
L restricts to a functor L′ : Pκ(C) → E′ which preserves κ-small colimits.

To complete the proof that Pκ(C′) ⊆ E, it will suffice to prove that
F ′|Pκ(C) preserves κ-small colimits. To see this, we write F |Pκ(C′) as a
composition

Pκ(C′) L′→ E′ F |E′
→ C,

where L′ preserves κ-small colimits (as noted above) and F |E′ = f |Cκ pre-
serves κ-small colimits by assumption.

5.5.2 Representable Functors and the Adjoint Functor Theorem

An object F of the ∞-category P(C) of presheaves on C is representable if
it lies in the essential image of the Yoneda embedding j : C → P(C). If
F : Cop → S is representable, then F preserves limits: this follows from the
fact that F is equivalent to the composite map

Cop
j→ P(Cop) → S,

where j denotes the Yoneda embedding for Cop (which is limit-preserving by
Proposition 5.1.3.2) and the right map is given by evaluation at C (which is
limit-preserving by Proposition 5.1.2.2). If C is presentable, then the converse
holds.

Lemma 5.5.2.1. Let S be a small simplicial set, let f : S → S be an object
of P(Sop), and let F : P(Sop) → Ŝ be the functor corepresented by f . Then
the composition

S
j→ P(Sop) F→ Ŝ

is equivalent to f .

Proof. According to Corollary 4.2.4.7, we can choose a (small) fibrant sim-
plicial category C and a categorical equivalence φ : S → N(Cop) such that f
is equivalent to the composition of ψop with the nerve of a simplicial functor
f ′ : C → Kan. Without loss of generality, we may suppose that f ′ ∈ SetC

∆ is
projectively cofibrant. Using Proposition 4.2.4.4, we have an equivalence of
∞-categories

ψ : N(SetC
∆)◦) → P(S).
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We observe that the composition F ◦ ψ can be identified with the simplicial
nerve of the functor G : (SetC

∆)◦ → Kan corepresented by f ′. The Yoneda
embedding factors through ψ via the adjoint of the composition

j′ : C[S] → Cop → (SetC
∆)◦.

It follows that F ◦ j can be identified with the adjoint of the composition

C[S]
j′→ (SetC

∆)◦ G→ Kan .

This composition is equal to the functor f ′, so its simplicial nerve coincides
with the original functor f .

Proposition 5.5.2.2. Let C be a presentable ∞-category and let F : Cop → S

be a functor. The following are equivalent:

(1) The functor F is representable by an object C ∈ C.

(2) The functor F preserves small limits.

Proof. The implication (1) ⇒ (2) was proven above (for an arbitrary ∞-
category C). For the converse, we first treat the case where C = P(D) for some
small ∞-category D. Let f : Dop → S denote the composition of F with the
(opposite) Yoneda embedding jop : Dop → P(D)op and let F ′ : P(D)op → Ŝ

denote the functor represented by f ∈ P(D). We will prove that F and
F ′ are equivalent. We observe that F and F ′ both preserve small limits;
consequently, according to Theorem 5.1.5.6, it will suffice to show that the
compositions f = F ◦ jop and f ′ = F ′ ◦ jop are equivalent. This follows
immediately from Lemma 5.5.2.1.

We now consider the case where C is an arbitrary presentable ∞-category.
According to Theorem 5.5.1.1, we may suppose that C is an accessible lo-
calization of a presentable ∞-category C′ which has the form P(D), so that
the assertion for C′ has already been established. Let L : C′ → C denote the
localization functor. The functor F ◦ Lop : (C′)op → S preserves small limits
and is therefore representable by an object C ∈ C′. Let S denote the set of
all morphisms φ in C′ such that L(φ) is an equivalence in C. Without loss
of generality, we may identify C with the full subcategory of C′ consisting of
S-local objects. By construction, C ∈ C′ is S-local and therefore belongs to
C. It follows that C represents the functor (F ◦ Lop)|C, which is equivalent
to F .

The representability criterion provided by Proposition 5.5.2.2 has many
consequences, as we now explain.

Lemma 5.5.2.3. Let X and Y be simplicial sets, let q : C → D be a cat-
egorical fibration of ∞-categories, and let p : X
 × Y 
 → C be a diagram.
Suppose that

(1) For every vertex x of X
, the associated map px : Y 
 → C is a q-colimit
diagram.
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(2) For every vertex y of Y , the associated map py : X
 → C is a q-colimit
diagram.

Let ∞ denote the cone point of Y 
. Then the restriction p∞ : X
 → C is a
q-colimit diagram.

Proof. Without loss of generality, we can suppose that X and Y are ∞-
categories. Since the inclusion X × {∞} ⊆ X × Y 
 is cofinal, it will suffice
to show that the restriction p|(X × Y 
)
 is a q-colimit diagram. According
to Proposition 4.3.2.9, p|(X × Y 
) is a q-left Kan extension of p|(X × Y ).
By transitivity, it suffices to show that p|(X × Y )
 is a q-colimit diagram.
For this, it will suffice to prove the stronger assertion that p|(X
 × Y )
 is
a q-left Kan extension of p|(X × Y ). Since Proposition 4.3.2.9 also implies
that p|(X
 × Y ) is a q-left Kan extension of p|(X × Y ), we may again apply
transitivity and reduce to the problem of showing that p|(X
 × Y )
 is a
q-colimit diagram. Let ∞′ denote the cone point of X
. Since the inclusion
{∞′}×Y ⊆ X
×Y is cofinal, we are reduced to proving that p∞′ : Y 
 → C

is a q-colimit diagram, which follows from (1).

Corollary 5.5.2.4. A presentable ∞-category C admits all (small) limits.

Proof. Let P̂(C) = Fun(Cop, Ŝ), where Ŝ denotes the ∞-category of spaces
which are not necessarily small, and let j : C → P̂(C) be the Yoneda em-
bedding. Since j is fully faithful, it will suffice to show that the essential
image of j admits small limits. The ∞-category P̂(C) admits all small limits
(in fact, even limits which are not necessarily small); it therefore suffices to
show that the essential image of j is stable under small limits. This follows
immediately from Proposition 5.5.2.2 and Lemma 5.5.2.3.

Remark 5.5.2.5. Let A be a (small) partially ordered set. The ∞-category
N(A) is presentable if and only if every subset of A has a least upper bound.
Corollary 5.5.2.4 can then be regarded as a generalization of the following
classical observation: if every subset of A has a least upper bound, then every
subset of A has a greatest lower bound (namely, a least upper bound for the
collection of all lower bounds).

Remark 5.5.2.6. Now that we know that every presentable ∞-category
C has arbitrary limits, we can apply an argument dual to that of Remark
5.5.1.7 to show that C is cotensored over S. In other words, for any C ∈ C

and every simplicial set X, there exists an object CX ∈ C (well-defined up
to equivalence) together with a collection of natural isomorphisms

MapC(C ′, CX) � MapC(C ′, C)X

in the homotopy category H.

We can now formulate a dual version of Proposition 5.5.2.2, which requires
a slightly stronger hypothesis.
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Proposition 5.5.2.7. Let C be a presentable ∞-category and let F : C → S

be a functor. Then F is corepresentable by an object of C if and only if F is
accessible and preserves small limits.

Proof. The “only if” direction is clear since every object of C is κ-compact
for κ � 0. We will prove the converse. Without loss of generality, we may
suppose that C is minimal (this assumption is a technical convenience which
will guarantee that various constructions below stay in the world of small ∞-
categories). Let C̃ → C denote the left fibration represented by F . Choose a
regular cardinal κ such that C is κ-accessible and F is κ-continuous and let C̃

κ

denote the fiber product C̃×C Cκ, where Cκ ⊆ C denotes the full subcategory
spanned by the κ-compact objects of C. The ∞-category C̃

κ
is small (since C

is assumed minimal). Corollary 5.5.2.4 implies that the diagram p : C̃
κ → C

admits a limit p : (C̃
κ
)	 → C. Since the functor F preserves small limits,

Corollary 3.3.3.3 implies that there exists a map q : (C̃
κ
)	 → C̃ which extends

the inclusion q : C̃
κ ⊆ C̃ and covers p. Let X̃0 ∈ C̃ denote the image of the

cone point under q and X0 its image in C. Then X̃0 determines a connected
component of the space F (X0). Since C is κ-accessible, we can write X0 as a
κ-filtered colimit of κ-compact objects {Xα} of C. Since F is κ-continuous,
there exists a κ-compact object X ∈ C such that the induced map F (X) →
F (X0) has nontrivial image in the connected component classified by X̃0.
It follows that there exists an object X̃ ∈ C̃ lying over Xα and a morphism
f : X̃ → X̃0 in C̃. Since C̃/q → C̃ is a right fibration, we can pull q back to
obtain a map q′ : (C̃

κ
)	 → C̃ which extends q and carries the cone point to

X̃. It follows that q′ factors through C̃
κ
. We have a commutative diagram

C̃

**�
��

��
��

�

{X̃}

����������
i �� C̃

	
,

where i denotes the inclusion of the cone point. The map i is left anodyne
and therefore a covariant equivalence in (Set∆)/C. It follows that C̃

κ
is a

retract of {X} in the homotopy category of the covariant model category
(Set∆)/Cκ . Proposition 5.1.1.1 implies that F |Cκ is a retract of the Yoneda
image j(X) in P(Cκ). Since the ∞-category Cκ is idempotent complete and
the Yoneda embedding j : Cκ → P(Cκ) is fully faithful, we deduce that
F |Cκ is equivalent to j(X ′), where X ′ ∈ Cκ is a retract of X. Let F ′ : C → S

denote the functor corepresented by X ′. We note that F |Cκ and F ′|Cκ are
equivalent and that both F and F ′ are κ-continuous. Since C is equivalent
to Indκ(Cκ), Proposition 5.3.5.10 guarantees that F and F ′ are equivalent,
so that F is representable by X ′.

Remark 5.5.2.8. It is not difficult to adapt our proof of Proposition 5.5.2.7
to obtain an alternative proof of Proposition 5.5.2.2.



PRESENTABLE AND ACCESSIBLE ∞-CATEGORIES 465

From Propositions 5.5.2.2 and 5.5.2.7, we can deduce a version of the
adjoint functor theorem:

Corollary 5.5.2.9 (Adjoint Functor Theorem). Let F : C → D be a functor
between presentable ∞-categories.

(1) The functor F has a right adjoint if and only if it preserves small
colimits.

(2) The functor F has a left adjoint if and only if it is accessible and
preserves small limits.

Proof. The “only if” directions follow from Propositions 5.2.3.5 and 5.4.7.7.
We now prove the converse direction of (2); the proof of (1) is similar but
easier. Suppose that F is accessible and preserves small limits. Let F ′ : D →
S be a corepresentable functor. Then F ′ is accessible and preserves small
limits (Proposition 5.5.2.7). It follows that the composition F ′ ◦ F : C → S

is accessible and preserves small limits. Invoking Proposition 5.5.2.7 again,
we deduce that F ′ ◦F is representable. We now apply Proposition 5.2.4.2 to
deduce that F has a left adjoint.

Remark 5.5.2.10. The proof of (1) in Corollary 5.5.2.9 does not require
that D be presentable but only that D be (essentially) locally small.

5.5.3 Limits and Colimits of Presentable ∞-Categories

In this section, we will introduce and study an ∞-category whose objects are
presentable ∞-categories. In fact, we will introduce two such ∞-categories
which are (canonically) antiequivalent to one another. The basic observation
is the following: given a pair of presentable ∞-categories C and D, the proper
notion of “morphism” between them is a pair of adjoint functors

C
F �� D
G.

��

Of course, either one of F and G determines the other up to canonical
equivalence. We may therefore think of either one as encoding the data of a
morphism.

Definition 5.5.3.1. Let Ĉat∞ denote the ∞-category of (not necessarily
small) ∞-categories. We define subcategories PrR,PrL ⊆ Ĉat∞ as follows:

(1) The objects of both PrR and PrL are the presentable ∞-categories.

(2) A functor F : C → D between presentable ∞-categories is a morphism
in PrL if and only if F preserves small colimits.

(3) A functor G : C → D between presentable ∞-categories is a morphism
in PrR if and only if G is accessible and preserves small limits.
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As indicated above, the ∞-categories PrR and PrL are antiequivalent to
one another. To prove this, it is convenient to introduce the following defi-
nition:

Definition 5.5.3.2. A map of simplicial sets p : X → S is a presentable
fibration if it is both a Cartesian fibration and a coCartesian fibration and
if each fiber Xs = X ×S {s} is a presentable ∞-category.

The following result is simply a reformulation of Corollary 5.5.2.9:

Proposition 5.5.3.3. (1) Let p : X → S be a Cartesian fibration of sim-
plicial sets classified by a map χ : Sop → Ĉat∞. Then p is a presentable
fibration if and only if χ factors through PrR ⊆ Ĉat∞.

(2) Let p : X → S be a coCartesian fibration of simplicial sets classified
by a map χ : S → Ĉat∞. Then p is a presentable fibration if and only
if χ factors through PrL ⊆ Ĉat∞.

Corollary 5.5.3.4. For every simplicial set S, there is a canonical bijection

[S,PrL] � [Sop,PrR],

where [S,C] denotes the collection of equivalence classes of objects of the ∞-
category Fun(S,C). In particular, there is a canonical isomorphism PrL �
(PrR)op in the homotopy category of ∞-categories.

Proof. According to Proposition 5.5.3.3, both [S,PrL] and [Sop,PrR] can be
identified with the collection of equivalence classes of presentable fibrations
X → S.

We now commence our study of the ∞-category PrL (or equivalently, the
antiequivalent ∞-category PrR). The next few results express the idea that
PrL ⊆ Ĉat∞ is stable under a variety of categorical constructions.

Proposition 5.5.3.5. Let {Cα}α∈A be a family of ∞-categories indexed by a
small set A and let C =

∏
α∈A Cα be their product. If each Cα is presentable,

then C is presentable.

Proof. It follows from Lemma 5.4.7.2 that C is accessible. Let p : K → C be
a diagram indexed by a small simplicial set K corresponding to a family of
diagrams {pα : K → Cα}α∈A. Since each Cα is presentable, each pα has a
colimit pα : K
 → Cα. These colimits determine a map p : K
 → C which is
a colimit of p.

Proposition 5.5.3.6. Let C be an presentable ∞-category and let K be a
small simplicial set. Then Fun(K,C) is presentable.

Proof. According to Proposition 5.4.4.3, Fun(K,C) is accessible. It follows
from Proposition 5.1.2.2 that if C admits small colimits, then Fun(K,C)
admits small colimits.
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Remark 5.5.3.7. Let S be a (small) simplicial set. It follows from Ex-
ample 5.4.2.7 and Corollary 5.1.2.4 that P(S) is a presentable ∞-category.
Moreover, Theorem 5.1.5.6 has a natural interpretation in the language of
presentable ∞-categories: informally speaking, it asserts that the construc-
tion

S �→ P(S)

is left adjoint to the inclusion functor from presentable ∞-categories to all
∞-categories.

The following is a variant on Proposition 5.5.3.6:

Proposition 5.5.3.8. Let C and D be presentable ∞-categories. The ∞-
category FunL(C,D) is presentable.

Proof. Since D admits small colimits, the ∞-category Fun(C,D) admits
small colimits (Proposition 5.1.2.2). Using Lemma 5.5.2.3, we conclude that

FunL(C,D) ⊆ Fun(C,D)

is stable under small colimits. To complete the proof, it will suffice to show
that FunL(C,D) is accessible.

Choose a regular cardinal κ such that C is κ-accessible and let Cκ be the
full subcategory of C spanned by the κ-compact objects. Propositions 5.5.1.9
and 5.3.5.10 imply that the restriction functor

FunL(C,D) → Fun(Cκ,D)

is fully faithful, and its essential image is the full subcategory E ⊆ Fun(Cκ,D)
spanned by those functors which preserve κ-small colimits.

Since Cκ is essentially small, the ∞-category Fun(Cκ,D) is accessible
(Proposition 5.4.4.3). To complete the proof, we will show that E is an ac-
cessible subcategory of Fun(Cκ,D). For each κ-small diagram p : K → Cκ,
let E(p) denote the full subcategory of Fun(Cκ,D) spanned by those functors
which preserve the colimit of p. Then E =

⋂
p E(p), where the intersection

is taken over a set of representatives for all equivalence classes of κ-small
diagrams in Cκ. According to Proposition 5.4.7.10, it will suffice to show
that each E(p) is an accessible subcategory of Fun(Cκ,D). We now observe
that there is a (homotopy) pullback diagram of ∞-categories

E(p)� �

��

�� E′(p)� �

��
Fun(Cκ,D) �� Fun(K
,D),

where E′ denotes the full subcategory of Fun(K
,D) spanned by the colimit
diagrams. According to Proposition 5.4.4.3, it will suffice to prove that E′(p)
is an accessible subcategory of Fun(K
,D), which follows from Example
5.4.7.9.
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Remark 5.5.3.9. In the situation of Proposition 5.5.3.8, the presentable
∞-category FunL(C,D) can be regarded as an internal mapping object in
PrL. For every presentable ∞-category C′, a colimit-preserving functor C′ →
FunL(C,D) can be identified with a bifunctor C×C′ → D, which is colimit-
preserving separately in each variable. There exists a universal recipient for
such a bifunctor: a presentable category which we may denote by C⊗C′.
The operation ⊗ endows PrL with the structure of a symmetric monoidal
∞-category. Proposition 5.5.3.8 can be interpreted as asserting that this
monoidal structure is closed.

Proposition 5.5.3.10. Let C be an ∞-category and let p : K → C be a
diagram in C indexed by a (small) simplicial set K. If C is presentable, then
the ∞-category C/p is also presentable.

Proof. According to Corollary 5.4.6.7, C/p is accessible. The existence of
small colimits in C/p follows from Proposition 1.2.13.8.

Proposition 5.5.3.11. Let C be an ∞-category and let p : K → C be a
diagram in C indexed by a small simplicial set K. If C is presentable, then
the ∞-category Cp/ is also presentable.

Proof. It follows from Corollary 5.4.5.16 that Cp/ is accessible. It therefore
suffices to prove that every diagram q : K ′ → Cp/ has a colimit in C. We
now observe that (Cp/)q/ � Cq′/, where q′ : K K ′ → C is the map classified
by q. Since C admits small colimits, Cq′/ has an initial object.

Proposition 5.5.3.12. Let

X′ q′ ��

p′

��

X

p

��
Y′ q �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure). Suppose further that X, Y, and Y′ are presentable
and that p and q are presentable functors. Then X′ is presentable. Moreover,
for any presentable ∞-category C and any functor f : C → X, f is presentable
if and only if the compositions p′ ◦ f and q′ ◦ f are presentable. In particular
(taking f = idX), p′ and q′ are presentable functors.

Proof. Proposition 5.4.6.6 implies that X′ is accessible. It therefore suffices
to prove that any diagram f : K → X′ indexed by a small simplicial set
K has a colimit in X′. Without loss of generality, we may suppose that p
and q are categorical fibrations and that X′ = X×Y Y′. Let X be an initial
object of Xq′◦f/ and let Y ′ be an initial object of Y′

p′f/. Since p and q preserve
colimits, the images p(X) and q(Y ′) are initial objects in Ypq′f/ and therefore
equivalent to one another. Choose an equivalence η : p(X) → q(Y ′). Since q
is a categorical fibration, η lifts to an equivalence η : Y → Y ′ in Y′

p′f/ such
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that q(η) = η. Replacing Y ′ by Y , we may suppose that p(X) = q(Y ), so that
the pair (X,Y ) may be considered as an object of X′

f/ = Y′
p′f/×Ypqf/

Xqf/.
According to Lemma 5.4.5.2, it is an initial object of X′

f/, so that f has
a colimit in X′. This completes the proof that X′ is accessible. The second
assertion follows immediately from Lemma 5.4.5.5.

Proposition 5.5.3.13. The ∞-category PrL admits all small limits, and
the inclusion functor PrL ⊆ Ĉat∞ preserves all small limits.

Proof. The proof of Proposition 4.4.2.6 shows that it will suffice to consider
the case of pullbacks and small products. The desired result now follows by
combining Propositions 5.5.3.12 and 5.5.3.5.

Corollary 5.5.3.14. Let p : X → S be a presentable fibration of simplicial
sets, where S is small. Then the ∞-category C of coCartesian sections of p
is presentable.

Proof. According to Proposition 5.5.3.3, p is classified by a functor χ : S →
PrL. Using Proposition 5.5.3.13, we deduce that the limit of the composite
diagram

S → PrL → Ĉat∞
is presentable. Corollary 3.3.3.2 allows us to identify this limit with the ∞-
category C.

Our goal in the remainder of this section is to prove the analogue of
Proposition 5.5.3.13 for the ∞-category PrR (which will show that PrL is
equipped with all small colimits as well as all small limits). The main step is
to prove that for every small diagram S → PrR, the limit of the composite
functor

S → PrR → Ĉat∞
is presentable. As in the proof of Corollary 5.5.3.14, this is equivalent to the
assertion that for any presentable fibration p : X → S, the ∞-category C of
Cartesian sections of p is presentable. To prove this, we will show that the ∞-
category MapS(S,X) is presentable and that C is an accessible localization
of MapS(S,X).

Lemma 5.5.3.15. Let p : M → ∆1 be a Cartesian fibration, let C denote the
∞-category of sections of p, and let e : X → Y and e′ : X ′ → Y ′ be objects of
C. If e′ is p-Cartesian, then the evaluation map MapC(e, e′) → MapM(Y, Y ′)
is a homotopy equivalence.

Proof. There is a homotopy pullback diagram of simplicial sets whose image
in the homotopy category H is isomorphic to

MapC(e, e′) ��

��

MapM(Y, Y ′)

��
MapM(X,X ′) �� MapM(X,Y ′).
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If e′ is p-Cartesian, then the lower horizonal map is a homotopy equivalence,
so the upper horizonal map is a homotopy equivalence as well.

Lemma 5.5.3.16. Let p : M → ∆1 be a Cartesian fibration. Let C denote
the ∞-category of sections of p and C′ ⊆ C the full subcategory spanned by
Cartesian sections of p. Then C′ is a reflective subcategory of C.

Proof. Let e : X → Y be an arbitrary section of p and choose a Cartesian
section e′ : X ′ → Y with the same target. Since e′ is Cartesian, there exists
a diagram

X ��

��

Y

idY

��
X ′ �� Y

in M which we may regard as a morphism φ from e ∈ C to e′ ∈ C′. In
view of Proposition 5.2.7.8, it will suffice to show that φ exhibits e′ as a
C′-localization of C. In other words, we must show that for any Cartesian
section e′′ : X ′′ → Y ′′, composition with φ induces a homotopy equivalence
MapC(e′, e′′) → MapC(e, e′′). This follows immediately from Lemma 5.5.3.15.

Proposition 5.5.3.17. Let p : X → S be a presentable fibration, where S
is a small simplicial set. Then

(1) The ∞-category C = MapS(S,X) of sections of p is presentable.

(2) The full subcategory C′ ⊆ C spanned by Cartesian sections of p is an
accessible localization of C.

Proof. The accessibility of C follows from Corollary 5.4.7.17. Since p is a
Cartesian fibration and the fibers of p admit small colimits, C admits small
colimits by Proposition 5.1.2.2. This proves (1).

For each edge e of S, let C(e) denote the full subcategory of C spanned by
those maps S → X which carry e to a p-Cartesian edge of X. By definition,
C′ =

⋂
C(e). According to Lemma 5.5.4.18, it will suffice to show that each

C(e) is an accessible localization of C. Consider the map

θe : C → MapS(∆1, X).

Proposition 5.1.2.2 implies that θe preserves all limits and colimits. More-
over, C(e) = θ−1

e Map′
S(∆1, X), where Map′

S(∆1, X) denotes the full subcat-
egory of MapS(∆1, X) spanned by p-Cartesian edges. According to Lemma
5.5.4.17, it will suffice to show that Map′

S(∆1, X) ⊆ MapS(∆1, X) is an
accessible localization of MapS(∆1, X). In other words, we may suppose
S = ∆1. It then follows that evaluation at {1} induces a trivial fibration
C′ → X ×S {1}, so that C′ is presentable. It therefore suffices to show that
C′ is a reflective subcategory of C, which follows from Lemma 5.5.3.16.
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Theorem 5.5.3.18. The ∞-category PrR admits small limits, and the in-
clusion functor PrR ⊆ Ĉat∞ preserves small limits.

Proof. Let χ : Sop → PrR be a small diagram and let χ : (S
)op → Ĉat∞ be
a limit of χ in Cat∞. We will show that χ factors through PrR ⊆ Ĉat∞ and
that χ is a limit when regarded as a diagram in PrR.

We first show that χ carries each vertex to a presentable ∞-category. This
is clear with the exception of the cone point of (S
)op. Let p : X → S be
a presentable fibration classified by χ. According to Corollary 3.3.3.2, we
may identify the image of the cone point under χ with the ∞-category C of
Cartesian sections of p. Proposition 5.5.3.17 implies that this ∞-category is
presentable.

We next show that χ carries each edge of (S
)op to an accessible limit-
preserving functor. This is clear for edges which are degenerate or belong to
Sop. The remaining edges are in bijection with the vertices of s and connect
those vertices to the cone point. The corresponding functors can be identified
with the composition

C ⊆ MapS(S,X) → Xs,

where the second functor is given by evaluation at s. Proposition 5.5.3.17
implies that the inclusion i : C ⊆ MapS(S,X) is accessible and preserves
small limits, and Proposition 5.1.2.2 implies that the evaluation map

MapS(S,X) → Xs

preserves all limits and colimits. This completes the proof that χ factors
through PrR.

We now show that χ is a limit diagram in PrR. Since PrR is a subcategory
of Ĉat∞ and χ is already a limit diagram in Ĉat∞, it will suffice to verify
the following assertion:

• If D is a presentable ∞-category and F : D → C has the property that
each of the composite functors

D
F→ C

i⊆ MapS(S,X) → Xs

is accessible and limit-preserving, then F is accessible and preseves
limits.

Applying Proposition 5.5.3.17, we see that F is accessible and preserves
limits if and only if i ◦F is accessible and preserves limits. We now conclude
by applying Proposition 5.1.2.2.

5.5.4 Local Objects

According to Theorem 5.5.1.1, every presentable ∞-category arises as an
(accessible) localization of some presheaf ∞-category P(X). Consequently,
understanding the process of localization is of paramount importance in
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the study of presentable ∞-categories. In this section, we will classify the
accessible localizations of an arbitrary presentable ∞-category C. The ba-
sic observation is that a localization functor L : C → C is determined, up
to equivalence, by the collection S of all morphisms f such that Lf is an
equivalence. Moreover, a collection of morphisms S arises from an accessible
localization functor if and only if S is strongly saturated (Definition 5.5.4.5)
and of small generation (Remark 5.5.4.7). Given any small collection of mor-
phisms S in C, there is a smallest strongly saturated collection containing
S: this permits us to define a localization S−1 C ⊆ C. The ideas presented in
this section go back (at least) to Bousfield; we refer the reader to [12] for a
discussion in a more classical setting.

Definition 5.5.4.1. Let C be an ∞-category and S a collection of mor-
phisms of C. We say that an object Z of C is S-local if, for every morphism
s : X → Y belonging to S, composition with s induces an isomorphism
MapC(Y,Z) → MapC(X,Z) in the homotopy category H of spaces.

A morphism f : X → Y of C is an S-equivalence if, for every S-local
object Z, composition with f induces a homotopy equivalence MapC(Y,Z) →
MapC(X,Z).

The following result provides a dictionary for relating localization functors
to classes of morphisms:

Proposition 5.5.4.2. Let C be an ∞-category and let L : C → C be a
localization functor. Let S denote the collection of all morphisms f in C

such that Lf is an equivalence. Then

(1) An object C of C is S-local if and only if it belongs to LC.

(2) Every S-equivalence in C belongs to S.

(3) Suppose that C is accessible. The following conditions are equivalent:

(i) The ∞-category LC is accessible.

(ii) The functor L : C → C is accessible.

(iii) There exists a (small) subset S0 ⊆ S such that every S0-local
object is S-local.

Proof of (1) and (2). By assumption, L is left adjoint to the inclusion LC ⊆
C; let α : idC → L be a unit map for the adjunction. We begin by proving
(1). Suppose that X ∈ LC. Let f : Y → Z belong to S. Then we have a
commutative diagram

MapC(LZ,X) ��

��

MapC(LY,X)

��
MapC(Z,X) �� MapC(Y,X),
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in the homotopy category H, where the vertical maps are given by compo-
sition with α and are homotopy equivalences by assumption. Since Lf is
an equivalence, the top horizontal map is also a homotopy equivalence. It
follows that the bottom horizontal map is a homotopy equivalence, so that
X is S-local. Conversely, suppose that X is S-local. According to Proposi-
tion 5.2.7.4, the map α(X) : X → LX belongs to S, so that composition
with α(X) induces a homotopy equivalence MapC(LX,X) → MapC(X,X).
In particular, there exists a map LX → X whose composition with α(X) is
homotopic to idX . Thus X is a retract of LX. Since α(LX) is an equivalence,
we conclude that α(X) is an equivalence, so that X � LX and therefore X
belongs to the essential image of L, as desired. This proves (1).

Suppose that f : X → Y is an S-equivalence. We have a commutative
diagram

X
f ��

α(X)

��

Y

α(Y )

��
LX

Lf �� LY

where the vertical maps are S-equivalences (by Proposition 5.2.7.4), so that
Lf is also an S-equivalence. Therefore LX and LY corepresent the same
functor on the homotopy category hLC. Yoneda’s lemma implies that Lf is
an equivalence, so that f ∈ S. This proves (2).

The proof of (3) is more difficult and will require a few preliminaries.

Lemma 5.5.4.3. Let τ � κ be regular cardinals and suppose that τ is
uncountable. Let A be a κ-filtered partially ordered set, A′ ⊆ A a τ -small
subset, and

{fγ : Xγ → Yγ}γ∈C
a τ -small collection of natural transformations of diagrams in KanA. Suppose
that for each α ∈ A, γ ∈ C, the Kan complexes Xγ(α) and Yγ(α) are
essentially τ -small. Suppose further that, for each γ ∈ C, the map of Kan
complexes lim−→A

fγ is a homotopy equivalence. Then there exists a τ -small
κ-filtered subset A′′ ⊆ A such that A′ ⊆ A′′, and lim−→A′′ fγ |A′′ is a homotopy
equivalence for each γ ∈ C.

Proof. Replacing each fγ by an equivalent transformation if necessary, we
may suppose that for each γ ∈ C, α ∈ A, the map fγ(α) is a Kan fibration.

Let α ∈ A, let γ ∈ C, and let σ(α, γ) be a diagram

∂∆n ��
� �

��

Xγ(α)

��
∆n �� Yγ(α).
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We will say that α′ ≥ α trivializes σ(α, γ) if the lifting problem depicted in
the induced diagram

∂∆n ��
� �

��

Xγ(α′)

��
∆n ��

���
�

�
�

�
Yγ′(α)

admits a solution. Observe that, if B ⊆ A is filtered, then lim−→B
fγ |B is a Kan

fibration, which is trivial if and only if for every diagram σ(α, γ) as above,
where α ∈ B, there exists α′ ∈ B such that α′ ≥ α and α′ trivializes σ(α, γ).
In particular, since lim−→A

fγ is a homotopy equivalence, every such diagram
σ(α, γ) is trivialized by some α′ ≥ α.

We now define a sequence of τ -small subsets A(λ) ⊆ A indexed by ordinals
λ ≤ κ. Let A(0) = A′ and let A(λ) =

⋃
λ′<λA(λ′) when λ is a limit ordinal.

Supposing that λ < κ and that A(λ) has been defined, we choose a set of
representatives Σ = {σ(α, γ)} for all homotopy classes of diagrams as above,
where α ∈ A(λ) and γ ∈ C. Since the Kan complexes Xγ(α), Yγ(α) are
essentially τ -small, we may choose the set Σ to be τ -small. Each σ ∈ Σ
is trivialized by some α′

σ ∈ A. Let B = {α′
σ}σ∈Σ; then B is τ -small. Now

choose a τ -small κ-filtered subset A(λ + 1) ⊆ A containing A(λ) ∪ B (the
existence of A(λ+ 1) is guaranteed by Lemma 5.4.2.10).

We now define A′′ to be A(κ); it is easy to see that A′′ has the desired
properties.

Lemma 5.5.4.4. Let τ � κ be regular cardinals and suppose that τ is
uncountable. Let A be a κ-filtered partially ordered set and for every subset
B ⊆ A, let

lim−→B
: Fun(N(B), S) → S

denote a left adjoint to the diagonal functor. Let A′ ⊆ A be a τ -small subset
and {fγ : Xγ → Yγ}γ∈C a τ -small collection of morphisms in the ∞-category
Fun(N(A), Sτ ) of diagrams N(A) → Sτ . Suppose that lim−→A

(fγ) is an equiva-
lence for each γ ∈ C. Then there exists a τ -small κ-filtered subset A′′ ⊆ A
which contains A′ such that each of the morphisms lim−→A′′(fγ |N(A′′)) is an
equivalence in S.

Proof. Using Proposition 4.2.4.4, we may assume without loss of gener-
ality that each fγ is the simplicial nerve of a natural transformation of
functors from A to Kan. According to Theorem 4.2.4.1, we can identify
lim−→B

(Xγ |N(B)) and lim−→B
(Yγ |N(B)) with homotopy colimits in Kan. If B is

filtered, then these homotopy colimits reduce to ordinary colimits (since the
class of weak homotopy equivalences in Kan is stable under filtered colimits),
and we may apply Lemma 5.5.4.3.

Proof of part (3) of Proposition 5.5.4.2. If LC is accessible, then Proposi-
tion 5.4.7.7 implies that both the inclusion LC → C and the functor L : C →
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LC are accessible functors, so that their composition is accessible. Thus
(i) ⇒ (ii). Suppose next that (ii) is satisfied. Let α : idC → L denote a
unit for the adjunction between L and the inclusion LC ⊆ C and let κ be a
regular cardinal such that C is κ-accessible and L is κ-continuous. Without
loss of generality, we may suppose that C is minimal, so that Cκ is a small
∞-category. Let S0 = {α(X) : X ∈ Cκ} and let Y ∈ C be S0-local. We wish
to prove that Y is S-local. Let FY : C → Sop denote the functor represented
by Y . Then α induces a natural transformation FY → FY ◦L. The functors
FY and FY ◦ L are both κ-continuous. By assumption, α induces an equiv-
alence of functors FY |Cκ → (FY ◦ L)|Cκ when both sides are restricted to
κ-compact objects. Proposition 5.3.5.10 now implies that FY and FY ◦L are
equivalent, so that Y is S-local. This proves (iii).

We complete the proof by showing that (iii) implies (i). Let κ be a regular
cardinal such that C is κ-accessible and S0 is a set of morphisms between
κ-compact objects of C. We claim that LC is stable under κ-filtered colimits
in C. To prove this, let p : K
 → C be a colimit diagram, where K is small
and κ-filtered and p = p|K factors through LC ⊆ C. Let s : X → Y be a
morphism which belongs to S0 and let s′ : FX → FY be the corresponding
map of corepresentable functors C → Ŝ. Since X and Y are κ-compact by
assumption, both pX : FX ◦ p and pY : FY ◦ p are colimit diagrams in Ŝ. The
map s′ induces a transformation pX → pY , which is an equivalence when
restricted to K and is therefore an equivalence in general. It follows that
MapC(Y, p(∞)) � MapC(X, p(∞)), where ∞ denotes the cone point of K
.
Thus p(∞) is S0-local as desired.

Now choose an uncountable regular cardinal τ � κ such that Cκ is essen-
tially τ -small. According to Proposition 5.4.2.2, to complete the proof that
C is accessible it will suffice to show that LC is generated by τ -compact
objects under τ -filtered colimits. Let X be an object of LC. Lemma 5.1.5.3
implies that X can be written as the colimit of a small diagram p : I → Cκ,
where I is κ-filtered. Using Proposition 5.3.1.16, we may suppose that I is
the nerve of a κ-filtered partially ordered set A. Let B denote the collection
of all κ-filtered τ -small subsets Aβ ⊆ A for which the colimit of p|N(Aβ)
is S0-local. Lemma 5.5.4.4 asserts that every τ -small subset of A is con-
tained in Aβ for some β ∈ B. It follows that B is τ -filtered when regarded
as partially ordered by inclusion and that A =

⋃
β∈B Aβ. Using Proposition

4.2.3.8 and Corollary 4.2.3.10, we can obtain X as the colimit of a diagram
q : N(B) → C, where each q(β) is a colimit Xβ of p|N(Aβ). The objects
{Xβ}β∈B are S0-local and τ -compact by construction.

According to Proposition 5.5.4.2, every localization L of an ∞-category C

is determined by the class S of morphisms f such that Lf is an equivalence.
This raises the question: which classes of morphisms S arise in this way? To
answer this question, we will begin by isolating some of the most obvious
properties enjoyed by S.

Definition 5.5.4.5. Let C be a ∞-category which admits small colimits
and let S be a collection of morphisms of C. We will say that S is strongly
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saturated if it satisfies the following conditions:

(1) Given a pushout diagram

C
f ��

��

D

��
C′ f ′

���� D′

in C, if f belongs to S, then so does f ′.

(2) The full subcategory of Fun(∆1,C) spanned by S is stable under small
colimits.

(3) Suppose we are given a 2-simplex of C corresponding to a diagram

X
f ��

g

��













 Y
h

��		
		
		
	

Z.

If any two of f , g, and h belong to S, then so does the third.

Remark 5.5.4.6. Let C be an ∞-category which admits small colimits and
let S be a strongly saturated class of morphisms of C. Let ∅ be an initial
object of C. Condition (2) of Definition 5.5.4.5 implies that id∅ : ∅ → ∅
belongs to S, since it is an initial object of Fun(∆1,C). Any equivalence in C

is a pushout of id∅, so condition (1) implies that S contains all equivalences
in C. It also follows from condition (1) that if f : C → D belongs to S and
f ′ : C → D is homotopic to f , then f ′ belongs to S (since f ′ is a pushout
of f). Note also that condition (2) implies that S is stable under retracts
because any retract of a morphism f can be written as a colimit of copies of
f (Proposition 4.4.5.12).

Remark 5.5.4.7. Let C be an ∞-category which admits colimits. Given
any collection {Sα}α∈A of strongly saturated classes of morphisms of C, the
intersection S =

⋂
α∈A Sα is also strongly saturated. It follows that any

collection S0 of morphisms in C is contained in a smallest strongly saturated
class of morphisms S. In this case we will also write S = S0; we refer to it
as the strongly saturated class of morphisms generated by S0. We will say
that S is of small generation if S = S0, where S0 ⊆ S is small.

Remark 5.5.4.8. Let C be an ∞-category which admits small colimits. Let
S be a strongly saturated class of morphisms of C. If f : X → Y lies in S
and K is a simplicial set, then the induced map X ⊗ K → Y ⊗ K (which
is well-defined up to equivalence) lies in S. This follows from the closure of
S under colimits. We will use this observation in the proof of Proposition
5.5.4.15 in the case where K = ∂∆n is a (simplicial) sphere.
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Example 5.5.4.9. Let C be an ∞-category which admits small colimits and
let S denote the class of all equivalences in C. Then S is strongly saturated;
it is clearly the smallest strongly saturated class of morphisms of C.

Remark 5.5.4.10. Let F : C′ → C be a functor between ∞-categories. Sup-
pose that C and C′ admit small colimits and that F preserves small colimits.
Let S be a strongly saturated class of morphisms in C′. Then F−1S is a
strongly saturated class of morphisms of C. In particular, if we let S denote
the collection of all morphisms f of C′ such that F (f) is an equivalence, then
S is strongly saturated.

Lemma 5.5.4.11. Let C be an ∞-category which admits small colimits,
let S0 be a class of morphisms in C, and let S denote the collection of all
S-equivalences. Then S is strongly saturated.

Proof. For each object X ∈ C, let FX : C → Sop denote the functor repre-
sented by X and let S(X) denote the collection of all morphisms f such that
FX(f) is an equivalence. Since FX preserves small colimits, Remark 5.5.4.10
implies that S(X) is strongly saturated. We now observe that S is the in-
tersection

⋂
S(X), where X ranges over the class of all S0-local objects of

C.

Lemma 5.5.4.12. Let C be an ∞-category which admits small colimits, let
S be a strongly saturated collection of morphisms of C, and let C ∈ C be an
object. Let D ⊆ CC/ be the full subcategory of CC/ spanned by those objects
C → C ′ which belong to S. Then D is stable under small colimits in CC/.

Proof. The proofs of Corollaries 4.2.3.11 and 4.4.2.4 show that it will suffice
to prove that D is stable under filtered colimits and pushouts, and contains
the initial objects of CC/. The last condition is equivalent to the requirement
that S contain all equivalences, which follows from Remark 5.5.4.6. Now
suppose that p : K
 → CC/ is a colimit of p = p|K, where K is either
filtered or equivalent to Λ2

0, and that p(K) ⊆ D. We can identify p with a
map P : K
×∆1 → C such that P |K
×{0} is the constant map taking the
value C ∈ C. Since K is weakly contractible, P |K
×{0} is a colimit diagram
in C. The map P |K
 × {1} is the image of a colimit diagram under the
left fibration CC/ → C; since K is weakly contractible, Proposition 4.4.2.9
implies that P |K
 × {1} is a colimit diagram. We now apply Proposition
5.1.2.2 to deduce that P : K
 → C∆1

is a colimit diagram. Since S is stable
under colimits in C∆1

, we conclude that P carries the cone point of K
 to a
morphism belonging to S, as we wished to show.

Lemma 5.5.4.13. Let C be an ∞-category which admits small filtered co-
limits, let κ be an uncountable regular cardinal, let A and B be κ-filtered
partially ordered sets, and let p0 : N(A0) → Cκ and p1 : A1 → Cκ be two
diagrams which have the same colimit. Let A′′

0 ⊆ A0, A′′
1 ⊆ A1 be κ-small

subsets. Then there exist κ-small filtered subsets A′
0 ⊆ A0, A′

1 ⊆ A1 such
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that A′′
0 ⊆ A′

0, A
′′
1 ⊆ A′

1 and the diagrams p0|N(A′
0), p1|N(A′

1) have the
same colimit in C.

Proof. Let p0, p1 be colimits of p0 and p1, respectively, which carry the cone
points to the same object C ∈ C. Let B = A′′

0 ∪ A′′
1 ∪ Z≥0 ∪ {∞}, which we

regard as a partially ordered set so that

N(B) � ((N(A′′
0)

∐
N(A′′

1)) N(Z≥0))
.

We will construct sequences of elements

{a0 ≤ a2 ≤ . . .} ⊆ {a ∈ A0 : (∀a′′ ∈ A′′
0)[a′′ ≤ a]}

{a1 ≤ a3 ≤ . . .} ⊆ {a ∈ A1 : (∀a′′ ∈ A′′
1)[a′′ ≤ a]}

and a diagram q : N(B) → C such that

q|(N(A′′
0) ∪ N{0, 2, 4, . . .})
 = p0|N(A′′

0 ∪ {a0, a2, . . .})


q|(N(A′′
1) ∪ N{1, 3, 5, . . .})
 = p1|N(A′′

1 ∪ {a1, a3, . . .})
.
Supposing that this has been done, we take A′

0 = A′′
0 ∪ {a0, a2, . . .}, A′

1 =
A′′

1 ∪ {a1, a3, . . .} and observe that the colimits of p0|N(A′
0) and p1|N(A′

1)
are both equivalent to the colimit of q|N(Z≥0).

The construction is by recursion. Let us suppose that the sequence

a0, a1, . . . , an−1

and the map qn = q|((N(A′′
0)

∐
N(A′′

1))  (N{0, . . . , n − 1})
 have already
been constructed (when n = 0, we observe that q0 is uniquely determined
by p0 and p1). For simplicity we will treat only the case where n is even; the
case where n is odd can be handled by a similar argument.

Let qn = qn|(N(A′′
0)

∐
N(A′′

1))  N{0, . . . , n − 1} and q′n = qn|N(A′′
0) 

N{0, 2, . . . , n−2}. According to Corollary 5.3.4.14, the left fibrations Cqn/ →
C and Cq′n/ → C are κ-compact. Set

A0(n) = {a ∈ A0 : (∀a′′ ∈ A′′
0 ∪ {a0, . . . , an−2})[a′′ ≤ a]}

X = Cqn/×C N(A0(n))
 X ′ = Cq′n/×C N(A0(n))


so that X and X ′ are left fibrations classified by colimit diagrams

N(A0(n))
 → S .

Form a pullback diagram

Y ��

��

X

��
N(A0(n))
 �� X ′,

where the left vertical map is a left fibration (by Proposition 2.1.2.1) and the
bottom horizontal map is determined by p|N(A′′

0∪{0, . . . , n−2})N(A0(n))
.
It follows that the diagram is a homotopy pullback, so that Y → N(A0(n))
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is also a left fibration classified by a colimit diagram N(A0(n))
 → S. The
map qn determines a vertex v of Y lying over the cone point of N(A0(n))
.
According to Proposition 3.3.4.5, the inclusion Y ×N(A0(n))
 N(A0(n)) ⊆ Y
is a weak homotopy equivalence of simplicial sets. It follows that there exists
an edge e : v′ → v of Y which joins v to some vertex v′ lying over an element
a ∈ A0(n). We now set an = a and observe that the edge e corresponds to
the desired extension qn+1 of qn.

Lemma 5.5.4.14. Let C be a presentable ∞-category, let S be a strongly
saturated collection of morphisms in C, and let D ⊆ Fun(∆1,C) be the full
subcategory spanned by S. The following conditions are equivalent:

(1) The ∞-category D is accessible.

(2) The ∞-category D is presentable.

(3) The collection S is of small generation (as a strongly saturated class
of morphisms).

Proof. We observe that D is stable under small colimits in Fun(∆1,C) and
therefore admits small colimits; thus (1) ⇒ (2). To see that (2) implies (3),
we choose a small collection S0 of morphisms in C which generates D under
colimits; it is then obvious that S0 generates S as a strongly saturated class
of morphisms.

Now suppose that (3) is satisfied. Choose a small collection of morphisms
{fβ : Xβ → Yβ} which generates S and an uncountable regular cardinal κ
such that C is κ-accessible and each of the objects Xβ , Yβ is κ-compact. We
will prove that D is κ-accessible.

It is clear that D is locally small and admits κ-filtered colimits. Let D′ ⊆ D

be the collection of all morphisms f : X → Y such that f belongs to S, where
both X and Y are κ-compact. Lemma 5.3.4.9 implies that each f ∈ D′ is a
κ-compact object of Fun(∆1,C) and, in particular, a κ-compact object of D.
Assume for simplicity that C is a minimal ∞-category, so that D′ is small.
According to Proposition 5.3.5.10, the inclusion D′ ⊆ D is equivalent to j◦F ,
where j : D′ → IndκD′ is the Yoneda embedding and F : IndκD′ → D is
κ-continuous. Proposition 5.3.5.11 implies that F is fully faithful; let D′′

denote its essential image. To complete the proof, it will suffice to show that
D′′ = D. Let S′′ ⊆ S denote the collection of objects of D′′ (which we may
identify with morphisms in C). By construction, S′′ contains the collection
of morphisms {fβ} which generates S. Consequently, to prove that S′′ = S,
it will suffice to show that S′′ is strongly saturated.

It follows from Proposition 5.5.1.9 that D′′ ⊆ Fun(∆1,C) is stable under
small colimits. We next verify that S ′′ is stable under pushouts. Let K = Λ2

0

and let p : K
 → C be a colimit of p = p|K,

X
f ��

��

Y

��
X ′ f ′

�� Y ′
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such that f belongs to S′′. The proof of Proposition 5.4.4.3 shows that we
can write p as a colimit of a diagram q : N(A) → Fun(Λ2

0,C
κ), where A is a κ-

filtered partially ordered set. For α ∈ A, we let pα denote the corresponding
diagram, which we may depict as

X ′
α ← Xα

fα→ Yα.

For each A′ ⊆ A, we let pA′ denote a colimit of q|N(A′), which we will
denote by

X ′
A′ ← XA′

fA′→ YA′ .

Let B denote the collection of κ-small filtered subsets A′ ⊆ A such that the
fA′ belongs to S′′. Since f ∈ S′′, we conclude that f can be obtained as
the colimit of a κ-filtered diagram N(A′) → D′. Applying Lemma 5.5.4.13,
we deduce that B is κ-filtered and that A =

⋃
A′∈B A

′. Using Proposition
4.2.3.4 and Corollary 4.2.3.10, we deduce that p is the colimit of a diagram
q′ : N(B) → Fun(Λ2

0,C), where q′(A′) = pA′ . Replacing A by B, we may
suppose that each fα belongs to S′.

Let lim−→ : Fun(Λ2
0,C) → Fun(∆1×∆1,C) be a colimit functor (that is, a left

adjoint to the restriction functor). Lemma 5.5.2.3 implies that we may iden-
tify p with a colimit of the diagram lim−→◦q. Consequently, the morphism f ′

can be written as a colimit of morphisms f ′α which fit into pushout diagrams

Xα
fα ��

��

Yα

��
X ′
α

f ′
α �� Y ′

α.

Since fα ∈ S′′ ⊆ S, we conclude that f ′α ∈ S. Since X ′
α and Y ′

α are κ-
compact, we deduce that f ′α ∈ S′′. Since D′′ is stable under colimits, we
deduce that f ′ ∈ S′′, as desired.

We now complete the proof by showing that S′′ has the two-out-of-three
property, using the same style of argument. Let σ : ∆2 → C be a simplex
corresponding to a diagram

X
f ��

g

���
��

��
��

Y

h����
��
��
�

Z

in C. We will show that if f, g ∈ S′′, then h ∈ S′′: the argument in the
other two cases is the same. The proof of Proposition 5.4.4.3 shows that we
can write σ as the colimit of a diagram q : N(A) → Fun(∆2,Cκ), where
A is a κ-filtered partially ordered set. For each α ∈ A, we will denote the
corresponding diagram by

Xα
fα ��

gα

���
��

��
��

� Yα

hα&&%%
%%
%%
%%

Zα.
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Arguing as above, we may assume (possibly after changing A and q) that
each fα belongs to S′′. Repeating the same argument, we may suppose that
gα belongs to S′′. Since S has the two-out-of-three property, we conclude
that each hα belongs to S. Since Xα and Zα are κ-compact, we then have
hα ∈ S′′. The stability of D′′ under colimits now implies that h ∈ S′′, as
desired.

Proposition 5.5.4.15. Let C be a presentable ∞-category and let S be a
(small) collection of morphisms of C. Let S denote the strongly saturated
class of morphisms generated by S. Let C′ ⊆ C denote the full subcategory of
C consisting of S-local objects. Then

(1) For each object C ∈ C, there exists a morphism s : C → C ′ such that
C ′ is S-local and s belongs to S.

(2) The ∞-category C′ is presentable.

(3) The inclusion C′ ⊆ C has a left adjoint L.

(4) For every morphism f of C, the following are equivalent:

(i) The morphism f is an S-equivalence.

(ii) The morphism f belongs to S.

(iii) The induced morphism Lf is an equivalence.

Proof. Assertion (1) is a consequence of Lemma 5.5.5.14, which we will prove
in §5.5.5. The equivalence (1) ⇔ (3) follows immediately from Proposition
5.2.7.8. We now prove (4). Lemma 5.5.4.11 implies that the collection of
S-equivalences is a strongly saturated class of morphisms containing S; it
therefore contains S, so that (ii) ⇒ (i). Now suppose that f : X → Y is
such that Lf is an equivalence and consider the diagram

X ��

��#
##

##
##

#

��

Y

��
LX �� LY.

Our proof of (1) shows that the vertical morphisms belong to S, and the
lower horizontal arrow belongs to S by Remark 5.5.4.6. Two applications of
the two-out-of-three property now show that f ∈ S, so that (iii) ⇒ (ii). If f
is an S-equivalence, then we may again use the above diagram and the two-
out-of-three property to conclude that Lf is an equivalence. It follows that
LX and LY corepresent the same functor on the homotopy category hC′,
so that Yoneda’s lemma implies that Lf is an equivalence. Thus (i) ⇒ (iii),
and the proof of (4) is complete.

It remains to prove (2). Remark 5.2.7.5 implies that LC admits small co-
limits, so it will suffice to prove that LC is accessible. According to Proposi-
tion 5.5.4.2, this follows from the implication (iii) ⇒ (i) of assertion (4).



482 CHAPTER 5

Proposition 5.5.4.15 gives a clear picture of the collection of all accessible
localizations of a presentable ∞-category C. For any (small) set of morphisms
S in C, the full subcategory S−1 C ⊆ C consisting of S-local objects is a
localization of C, and every localization arises in this way. Moreover, the
subcategories S−1 C and T−1 C coincide if and only if S and T generate the
same strongly saturated class of morphisms. We will also write S−1 C for
the class of S-local objects of C in the case where S is not small; however,
this is generally only a well-behaved object in the case where there is a
(small) subset S0 ⊆ S which generates the same strongly saturated class of
morphisms.

Proposition 5.5.4.16. Let f : C → D be a presentable functor between
presentable ∞-categories and let S be a strongly saturated class of morphisms
of D which is of small generation. Then f−1S is of small generation (as a
strongly saturated class of morphisms of C).

Proof. Replacing D by S−1 D if necessary, we may suppose that S consists
of precisely the equivalences in D. Let ED ⊆ Fun(∆1,D) denote the full
subcategory spanned by those morphisms which are equivalences in D and
let EC ⊆ Fun(∆1,C) denote the full subcategory spanned by those mor-
phisms which belong to f−1S. We have a homotopy Cartesian diagram of
∞-categories

EC
��

��

ED

��
Fun(∆1,C) �� Fun(∆1,D).

The ∞-category ED is equivalent to D and therefore presentable. The ∞-
categories Fun(∆1,C) and Fun(∆1,D) are presentable by Proposition 5.5.3.6.
It follows from Proposition 5.5.3.12 that EC is presentable. In particular,
there is a small collection of objects of EC which generates EC under colimits,
as desired.

Let C be a presentable ∞-category. We will say that a full subcategory
C0 ⊆ C is strongly reflective if it is the essential image of an accessible
localization functor. Equivalently, C0 is strongly reflective if it is presentable,
it is stable under equivalence in C, and the inclusion C0 ⊆ C admits a left
adjoint. According to Proposition 5.5.4.15, C0 is strongly reflective if and
only if there exists a (small) set S of morphisms of C such that C0 is the full
subcategory of C spanned by the S-local objects. For later use, we record a
few easy stability properties enjoyed by the collection of strongly reflective
subcategories of C:

Lemma 5.5.4.17. Let f : C → D be a colimit-preserving functor between
presentable ∞-categories and let C0 ⊆ C be a strongly reflective subcategory.
Let f∗ denote a right adjoint of f and let D0 ⊆ D be the full subcategory
spanned by those objects D ∈ D such that f∗D ∈ C0. Then D0 is a strongly
reflective subcategory of D.
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Proof. Let S be a (small) set of morphisms of C such that C0 is the full sub-
category of C spanned by the S-local objects. Then D0 is the full subcategory
of D spanned by the f(S)-local objects.

Lemma 5.5.4.18. Let C be a presentable ∞-category and let {Cα}α∈A be
a family of full subcategories of C indexed by a (small) set A. Suppose that
each Cα is strongly reflective. Then

⋂
α∈A Cα is strongly reflective.

Proof. For each α ∈ A, choose a (small) set S(α) of morphisms of C such
that Cα is the full subcategory of C spanned by the S(α)-local objects. Then⋂
α∈A Cα is the full subcategory of C spanned by the

⋃
α∈A S(α)-local objects.

Lemma 5.5.4.19. Let C be a presentable ∞-category and K a small sim-
plicial set. Let D denote the full subcategory of Fun(K	,C) spanned by those
diagrams p : K	 → C which are limits of p = p|K. Then D is a strongly
reflective subcategory of C.

Proof. The restriction functor D → Fun(K,C) is an equivalence of ∞-
categories. This proves that D is accessible. Let s : Fun(K,C) → D be a
homotopy inverse to the restriction map. Then the composition

Fun(K
,C) → Fun(K,C) s→ D

is left adjoint to the inclusion.

We conclude this section by giving a universal property which characterizes
the localization S−1 C.

Proposition 5.5.4.20. Let C be a presentable ∞-category and D an arbi-
trary ∞-category. Let S be a (small) set of morphisms of C, and L : C →
S−1 C ⊆ C an associated (accessible) localization functor. Composition with
L induces a functor

η : FunL(S−1 C,D) → FunL(C,D).

The functor η is fully faithful, and the essential image of η consists of those
functors f : C → D such that f(s) is an equivalence in D for each s ∈ S.

Proof. Let α : idC → L be a unit for the adjunction between L and the
inclusion S−1 C ⊆ C. We first observe that every functor f0 : S−1 C → D

admits a right Kan extension f : C → D. To prove this, we may first replace
f0 by the equivalent diagram g0 = f0 ◦ (L|S−1 C) and define g = f0 ◦ L. To
prove that g is a right Kan extension of g0, it suffices to show that for each
object X ∈ C, the diagram

p : (S−1 C)	X/ → C
L→ S−1 C

f0→ D

exhibits f0(LX) as a limit of p = p|(S−1 C)/X). For this, we note that an S-
localization map α(X) : X → LX is an initial object of (S−1 C)X/ (Remark
5.2.7.7) and that f0(Lα(X)) is an equivalence by Proposition 5.2.7.4.
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Let X denote the full subcategory of DC spanned by those functors f :
C → D which are right Kan extensions of f |S−1 C. According to Proposition
4.3.2.15, the restriction map X → Fun(S−1 C,D) is a trivial fibration. Let
η : Fun(S−1 C,D) → Fun(C,D) be given by composition with L. The above
argument shows that η factors through X. Moreover, the composition of η
with the restriction map is homotopic to the identity on Fun(S−1 C,D). It
follows that η is an equivalence of ∞-categories.

We have a commutative diagram

FunL(S−1 C,D)
η ��

��

FunL(C,D)

��
Fun(S−1 C,D)

η �� Fun(C,D),

where the vertical maps are inclusions of full subcategories and the lower hor-
izontal map is fully faithful. It follows that η is fully faithful. To complete
the proof, we must show that a functor f : C → D belongs to the essential
image of η if and only if f(s) is an equivalence for each s ∈ S. The “only if”
direction is clear since the functor L carries each element of S to an equiva-
lence in C. Conversely, suppose that f carries each s ∈ S to an equivalence.
The natural transformation α gives a map of functors α(f) : f → f ◦ L; we
wish to show that α(f) is an equivalence. Equivalently, we wish to show that
for each object X ∈ C, f carries the map α(X) : X → LX to an equivalence
in D. Let S ′ denote the class of all morphisms φ in C such that f(φ) is an
equivalence in D. By assumption, S ⊆ S′. Lemma 5.5.4.11 implies that S′ is
strongly saturated, so that Proposition 5.5.4.15 asserts that α(X) ∈ S′, as
desired.

5.5.5 Factorization Systems on Presentable ∞-Categories

Let C be a presentable ∞-category. In §5.5.4, we saw that it is easy to
produce localizations of C: for any small collection of morphisms S in C, the
full subcategory S−1 C of S-local objects of C is a presentable localization
of C which depends only on the strongly saturated class of morphisms S
generated by S. Our goal in this section is to prove a similar result for
factorization systems on C. The first step is to introduce the analogue of the
notion of “strongly saturated”:

Definition 5.5.5.1. Let S be a collection of morphisms in a presentable
∞-category C. We will say that S is saturated if the following conditions are
satisfied:

(1) The collection S is closed under small colimits in Fun(∆1,C).

(2) The collection S contains all equivalences and is stable under compo-
sition.
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(3) The collection S is closed under the formation of pushouts. That is,
given a pushout diagram

X ��

f

��

X ′

f ′

��
Y �� Y ′

in C, if f belongs to S, then f ′ also belongs to S.

Remark 5.5.5.2. Let C be a presentable ∞-category. Then any intersection
of saturated collections of morphisms in C is again saturated. It follows that
for any class of morphisms S of C, there exists a smallest saturated collection
of morphisms S containing S. We will refer to S as the saturated collection
of morphisms generated by S. We will say that a saturated collection of
morphisms S is of small generation if it is generated by some (small) subset
S ⊆ S.

Remark 5.5.5.3. If S is a saturated collection of morphisms of C, then S
is closed under retracts.

Remark 5.5.5.4. Let C be (the nerve of) a presentable category and let S
be a saturated class of morphisms in C. Then S is also weakly saturated in
the sense of Definition A.1.2.2.

Example 5.5.5.5. Let C be a presentable ∞-category. Then every strongly
saturated class of morphisms in C is also saturated.

Example 5.5.5.6. Let C be a presentable ∞-category and let S be any
collection of morphisms of C. Then ⊥S is saturated; this follows immediately
from Proposition 5.2.8.6. In particular, if (SL, SR) is a factorization system
on C, then SL is saturated.

The main result of this section is the following converse to Example 5.5.5.6:

Proposition 5.5.5.7. Let C be a presentable ∞-category and let S be a
saturated collection of morphisms in C which is of small generation. Then
(S, S⊥) is a factorization system on C.

Corollary 5.5.5.8. Let C be a presentable ∞-category, let S be a saturated
collection of morphisms of C, and suppose that S is of small generation. Let

Y
g

���
��

��
��

X

f
��������� h �� Z

be a commutative diagram in C. If f and h belong to S, then g belongs to S.

Proof. Combine Propositions 5.5.5.7, 5.2.8.11, and 5.2.8.6.
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In the situation of Proposition 5.5.5.7, we will refer to the elements of S⊥

as S-local morphisms of C. Note that an object X ∈ C is S-local if and only
if a morphism X → 1C is S-local, where 1C denotes a final object of C.

The proof of Proposition 5.5.5.7 will be given at the end of this section
after we have established a series of technical lemmas.

Lemma 5.5.5.9. Let C be a presentable ∞-category and S a saturated col-
lection of morphisms of C. The following conditions are equivalent:

(1) The collection S is of small generation.

(2) The full subcategory D ⊆ Fun(∆1,C) spanned by the elements of S is
presentable.

Proof. If D is presentable, then D is generated under small colimits by a
small set of objects; these objects clearly generate S as a saturated collection
of morphisms. This proves that (2) ⇒ (1). To prove the reverse implication,
choose a small collection of morphisms {fβ : Xβ → Yβ} which generates S
as a semisaturated class of morphisms and an uncountable regular cardinal
κ such that C is κ-accessible and each of the objects Xβ , Yβ is κ-compact.
Let D′ ⊆ D be the collection of all morphisms f : X → Y such that f
belongs to S, where both X and Y are κ-compact. Lemma 5.3.4.9 implies
that each f ∈ D′ is a κ-compact object of Fun(∆1,C) and, in particular, a κ-
compact object of D. Assume for simplicity that C is a minimal ∞-category,
so that D′ is small. According to Proposition 5.3.5.10, the inclusion D′ ⊆ D

is equivalent to j ◦ F , where j : D′ → Indκ D′ is the Yoneda embedding
and F : IndκD′ → D is κ-continuous. Proposition 5.3.5.11 implies that F
is fully faithful; let D′′ denote its essential image. To complete the proof, it
will suffice to show that D′′ = D.

Let S′ ⊆ S denote the collection of objects of D′′ (which we may identify
with morphisms in C). By construction, S′ contains the collection of mor-
phisms {fβ} which generates S. Consequently, to prove that S′ = S, it will
suffice to show that S′ is saturated.

It follows from Proposition 5.5.1.9 that D′′ ⊆ Fun(∆1,C) is stable under
small colimits. We next verify that S′ is stable under pushouts. Let K = Λ2

0

and let p : K
 → C be a colimit of p = p|K,

X
f ��

��

Y

��
X ′ f ′

�� Y ′,

such that f belongs to S′. Using Proposition 5.3.5.15, we can write p as the
colimit of a diagram q : N(A) → Fun(Λ2

0,C
κ), where A is a κ-filtered partially

ordered set. For α ∈ A, we let pα denote the corresponding diagram, which
we may depict as

X ′
α ← Xα

fα→ Yα.
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For each A′ ⊆ A, we let pA′ denote a colimit of q|N(A′), which we will
denote by

X ′
A′ ← XA′

fA′→ YA′ .

Let B denote the collection of κ-small filtered subsets A′ ⊆ A such that the
fA′ belongs to S′. Since f ∈ S′, we conclude that f can be obtained as the
colimit of a κ-filtered diagram in D′. Applying Lemma 5.5.4.13, we deduce
that B is κ-filtered and that A =

⋃
A′∈B A

′. Using Proposition 4.2.3.4 and
Corollary 4.2.3.10, we deduce that p is the colimit of a diagram q′ : N(B) →
Fun(Λ2

0,C), where q′(A′) = pA′ . Replacing A by B, we may suppose that
each fα belongs to S′.

Let lim−→ : Fun(Λ2
0,C) → Fun(∆1×∆1,C) be a colimit functor (that is, a left

adjoint to the restriction functor). Lemma 5.5.2.3 implies that we may iden-
tify p with a colimit of the diagram lim−→◦q. Consequently, the morphism f ′

can be written as a colimit of morphisms f ′α which fit into pushout diagrams

Xα
fα ��

��

Yα

��
X ′
α

f ′
α �� Y ′

α.

Since fα ∈ S′ ⊆ S, we conclude that f ′α ∈ S. SinceX ′
α and Y ′

α are κ-compact,
we deduce that f ′α ∈ S′. Since D′′ is stable under colimits, we deduce that
f ′ ∈ S′, as desired.

We now complete the proof by showing that S′ is stable under composition.
Let σ : ∆2 → C be a simplex corresponding to a diagram

X
f ��

g

���
��

��
��

Y

h����
��
��
�

Z

in C. We will show that if f, g ∈ S′, then h ∈ S′. Using Proposition 5.3.5.15,
we can write σ as the colimit of a diagram q : N(A) → Fun(∆2,Cκ), where
A is a κ-filtered partially ordered set. For each α ∈ A, we will denote the
corresponding diagram by

Xα
fα ��

gα

���
��

��
��

� Yα

hα&&%%
%%
%%
%%

Zα.

Arguing as above, we may assume (possibly after changing A and q) that
each fα belongs to S′. Repeating the same argument, we may suppose that
gα belongs to S′. Since S is stable under composition, we conclude that each
hα belongs to S. Since each Xα and each Zα is κ-compact, we have hα ∈ S′.
The stability of D′′ under colimits now implies that h ∈ S′, as desired.
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Lemma 5.5.5.10. Let C be a presentable ∞-category and let S be a saturated
collection of morphisms in C. For every object X ∈ C, let SX denote the
collection of all morphisms of C/X whose image in C belongs to S. Then
each SX is strongly saturated in C/X . Moreover, if S is of small generation,
then each SX is also of small generation.

Proof. The first assertion follows immediately from the definitions together
with Proposition 1.2.13.8. To prove the second, let D be the full subcategory
of Fun(∆1,C) spanned by the elements of S, and D′ the full subcategory
of Fun(∆1,C/X) spanned by the elements of SX . We have a (homotopy)
pullback diagram of ∞-categories

D′

��

�� Fun(∆1,C/X)

ψ

��
D

φ �� Fun(∆1,C).

The functors φ and ψ preserve small colimits, and the ∞-categories D,
Fun(∆1,C/X), and Fun(∆1,C) are all presentable (the first in view of Lemma
5.5.5.9). Using Proposition 5.5.3.12, we deduce that D′ is presentable and
therefore generated under small colimits by a (small) set of elements of SX .
This proves that SX is of small generation, as desired.

Lemma 5.5.5.11. Let C be a presentable ∞-category, S a saturated col-
lection of morphisms of C, and X an object of C. Then the full subcategory
D ⊆ CX/ spanned by the elements which belong to S is closed under small
colimits.

Proof. In view of Corollaries 4.2.3.11 and 4.4.2.4, it will suffice to show that
D is closed under small filtered colimits and pushouts, and contains the initial
objects of CX/. The last condition follows from the fact that S contains all
equivalences. Now suppose that p : K
 → CC/ is a colimit of p = p|K, where
K is either filtered or equivalent to Λ2

0, and that p(K) ⊆ D. We can identify
p with a map P : K
 × ∆1 → C such that P |K
 × {0} is the constant
map taking the value C ∈ C. Since K is weakly contractible, P |K
 × {0}
is a colimit diagram in C. The map P |K
 × {1} is the image of a colimit
diagram under the left fibration CC/ → C; since K is weakly contractible,
Proposition 4.4.2.9 implies that P |K
 × {1} is a colimit diagram. We now
apply Proposition 5.1.2.2 to deduce that P : K
 → C∆1

is a colimit diagram.
Since S is stable under colimits in C∆1

, we conclude that P carries the cone
point of K
 to a morphism belonging to S, as we wished to show.

Lemma 5.5.5.12. Let C be an ∞-category and let f : C → D, g : C → E
be morphisms in C. Then there is a natural identification of MapCC/

(f, g)
with the homotopy fiber of the map

MapC(D,E) → MapC(C,E)
induced by composition with f , where the fiber is taken over the point corre-
sponding to g.
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Proof. We have a commutative diagram of simplicial sets

Cf/×CC/
{g}

φ

��

�� Cf/×C{E}
φ′

��

�� Cf/

φ′′

��
{g} �� CC/×C{E} �� CC/,

where both squares are pullbacks. Proposition 2.1.2.1 asserts that φ′′ is a
left fibration, so that φ′ and φ are left fibrations as well. Since CC/×C{E} =
HomL

C(C,E) is a Kan complex, the map φ′ is actually a Kan fibration
(Lemma 2.1.3.3), so that the square on the left is a homotopy pullback
and identifies

Cf/×CC/
{g} � MapCC/

(f, g)

with the homotopy fiber of φ′ over g; we conclude by observing that φ′ is a
model for the map MapC(D,E) → MapC(C,E) given by composition with
f .

Lemma 5.5.5.13. Let

X
f ��

g

��

X ′

��
Y

f ′
�� Y ′

be a pushout diagram in an ∞-category C. Then there exists an isomorphism
MapCX/

(f, g) � MapCY/
(f ′, idY )

in the homotopy category H.

Proof. According to Corollary 4.2.4.7, we can assume without loss of gen-
erality that C is the nerve of a fibrant simplicial category D and that the
diagram in question is the nerve of a commutative diagram

X
f ��

g

��

X ′

��
Y

f ′
�� Y ′

in D. Theorem 4.2.4.1 implies that this diagram is homotopy coCartesian in
D, so that we have a homotopy pullback diagram

MapD(Y ′, Y )
φ ��

��

MapD(Y, Y )

��
MapD(X ′, Y )

φ′
�� MapD(X,Y )

of Kan complexes. Consequently, we obtain an isomorphism in H between
the homotopy fiber of φ over idY and the homotopy fiber of φ′ over g.
According to Lemma 5.5.5.12, these homotopy fibers may be identified with
MapCY/

(f ′, idY ) and MapCX/
(f, g), respectively.
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Lemma 5.5.5.14. Let C be a presentable ∞-category and let S be a saturated
collection of morphisms of C which is of small generation. Then, for every
object X ∈ C, there exists a morphism f : X → Y in C such that f ∈ S and
Y is S-local.

Proof. Let D be the full subcategory of Fun(∆1,C) spanned by the elements
of S and form a fiber diagram

DX
��

��

D

��
{X} �� Fun({0},C).

Since S is stable under pushouts, the right vertical map is a coCartesian
fibration, so that the above diagram is homotopy Cartesian by Proposition
3.3.1.3. Lemma 5.5.5.9 asserts that D is accessible, so that DX is accessi-
ble by Proposition 5.4.6.6. Using Lemma 5.5.5.11, we conclude that DX is
presentable, so that DX has a final object f : X → Y . To complete the
proof, it will suffice to show that Y is S-local.

Let t : A → B be an arbitrary morphism in C which belongs to S. We
wish to show that composition with t induces a homotopy equivalence φ :
MapC(B, Y ) → MapC(A, Y ). Let g : A → Y be an arbitrary morphism; using
Lemma 5.5.5.12, we may identify MapCA/

(t, g) with the homotopy fiber of
φ over the base point g of MapC(A, Y ). We wish to show that this space is
contractible. Form a pushout diagram

A

g

��

t �� B

��
Y

t′ �� Z

in the ∞-category C. Lemma 5.5.5.13 implies the existence of a homotopy
equivalence MapCA/

(t, g) � MapCY/
(t′, idY ). It will therefore suffice to prove

that MapCY/
(t′, idY ) is contractible. Since t′ is a pushout of t, it belongs to

S. Let σ be a 2-simplex of C classifying a diagram

Y

t′

���
��

��
��

X

s

���������� s′ �� Z,

so that s′ is a composition of the morphisms s and t′ in C and therefore also
belongs to S. Applying Lemma 5.5.5.12 again, we may identify

MapCY/
(t′, idC′) � MapCs/

(σ, s1(s))

with the homotopy fiber of the map MapCY/
(s′, s) → MapCY/

(s, s) given by

composition with σ. By construction, DX is a full subcategory of CX/ which
contains s and s′, and s is a final object of DX . In view of the equivalence of
CX/ with CX/, we conclude that the spaces MapCX/

(s′, s) and MapCX/
(s, s)

are contractible, so that φ is a homotopy equivalence, as desired.
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Proof of Proposition 5.5.5.7. Let h : X → Z be a morphism in C; we wish
to show that h admits a factorization

Y
g

���
��

��
��

X

f
���������� h �� Z,

where f ∈ S and g ∈ S⊥. Using Remark 5.2.8.3, we deduce that a morphism
g : Y → Z belongs to S⊥ if and only if it is an SZ-local object of C/Z , where
SZ is defined as in Lemma 5.5.5.10. The existence of h then follows from
Lemma 5.5.5.14.

5.5.6 Truncated Objects

Let X be a topological space. The first step in the homotopy-theoretic anal-
ysis of the space X is to divide X into path components. The situation can
be described as follows: we associate to X a set π0X, which we may view as
a discrete topological space. There is a map f : X → π0X which collapses
each component of X to a point. If X is a sufficiently nice space (for ex-
ample, a CW complex), then the path components of X are open, so f is
continuous. Moreover, f is universal among continuous maps from X into a
discrete topological space.

The next step in the analysis of X is to consider its fundamental group
π1X, which (provided that X is sufficiently nice) may be studied by means
of a universal cover X̃ of X. However, it is important to realize that neither
π1X nor X̃ is invariantly associated to X: both require a choice of base
point. The situation can be described more canonically as follows: to X
we can associate a fundamental groupoid π(X) and a map φ from X to
the classifying space Bπ(X). The universal cover X̃ of X can be identified
(up to homotopy equivalence) with the homotopy fibers of the map φ. The
classifying space Bπ(X) can be regarded as a “quotient” of X obtained by
killing all of the higher homotopy groups of X. Like π0X, it can be described
by a universal mapping property.

To continue the analysis, we first recall that a space Y is said to be k-
truncated if the homotopy groups of Y vanish in dimensions larger than k
(see Definition 2.3.4.15). Every (sufficiently nice) topological space X admits
an essentially unique Postnikov tower

X → · · · → τ≤nX → · · · → τ≤−1X,

where τ≤iX is i-truncated, and is universal (in a suitable homotopy-theoretic
sense) among i-truncated spaces which admit a map fromX. For example, we
can take τ≤0X = π0X, considered as a discrete space, and τ≤1X = Bπ(X).
Moreover, we can recover the space X (up to weak homotopy equivalence)
by taking the homotopy limit of the tower.

The objective of this section is to construct an analogous theory in the
case where X is not a space but instead an object of some (abstract) ∞-
category C. We begin by observing that the condition that a space X be
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k-truncated can be reformulated in more categorical terms: a Kan complex
X is k-truncated if and only if, for every simplicial set S, the mapping space
MapSet∆(S,X) is k-truncated. This motivates the following:

Definition 5.5.6.1. Let C be an ∞-category and k ≥ −1 an integer. We
will say that an object C of C is k-truncated if, for every object D ∈ C,
the space MapC(D,C) is k-truncated. By convention, we will say that C is
(−2)-truncated if it is a final object of C. We will say that an object of C

is discrete if it is 0-truncated. We will generally let τ≤k C denote the full
subcategory of C spanned by the k-truncated objects.

Notation 5.5.6.2. Let C be an ∞-category. Using Propositions 2.3.4.18
and 2.3.4.5, we conclude that the full subcategory τ≤0 C is equivalent to the
nerve of its homotopy category. We will denote this homotopy category by
Disc(C) and refer to it as the category of discrete objects of C.

Lemma 5.5.6.3. Let C be an object of an ∞-category C and let k ≥ −2.
The following conditions are equivalent:

(1) The object C is k-truncated.

(2) For every n ≥ k + 3 and every diagram

∂∆n
� �

��

f �� C

∆n

���
�

�
�

for which f carries the final vertex of ∆n to C, there exists a dotted
arrow rendering the diagram commutative.

Proof. Suppose first that (2) is satisfied. Then for every object D ∈ D,
the Kan complex HomR

C(D,C) has the extension property with respect to
∂∆n−1 ⊆ ∆n−1 for all n ≥ k + 3, and is therefore k-truncated. For the
converse, suppose that (1) is satisfied and choose a categorical equivalence
g : C → N D, where D is a topological category. According to Proposition
A.2.3.1, it will suffice to show that for every n ≥ k + 3 and every diagram

|C[∂∆n]|� �

��

F �� D

|C[∆n]|

���
�

�
�

�

having the property that F carries the final object of |C[∆n]| to g(C),
there exists a dotted arrow as indicated, rendering the diagram commu-
tative. Let D ∈ D denote the image of the initial object of ∂∆n under F .
Then, constructing the desired extension is equivalent to extending a map
∂[0, 1]n−1 → MapD(D, g(C)) to a map defined on all of [0, 1]n−1, which is
possibly by virtue of assumption (1).
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Remark 5.5.6.4. A Kan complex X is k-truncated if and only if it is k-
truncated when regarded as an object in the ∞-category S of spaces.

Proposition 5.5.6.5. Let C be an ∞-category and k ≥ −2 an integer. The
full subcategory τ≤k C ⊆ C of k-truncated objects is stable under all limits
which exist in C.

Proof. Let j : C → P(C) be the Yoneda embedding. By definition, τ≤k C is
the preimage of Fun(Cop, τ≤k S) under j. Since j preserves all limits which
exist in C, it will suffice to prove that Fun(Cop, τ≤k S) ⊆ Fun(Cop, S) is stable
under limits. Using Proposition 5.1.2.2, it suffices to prove that the inclusion
i : τ≤k S ⊆ S is stable under limits. In other words, we must show that
τ≤k S admits small limits and that i preserves small limits. According to
Propositions 4.4.2.6 and 4.4.2.7, it will suffice to show that τ≤k S ⊆ S is
stable under the formation of pullbacks and small products. According to
Theorem 4.2.4.1, this is equivalent to the assertion that the full subcategory
of Kan spanned by the k-truncated Kan complexes is stable under homotopy
products and the formation of homotopy pullback squares. Both assertions
can be verified easily by computing homotopy groups.

Remark 5.5.6.6. Let p : C → D be a coCartesian fibration of ∞-categories.
Let C and C′ be objects of C, let f : p(C ′) → p(C) be a morphism in C,
and let f : C′ → C′′ be a p-coCartesian morphism lifting f . According to
Proposition 2.4.4.2, we may identify MapCp(C)

(C ′′, C) with the homotopy
fiber of MapC(C ′, C) → MapD(p(C ′), p(C)) over the base point determined
by f . By examining the associated long exact sequences of homotopy groups
(as f varies), we conclude that if C is a k-truncated object of the fiber Cp(C)

and p(C) is a k-truncated object of D, then C is a k-truncated object of C.
This can be considered as a generalization of Lemma 2.4.4.7 (which treats
the case k = −2).

Remark 5.5.6.7. Let p : M → ∆1 be a coCartesian fibration of simplicial
sets, which we regard as a correspondence from the ∞-category C = p−1{0}
to D = p−1{1}. Suppose that D is a k-truncated object of D. Remark
5.5.6.6 implies that D is a k-truncated object of M. Let C,C′ ∈ C and
let f : C → D be a p-Cartesian morphism of M. Then composition with f
induces a homotopy equivalence MapC(C ′, C) → MapM(C ′, D); we conclude
that C is a k-truncated object of M.

Definition 5.5.6.8. We will say that a map f : X → Y of Kan complexes
is k-truncated if the homotopy fibers of f (taken over any base point of Y )
are k-truncated. We will say that a morphism f : C → D in an arbitrary
∞-category C is k-truncated if composition with f induces a k-truncated
map MapC(E,C) → MapC(E,D) for every object E ∈ C.

Remark 5.5.6.9. There is an apparent potential for ambiguity in Defini-
tion 5.5.6.8 in the case where C is an ∞-category whose objects are Kan
complexes. However, there is no cause for concern: a map f : X → Y of Kan
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complexes is k-truncated if and only if it is k-truncated as a morphism in
the ∞-category S.

Remark 5.5.6.10. Let f : C → D and g : E → D be morphisms in an
∞-category C, and let φ : MapC(E,C) → MapC(E,D) be the map (in the
homotopy category H) given by compostion with f . Lemma 5.5.5.12 implies
that the homotopy fiber of φ over g is homotopy equivalent to MapC/D

(f, g).
Consequently, we deduce that f : C → D is k-truncated in the sense of
Definition 5.5.6.8 if and only if it is k-truncated when viewed as an object
of the ∞-category D/D.

Lemma 5.5.6.11. Let p : C → D be a right fibration of ∞-categories and
let f : X → Y be a morphism in C. Then f is n-truncated if and only if
p(f) : p(X) → p(Y ) is n-truncated.

Proof. The map C/Y → D/p(Y ) is a trivial fibration and therefore an equiv-
alence of ∞-categories.

Remark 5.5.6.12. A morphism f : C → D in an ∞-category C is k-
truncated if and only if it is k-truncated when regarded as an object of
the ∞-category C/D (since the natural map C/D → C/D is an equivalence
of ∞-categories). We may identify C/D with p−1{D}, where p denotes the
evaluation map C∆1 → C{1}. Corollary 2.4.7.12 implies that p is a coCarte-
sian fibration. Consequently, Remark 5.5.6.7 translates into the following
assertion: if

C ′ f ′
��

��

D′

��
C

f �� D

is a pullback diagram in C and f is k-truncated, then f ′ is k-truncated.

Example 5.5.6.13. A morphism f : C → D in an ∞-category C is (−2)-
truncated if and only if it is an equivalence.

We will say that a morphism f : C → D is a monomorphism if it is (−1)-
truncated; this is equivalent to the assertion that the functor C/f → C/D is
fully faithful.

Lemma 5.5.6.14. Let C be an ∞-category and f : X → Y a morphism in
C. Suppose that Y is n-truncated. Then X is n-truncated if and only if f is
n-truncated.

Proof. Unwinding the definitions, we reduce immediately to the following
statement in classical homotopy theory: given a map f : X → Y of Kan
complexes, where Y is n-truncated, X is n-truncated if and only if the homo-
topy fibers of f are n-truncated. This can be established easily using the long
exact sequence of homotopy groups associated to f .
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The following lemma gives a recursive characterization of the class of n-
truncated morphisms:

Lemma 5.5.6.15. Let C be an ∞-category which admits finite limits and
let k ≥ −1 be an integer. A morphism f : C → C ′ is k-truncated if and only
if the diagonal δ : C → C ×C′ C (which is well-defined up to homotopy) is
(k − 1)-truncated.

Proof. For each object D ∈ C, let FD : C → S denote the functor corep-
resented by D. Then each FD preserves finite limits, and a morphism f in
C is k-truncated if and only if each FD(f) is a k-truncated morphism in S.
We may therefore reduce to the case where C = S. Without loss of gener-
ality, we may suppose that f : C → C ′ is a Kan fibration. Then Theorem
4.2.4.1 allows us to identify the fiber product C ×C′ C in S with the same
fiber product formed in the ordinary category Kan. We now reduce to the
following assertion in classical homotopy theory (applied to the fibers of f):
if X is a Kan complex, then X is k-truncated if and only if the homotopy
fibers of the diagonal map X → X ×X are (k − 1)-truncated. This can be
proven readily by examining homotopy groups.

We immediately deduce the following:

Proposition 5.5.6.16. Let F : C → C′ be a left exact functor between ∞-
categories which admit finite limits. Then F carries k-truncated objects into
k-truncated objects and k-truncated morphisms into k-truncated morphisms.

Proof. An object C is k-truncated if and only if the morphism C → 1 to
the final object is k-truncated. Since F preserves final objects, it suffices
to prove the assertion concerning morphisms. Since F commutes with fiber
products, Lemma 5.5.6.15 allows us to use induction on k, thereby reducing
to the case where k = −2. But the (−2)-truncated morphisms are precisely
the equivalences, and these are preserved by any functor.

We now specialize to the case of a presentable ∞-category C. In this setting,
we can construct an analogue of the Postnikov tower.

Lemma 5.5.6.17. Let X be a Kan complex and let k ≥ −2. The following
conditions are equivalent:

(1) The Kan complex X is k-truncated.

(2) The diagonal map δ : X → X∂∆k+2
is a homotopy equivalence.

Proof. If k = −2, then X∂∆k+2
is a point and the assertion is obvious.

Assuming k > −2, we can choose a vertex v of ∂∆k+2, which gives rise to
an evaluation map e : X∂∆k+2 → X. Since e ◦ δ = idX , (2) is equivalent to
the assertion that e is a homotopy equivalence. We observe that e is a Kan
fibration. For each x, let Yx = X∂∆k+2 ×X {x} denote the fiber of e over
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the vertex x. Then Yx has a canonical base point given by the constant map
δ(x). Moreover, we have a natural isomorphism

πi(Yx, δ(x)) � πi+k+1(X,x).

Condition (1) is equivalent to the assertion that πi+k+1(X,x) vanishes for
all i ≥ 0 and all x ∈ X. In view of the above isomorphism, this is equivalent
to the assertion that each Yx is contractible, which is true if and only if the
Kan fibration e is trivial.

Proposition 5.5.6.18. Let C be a presentable ∞-category, let k ≥ −2, and
let τ≤k C denote the full subcategory of C spanned by the k-truncated objects.
Then the inclusion τ≤k C ⊆ C has an accessible left adjoint, which we will
denote by τ≤k.

Proof. Let f : ∂∆k+2 → Fun(C,C) denote the constant diagram taking the
value idC. Let f : (∂∆k+2)
 → Fun(C,C) be a colimit of f and let F : C → C

be the image of the cone point under f . Informally, F is given by the formula

C �→ C ⊗ Sk+1,

where Sk+1 denotes the (k + 1)-sphere and we regard C as tensored over
spaces (see Remark 5.5.1.7).

Let f
′
: (∂∆k+2)
 → CC be the constant diagram taking the value idC. It

follows that there exists an essentially unique map f → f ′ in (CC)f/, which
induces a natural transformation of functors α : F → idC. Let S = {α(C) :
C ∈ C}. Since F is a colimit of functors which preserve small colimits, F it-
self preserves small colimits (Lemma 5.5.2.3). Applying Proposition 5.1.2.2,
we conclude that α : C → Fun(∆1,C) also preserves small colimits. Conse-
quently, there exists a small subset S0 ⊆ S which generates S under colimits
in Fun(∆1,C). According to Proposition 5.5.4.15, the collection of S-local
objects of C is an accessible localization of C. It therefore suffices to prove
that an object X ∈ C is S-local if and only if X is k-truncated.

According to Proposition 5.1.2.2, for each C ∈ C we may identify F (C)
with the colimit of the constant diagram ∂∆k+2 → C taking the value C.
Corollary 4.4.4.9 implies that we have a homotopy equivalence

MapC(F (C), X) � MapC(C,X)∂∆k+2
.

The map α(C) induces a map

α(C)X : MapC(C,X) → MapC(C,X)∂∆k+2

which can be identified with the inclusion of MapC(C,X) as the space of
constant maps from ∂∆k+2 into MapC(C,X). According to Lemma 5.5.6.17,
the map α(C)X is an equivalence if and only if MapC(C,X) is k-truncated.
Thus X is k-truncated if and only if X is S-local.

Remark 5.5.6.19. The notation of Proposition 5.5.6.18 is self-consistent
in the following sense: the existence of the localization functor τ≤k implies
that the collection of k-truncated objects of C may be identified with the
essential image of τ≤k.
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Remark 5.5.6.20. If the ∞-category C is potentially unclear in context,
then we will write τC

≤k for the truncation functor in C. Note also that τC
≤k is

well-defined up to equivalence (in fact, up to a contractible ambiguity).

Remark 5.5.6.21. It follows from Proposition 5.5.6.18 that if C is a present-
able ∞-category, then the full subcategory τ≤k C of k-truncated objects is
also presentable. In particular, the ordinary category Disc(C) of discrete ob-
jects of C is a presentable category in the sense of Definition A.1.1.2.

Recall that, if C and D are ∞-categories, then FunL(C,D) denotes the full
subcategory of Fun(C,D) spanned by those functors which are left adjoints.
The following result gives a characterization of τ≤n C by a universal mapping
property:

Corollary 5.5.6.22. Let C and D be presentable ∞-categories. Suppose that
D is equivalent to an (n + 1)-category. Then composition with τ≤n induces
an equivalence s : FunL(τ≤n C,D) → FunL(C,D).

Proof. According to Proposition 5.5.4.20, the functor s is fully faithful. A
functor f : C → D belongs to the essential image of s if and only if f has
a right adjoint g which factors through τ≤n C. Since g preserves limits, it
automatically carries D = τ≤n D into τ≤n C (Proposition 5.5.6.16).

In classical homotopy theory, every space X can be recovered (up to weak
homotopy equivalence) as the homotopy inverse limit of its Postnikov tower
{τ≤nX}n≥0. The analogous statement is not true in an arbitrary presentable
∞-category but often holds in specific examples. We now make a general
study of this phenomenon.

Definition 5.5.6.23. Let Z∞
≥0 denote the union Z≥0 ∪ {∞} regarded as

a linearly ordered set with largest element ∞. Let C be a presentable ∞-
category. Recall that a tower in C is a functor N(Z∞

≥0)
op → C, which we view

as a diagram

X∞ → · · · → X2 → X1 → X0.

A Postnikov tower is a tower with the property that for each n ≥ 0, the map
X∞ → Xn exhibits Xn as an n-truncation of X∞. We define a pretower to
be a functor from N(Z≥0)op → C. A Postnikov pretower is a pretower

· · · → X2 → X1 → X0

which exhibits each Xn as an n-truncation of Xn+1. We let Post+(C) denote
the full subcategory of Fun(N(Z∞

≥0)
op,C) spanned by the Postnikov tow-

ers, and Post(C) the full subcategory of Fun(N(Z≥0)op,C) spanned by the
Postnikov pretowers. We have an evident forgetful functor φ : Post+(C) →
Post(C). We will say that Postnikov towers in C are convergent if φ is an
equivalence of ∞-categories.

Remark 5.5.6.24. Let C be a presentable ∞-category and let E denote the
full subcategory of C×N(Z∞

≥0)
op spanned by those pairs (C, n) where C ∈ C
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is n-truncated (by convention, we agree that this condition is always satisfied
where C = ∞). Then we have a coCartesian fibration p : E → N(Z∞

≥0)
op,

which classifies a tower of ∞-categories

C → · · · → τ≤2 C
τ≤1→ τ≤1 C

τ≤0→ τ≤0 C .

We can identify Postnikov towers with coCartesian sections of p (and Post-
nikov pretowers with coCartesian sections of the induced fibration

E×N(Z∞
≥0)

op N(Z≥0)op → N(Z≥0)op).

According to Proposition 3.3.3.1, Postnikov towers in C converge if and only
if the tower above exhibits C as the homotopy limit of the sequence of ∞-
categories

· · · → τ≤2 C → τ≤1 C → τ≤0 C .

Remark 5.5.6.25. Let C be a presentable ∞-category and assume that
Postnikov towers in C are convergent. Then every Postnikov tower in C is a
limit diagram. Indeed, given objects X,Y ∈ C, we have natural homotopy
equivalences

MapC(X,Y ) � holim MapC(τ≤nX, τ≤nY ) � holim MapC(X, τ≤nY ),

so that Y is the limit of the pretower {τ≤nY }.
Proposition 5.5.6.26. Let C be a presentable ∞-category. Then Postnikov
towers in C are convergent if and only if, for every tower X : N(Z∞

≥0)
op → C,

the following conditions are equivalent:

(1) The diagram X is a Postnikov tower.

(2) The diagram X is a limit in C, and the restriction X|N(Z≥0)op is a
Postnikov pretower.

Proof. Let Post′(C) be the full subcategory of Fun(N(Z∞
≥0)

op,C) spanned
by those towers which satisfy condition (2). Using Proposition 4.3.2.15, we
deduce that the restriction functor Post′(C) → Post(C) is a trivial Kan fibra-
tion. If conditions (1) and (2) are equivalent, then Post′(C) = Post+(C), so
that Postnikov towers in C are convergent. Conversely, suppose that Post-
nikov towers in C are convergent. Using Remark 5.5.6.25, we deduce that
Post+(C) ⊆ Post′(C), so we have a commutative diagram

Post+(C)

!"++
+++

+++
++

�� Post′(C)

(((((
(((

(((
(

Post(C).

Since both of the vertical arrows are trivial Kan fibrations, we conclude that
the inclusion Post+(C) ⊆ Post′(C) is an equivalence, so that Post+(C) =
Post′(C). This proves that (1) ⇔ (2).
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Remark 5.5.6.27. Let C be a presentable ∞-category. We will say that
a tower X : N(Z∞

≥0)
op → X is highly connected if, for every n ≥ 0, there

exists an integer k such that the induced map τ≤nX(∞) → τ≤nX(k′) is an
equivalence for k′ ≥ k. We will say that a pretower Y : N(Z≥0) → X is highly
connected if, for every n ≥ 0, there exists an integer k such that the map
τ≤nY (k′′) → τ≤nY (k′) is an equivalence for k′′ ≥ k′ ≥ k. It is clear that
every Postnikov (pre)tower is highly connected. Conversely, if X is a highly
connected tower and its underlying pretower is highly connected, then X is
a Postnikov tower. Indeed, for each n ≥ 0 we can choose k ≥ n such that
the map τ≤nX(∞) → τ≤nX(k) is an equivalence. Since X is a Postnikov
pretower, this induces an equivalence τ≤nX(∞) � X(n). Consequently, to
establish the implication (2) ⇒ (1) in the criterion of Proposition 5.5.6.26,
it suffices to verify the following:

(∗) Let X : N(Z∞
≥ ) → C be a tower in C. Assume that X is a limit diagram

and that the underlying pretower is highly connected. ThenX is highly
connected.

In §7.2.1, we will apply this criterion to prove that Postnikov towers are
convergent in a large class of ∞-topoi.

We conclude this section with a useful compatibility property between
truncation functors in different ∞-categories:

Proposition 5.5.6.28. Let C and D be presentable ∞-categories and let
F : C → D be a left exact presentable functor. Then there is an equivalence
of functors F ◦ τC

≤k � τD
≤k ◦ F .

Proof. Since F is left exact, it restricts to a functor from τ≤k C to τ≤k D by
Proposition 5.5.6.16. We therefore have a diagram

C
F ��

τC
≤k

��

D

τD
≤k

��
τ≤k C

F �� τ≤k D

which we wish to prove is commutative up to homotopy. Let G denote a
right adjoint to F ; then G is left exact and so induces a functor τ≤k D →
τ≤k C. Using Proposition 5.2.2.6, we can reduce to proving that the associated
diagram of right adjoints

C D
G��

τ≤k C

$$

τ≤k D

$$

G��

commutes up to homotopy, which is obvious (since the diagram strictly com-
mutes).
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5.5.7 Compactly Generated ∞-Categories

Definition 5.5.7.1. Let κ be a regular cardinal. We will say that an ∞-
category C is κ-compactly generated if it is presentable and κ-accessible.
When κ = ω, we will simply say that C is compactly generated.

The proof of Theorem 5.5.1.1 shows that an ∞-category C is κ-compactly
generated if and only if there exists a small ∞-category D which admits
κ-small colimits and an equivalence C � Indκ(D). In fact, we can choose
D to be (a minimal model of) the ∞-category of κ-compact objects of C.
We would like to assert that this construction establishes an equivalence
between two sorts of ∞-categories. In order to make this precise, we need to
introduce the appropriate notion of functor between κ-compactly generated
∞-categories.

Proposition 5.5.7.2. Let κ be a regular cardinal and let C
F �� D
G

�� be a

pair of adjoint functors, where C and D admit small κ-filtered colimits.

(1) If G is κ-continuous, then F carries κ-compact objects of C to κ-
compact objects of D.

(2) Conversely, if C is κ-accessible and F preserves κ-compactness, then
G is κ-continuous.

Proof. Suppose first that G is κ-continuous and let C ∈ C be a κ-compact
object. Let e : C → Ŝ be a functor corepresented by C. Then e ◦G : D → Ŝ

is corepresented by F (C). Since e and G are κ-continuous, so is e ◦ G; this
proves (1).

Conversely, suppose that F preserves κ-compact objects and that C is κ-
accessible. Without loss of generality, we may suppose that there is a small
∞-category C′ such that C = Indκ(C′) ⊆ P(C′). We wish to prove that G is
κ-continuous. Since Indκ(C

′) is stable under κ-filtered colimits in P(C′), it
will suffice to prove that the composite map

θ : D
G→ C ⊆ P(C′)

is κ-continuous. In view of Proposition 5.1.2.2, it will suffice to prove that
for every object C ∈ C′, the composition of θ with evaluation at C is a
κ-continuous functor. We conclude by observing that this functor is corep-
resentable by the image under F of j(C) ∈ C (here j : C′ → Indκ(C) denotes
the Yoneda embedding).

Corollary 5.5.7.3. Let C be a κ-compactly generated ∞-category and let
L : C → C be a localization functor. The following conditions are equivalent:

(1) The functor L is κ-continuous.

(2) The full subcategory LC ⊆ C is stable under κ-filtered colimits.

Suppose that these conditions are satisfied. Then
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(3) The functor L carries κ-compact objects of C to κ-compact objects of
LC.

(4) The ∞-category LC is κ-compactly generated.

(5) An object D ∈ LC is κ-compact (in LC) if and only if there exists a
compact object C ∈ C such that D is a retract of LC.

Proof. Suppose that (1) is satisfied. Let p : K → LC be a κ-filtered diagram.
Then the natural transformation p → Lp is an equivalence. Using (1), we
conclude that the induced map lim−→(p) → L lim−→(p) is an equivalence, so that
lim−→(p) ∈ LC. This proves (2).

Conversely, if (2) is satisfied, then the inclusion LC ⊆ C is κ-continuous,
so that L : C → C is a composition of κ-continuous functors

C
L→ LC → C,

which proves (1).
Assume that (1) and (2) are satisfied. Then L is accessible, so that LC is a

presentable ∞-category. Assertion (3) follows from Proposition 5.5.7.2. Let
D ∈ LC. Since C is κ-compactly generated, D can be written as the colimit
of a κ-filtered diagram p : K → C taking values in the κ-compact objects of
C. Then D � LD can be written as the colimit of L ◦ p, which takes values
among the κ-compact objects of LC. This proves (4). If D is a κ-compact
object of D, then we deduce that the identity map idD : D → D factors
through (L ◦ p)(k) for some vertex k ∈ K, which proves (5).

Corollary 5.5.7.4. Let C be a κ-compactly generated ∞-category and let
n ≥ −2. Then

(1) The full subcategory τ≤n C is stable under κ-filtered colimits in C.

(2) The truncation functor τ≤n : C → C is κ-continuous.

(3) The truncation functor τ≤n carries compact objects of C to compact
objects of C≤n.

(4) The full subcategory τ≤n C is κ-compactly generated.

(5) An object C ∈ τ≤n C is compact (in τ≤n C) if and only if there exists a
compact object C′ ∈ C such that C is a retract of τ≤nC ′.

Proof. Corollary 5.5.7.3 shows that condition (1) implies (2), (3), (4), and
(5). Consequently, it will suffice to prove that (1) is satisfied.

Let C be an object of C. We will show that C is n-truncated if and only
if the space MapC(D,C) is n-truncated for every κ-compact object D ∈ C.
The “only if” direction is obvious. For the converse, let FC : Cop → S be the
functor represented by C and let C′ ⊆ C be the full subcategory of C spanned
by those objects D such that FC(D) is n-truncated. Since FC preserves
limits, C′ is stable under colimits in C. If C′ contains every κ-compact object
of C, then C′ = C (since C is κ-compactly generated).
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Now suppose that D is a κ-compact object of C, let GD : C → S be
the functor corepresented by D, and let C(D) ⊆ C be the full subcategory
of C spanned by those objects C for which GD(C) is n-truncated. Then
τ≤n C =

⋂
D C(D). To complete the proof, it will suffice to show that each

C(D) is stable under κ-filtered colimits. Since GD is κ-continuous, it suffices
to observe that τ≤n S is stable under κ-filtered colimits in S.

Definition 5.5.7.5. If κ is a regular cardinal, we let PrRκ denote the full
subcategory of Ĉat∞ whose objects are κ-compactly generated ∞-categories
and whose morphisms are κ-continuous limit-preserving functors.

Proposition 5.5.7.6. The ∞-category PrRκ admits small limits, and the
inclusion PrRκ ⊆ Ĉat∞ preserves small limits.

Proof. In view of Theorem 5.5.3.18, the only nontrivial point is to verify that
if p : K → PrRκ is a diagram of κ-compactly generated ∞-categories {Cα},
then the limit C = lim←−(p) in Ĉat∞ is κ-compactly generated. In other words,
we must show that C is generated under colimits by its κ-compact objects.

For each vertex α of K, let

Cα
Fα �� C
Gα

��

denote the corresponding adjunction. Lemma 6.3.3.6 implies that the iden-
tity functor idC can be obtained as the colimit of a diagram q : K →
Fun(C,C), where q(α) � Fα ◦Gα. In particular, C is generated (under small
colimits) by the essential images of the functors Fα. Since each Cα is gen-
erated under colimits by κ-compact objects, and the functors Fα preserve
colimits and κ-compact objects (Proposition 5.5.7.2), we conclude that C is
generated under colimits by its κ-compact objects, as desired.

Notation 5.5.7.7. Let κ be a regular cardinal. We let PrLκ denote the full
subcategory of Ĉat∞ whose objects are κ-compactly generated ∞-categories
and whose morphisms are functors which preserve small colimits and κ-
compact objects. In view of Proposition 5.5.7.2, the equivalence PrL �
(PrR)op of Corollary 5.5.3.4 restricts to an equivalence PrLκ � (PrRκ )op.

Let Ĉat
Rex(κ)

∞ denote the subcategory of Ĉat∞ whose objects are (not nec-
essarily small) ∞-categories which admit κ-small colimits and whose mor-
phisms are functors which preserve κ-small colimits, and let CatRex(κ)

∞ =

Ĉat
Rex(κ)

∞ ∩ Cat∞.

Proposition 5.5.7.8. Let κ be a regular cardinal and let

θ : PrLκ → Ĉat
Rex(κ)

∞
be the nerve of the simplicial functor which associates to a κ-compactly gen-
erated ∞-category C the full subcategory Cκ ⊆ C spanned by the κ-compact
objects of C. Then
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(1) The functor θ is fully faithful.

(2) The essential image of θ consists precisely of those objects of Ĉat∞
which are essentially small and idempotent complete.

Proof. Combine Propositions 5.4.2.17 and 5.5.1.9.

Remark 5.5.7.9. If κ > ω, then Corollary 4.4.5.16 shows that the hypoth-
esis of idempotent completeness in (2) is superfluous.

The proof of Proposition 5.4.2.19 yields the following analogue:

Proposition 5.5.7.10. Let κ be a regular cardinal. The functor Indκ :
Cat∞ → Accκ exhibits PrLκ as a localization of CatRex(κ)

∞ . If κ > ω, then
Indκ induces an equivalence of ∞-categories CatRex(κ)

∞ → PrLκ .

Proof. The only additional ingredient needed is the following observation:
if C is an ∞-category which admits κ-small colimits, then the idempotent
completion C′ of C also admits κ-small colimits. To prove this, we observe
that C′ can be identified with the collection of κ-compact objects of Indκ(C)
(Lemma 5.4.2.4). Since C admits all small colimits (Theorem 5.5.1.1), we
conclude that C′ admits κ-small colimits.

We conclude this section with a remark about the structure of the ∞-
category CatRex(κ)

∞ .

Proposition 5.5.7.11. Let κ be a regular cardinal. Then the ∞-category
CatRex(κ)

∞ admits small κ-filtered colimits and the inclusion CatRex(κ)
∞ ⊆

Cat∞ preserves small κ-filtered colimits.

Proof. Let I be a small κ-filtered ∞-category and let p : I → CatRex(κ)
∞ be a

diagram. Let C be a colimit of the induced diagram I → Cat∞. To complete
the proof we must prove the following:

(i) The ∞-category C admits κ-small colimits.

(ii) For each I ∈ I, the associated functor p(I) → C preserves κ-small
colimits.

(iii) Let f : C → D be an arbitrary functor. If each of the compositions
p(I) → C → D preserves κ-small colimits, then f preserves κ-small
colimits.

Since I is κ-filtered, any κ-small diagram in C factors through one of the
maps p(I) → C (Proposition 5.4.1.2). Thus (ii) ⇒ (i) and (ii) ⇒ (iii).
To prove (ii), we first use Proposition 5.3.1.16 to reduce to the case where
I � N(A), where A is a κ-filtered partially ordered set. Using Proposition
4.2.4.4, we can reduce to the case where p is the nerve of a functor from
q : A → Set∆. In view of Theorem 4.2.4.1, we can identify C with a homotopy
colimit of q. Since the collection of categorical equivalences is stable under
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filtered colimits, we can assume that C is actually the filtered colimit of a
family of ∞-categories {Cα}α∈A.

Let K be a κ-small simplicial set and let gα : K
 → Cα be a colimit
diagram. We wish to show that the induced map g : K
 → C is a colimit
diagram. Let g = g|K; we need to show that the map θ : Cg/ → Cg/ is a
trivial Kan fibration. We observe that θ is a filtered colimit of maps θβ :
(Cβ)gβ/

→ (Cβ)gβ/, where β ranges over the set {β ∈ A : β ≥ α}. Using the
fact that each of the associated maps Cα → Cβ preserves κ-small colimits,
we conclude that each θβ is a trivial fibration, so that θ is a trivial fibration,
as desired.

5.5.8 Nonabelian Derived Categories

According to Corollary 4.2.3.11, we can analyze arbitrary colimits in an ∞-
category C in terms of finite colimits and filtered colimits. In particular, sup-
pose that C admits finite colimits and that we construct a new ∞-category
Ind(C) by formally adjoining filtered colimits to C. Then Ind(C) admits all
small colimits (Theorem 5.5.1.1), and the Yoneda embedding C → Ind(C)
preserves finite colimits (Proposition 5.3.5.14). Moreover, we can identify
Ind(C) with the ∞-category of functors Cop → S which carry finite colimits
in C to finite limits in S. In this section, we will introduce a variation on
the same theme. Instead of assuming C admits all finite colimits, we will
assume only that C admits finite coproducts. We will construct a coproduct-
preserving embedding of C into a larger ∞-category PΣ(C) which admits all
small colimits. Moreover, we can characterize PΣ(C) as the ∞-category ob-
tained from C by formally adjoining colimits of sifted diagrams (Proposition
5.5.8.15).

Our first goal in this section is to introduce the notion of a sifted simplicial
set. We begin with a bit of motivation. Let C denote the (ordinary) category
of groups. Then C admits arbitrary colimits. However, colimits of diagrams
in C can be very difficult to analyze even if the diagram itself is quite simple.
For example, the coproduct of a pair of groups G and H is the amalgamated
product G  H. The group G  H is typically very complicated even when
G and H are not. For example, the amalgamated product Z/2Z  Z/3Z is
isomorphic to the arithmetic group PSL2(Z). In general, GH is much larger
than the coproduct G

∐
H of the underlying sets of G andH. In other words,

the forgetful functor U : C → Set does not preserve coproducts. However, U
does preserve some colimits: for example, the colimit of a sequence of groups

G0 → G1 → · · ·
can be obtained by taking the colimit of the underlying sets and equipping
the result with an appropriate group structure.

The forgetful functor U from groups to sets preserves another important
type of colimit: namely, the formation of quotients by equivalence relations.
If G is a group, then a subgroup R ⊆ G×G is an equivalence relation on G
if and only if there exists a normal subgroup H ⊆ G such that R = {(g, g′) :
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g−1g′ ∈ H}. In this case, the set of R-equivalence classes in G is in bijection
with the quotient G/H, which inherits a group structure from G. In other
words, the quotient of G by the equivalence relation R can be computed
either in the category of groups or in the category of sets; the result is the
same.

Each of the examples given above admits a generalization: the colimit of a
sequence is a special case of a filtered colimit, and the quotient by an equiva-
lence relation is a special case of a reflexive coequalizer. The forgetful functor
C → Set preserves filtered colimits and reflexive coequalizers; moreover, the
same is true if we replace the category of groups by any other category of sets
with some sort of finitary algebraic structure (for example, abelian groups
or commutative rings). The following definition, which is taken from [66], is
an attempt to axiomatize the essence of the situation:

Definition 5.5.8.1 ([66]). A simplicial set K is sifted if it satisfies the
following conditions:

(1) The simplicial set K is nonempty.

(2) The diagonal map K → K ×K is cofinal.

Warning 5.5.8.2. In [66], Rosicki uses the term “homotopy sifted” to de-
scribe the analogue of Definition 5.5.8.1 for simplicial categories and reserves
the term “sifted” for analogous notion in the setting of ordinary categories.
There is some danger of confusion with our terminology: if C is an ordinary
category and N(C) is sifted (in the sense of Definition 5.5.8.1), then C is
sifted in the sense of [66]. However, the converse is false in general.

Example 5.5.8.3. Every filtered ∞-category is sifted (this follows from
Proposition 5.3.1.20).

Lemma 5.5.8.4. The simplicial set N(∆)op is sifted.

Proof. Since N(∆)op is clearly nonempty, it will suffice to show that the
diagonal map N(∆)op → N(∆)op×N(∆)op is cofinal. According to Theorem
4.1.3.1, this is equivalent to the assertion that for every object ([m], [n]) ∈
∆×∆, the category

C = ∆/[m] ×∆ ∆/[n]

has weakly contractible nerve. Let C0 be the full subcategory of C spanned by
those objects which correspond to monomorphisms of partially ordered sets
J → [m] × [n]. The inclusion of C0 into C has a left adjoint, so the inclusion
N(C0) ⊆ N(C) is a weak homotopy equivalence. It will therefore suffice to
show that N(C0) is weakly contractible. We now observe that N(C0) can
be identified with the barycentric subdivision of ∆m × ∆n and is therefore
weakly homotopy equivalent to ∆m × ∆n and so weakly contractible.

Remark 5.5.8.5. The formation of the geometric realizations of simplicial
objects should be thought of as the ∞-categorical analogue of the formation
of reflexive coequalizers.
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Our next pair of results captures some of the essential features of the
theory of sifted simplicial sets:

Proposition 5.5.8.6. Let K be a sifted simplicial set, let C, D, and E be
∞-categories which admit K-indexed colimits, and let f : C×D → E be a
map which preserves K-indexed colimits separately in each variable. Then f
preserves K-indexed colimits.

Proof. Let p : K → C and q : K → D be diagrams indexed by a small
simplicial set K and let δ : K → K × K be the diagonal map. Using the
fact that f preserves K-indexed colimits separately in each variable and
Lemma 5.5.2.3, we conclude that lim−→(f ◦ (p× q)) is a colimit for the diagram
f ◦ (p × q) ◦ δ. Consequently, f preserves K-indexed colimits provided that
the diagonal δ is cofinal. We conclude by invoking the assumption that K is
sifted.

Proposition 5.5.8.7. Let K be a sifted simplicial set. Then K is weakly
contractible.

Proof. Choose a vertex x in K. According to Whitehead’s theorem, it will
suffice to show that for each n ≥ 0, the homotopy set πn(|K|, x) consists of
a single element. Let δ : K → K×K be the diagonal map. Since δ is cofinal,
Proposition 4.1.1.3 implies that the induced map

πn(|K|, x) → πn(|K ×K|, δ(x)) � πn(|K|, x) × πn(|K|, x)
is bijective. Since πn(|K|, x) is nonempty, we conclude that it is a singleton.

We now return to the problem introduced in the beginning of this section.

Definition 5.5.8.8. Let C be a small ∞-category which admits finite co-
products. We let PΣ(C) denote the full subcategory of P(C) spanned by those
functors Cop → S which preserve finite products.

Remark 5.5.8.9. The ∞-categories of the form PΣ(C) have been studied
in [66], where they are called homotopy varieties. Many of the results proven
below can also be found in [66].

Proposition 5.5.8.10. Let C be a small ∞-category which admits finite
coproducts. Then

(1) The ∞-category PΣ(C) is an accessible localization of P(C).

(2) The Yoneda embedding j : C → P(C) factors through PΣ(C). Moreover,
j carries finite coproducts in C to finite coproducts in PΣ(C).

(3) Let D be a presentable ∞-category and let

P(C)
F �� D
G

��

be a pair of adjoint functors. Then G factors through PΣ(C) if and only
if f = F ◦ j : C → D preserves finite coproducts.
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(4) The full subcategory PΣ(C) ⊆ P(C) is stable under sifted colimits.

(5) Let L : P(C) → PΣ(C) be a left adjoint to the inclusion. Then L pre-
serves sifted colimits (when regarded as a functor from P(C) to itself).

(6) The ∞-category PΣ(C) is compactly generated.

Before giving the proof, we need a preliminary result concerning the in-
teractions between products and sifted colimits.

Lemma 5.5.8.11. Let K be a sifted simplicial set. Let X be an ∞-category
which admits finite products and K-indexed colimits and suppose that the
formation of products in X preserves K-indexed colimits separately in each
variable. Then the colimit functor lim−→ : Fun(K,X) → X preserves finite
products.

Remark 5.5.8.12. The hypotheses of Lemma 5.5.8.11 are satisfied when X

is the ∞-category S of spaces: see Lemma 6.1.3.14. More generally, Lemma
5.5.8.11 applies whenever the ∞-category X is an ∞-topos (see Definition
6.1.0.2).

Proof. Since the simplicial setK is weakly contractible (Proposition 5.5.8.7),
Corollary 4.4.4.9 implies that the functor lim−→ preserves final objects. To
complete the proof, it will suffice to show that the functor lim−→ preserves
pairwise products. Let X and Y be objects of Fun(K,X). We wish to prove
that the canonical map

lim−→(X × Y ) → lim−→(X) × lim−→(Y )

is an equivalence. In other words, we must show that the formation of prod-
ucts commutes with K-indexed colimits, which follows immediately by ap-
plying Proposition 5.5.8.6 to the Cartesian product functor X×X → X.

Proof of Proposition 5.5.8.10. Assertion (1) is an immediate consequence of
Lemmas 5.5.4.17, 5.5.4.18, and 5.5.4.19. To prove (2), it will suffice to show
that for every representable functor e : PΣ(C)op → S, the composition

Cop
jop

→ PΣ(C)op e→ S

preserves finite products (Proposition 5.1.3.2). This is obvious since the com-
position can be identified with the object of PΣ(C) ⊆ Fun(Cop, S) represent-
ing e.

We next prove (3). We note that f preserves finite coproducts if and only
if, for every object D ∈ D, the composition

Cop
fop

→ Dop eD→ S

preserves finite products, where eD denotes the functor represented by D.
This composition can be identified with G(D), so that f preserves finite
coproducts if and only if G factors through PΣ(C).
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Assertion (4) is an immediate consequence of Lemma 5.5.8.11 and Remark
5.5.8.12, and (5) follows formally from (4). To prove (6), we first observe that
P(C) is compactly generated (Proposition 5.3.5.12). Let E ⊆ P(C) be the full
subcategory spanned by the compact objects and let L : P(C) → PΣ(C)
be a localization functor. Since E generates P(C) under filtered colimits,
L(D) generates PΣ(C) under filtered colimits. Consequently, it will suffice
to show that for each E ∈ E, the object LE ∈ PΣ(C) is compact. Let
f : PΣ(C) → S be the functor corepresented by LE and let f ′ : P(C) → S

be the functor corepresented by E. Then the map E → LE induces an
equivalence f → f ′|PΣ(C). Since f ′ is continuous and PΣ(C) is stable under
filtered colimits in P(C), we conclude that f is continuous, so that LE is a
compact object of PΣ(C), as desired.

Our next goal is to prove a converse to part (4) of Proposition 5.5.8.10.
Namely, we will show that PΣ(C) is generated by the essential image of
the Yoneda embedding under sifted colimits. In fact, we will need to use
only special types of sifted colimits: namely, filtered colimits and geometric
realizations (Lemma 5.5.8.14). The proof is based on the following technical
result:

Lemma 5.5.8.13. Let C be a small ∞-category and let X be an object of
P(C). Then there exists a simplicial object Y• : N(∆)op → P(C) with the
following properties:

(1) The colimit of Y• is equivalent to X.

(2) For each n ≥ 0, the object Yn ∈ P(C) is equivalent to a small coproduct
of objects lying in the image of the Yoneda embedding j : C → P(C).

We will defer the proof until the end of this section.

Lemma 5.5.8.14. Let C be a small ∞-category which admits finite coprod-
ucts and let X ∈ P(C). The following conditions are equivalent:

(1) The object X belongs to PΣ(C).

(2) There exists a simplicial object U• : N(∆)op → Ind(C) whose colimit
in P(C) is X.

Proof. The full subcategory PΣ(C) contains the essential image of the Yoneda
embedding and is stable under filtered colimits and geometric realizations
(Proposition 5.5.8.10); thus (2) ⇒ (1). We will prove that (1) ⇒ (2).

We first choose a simplicial object Y• of P(C) which satisfies the conclusions
of Lemma 5.5.8.13. Let L be a left adjoint to the inclusion PΣ(C) ⊆ P(C).
SinceX is a colimit of Y•, LX � X is a colimit of LY• (part (5) of Proposition
5.5.8.10). It will therefore suffice to prove that each LYn belongs to Ind(C).
By hypothesis, each Yn can be written as a small coproduct

∐
α∈A j(Cα),

where j : C → P(C) denotes the Yoneda embedding. Using the results of
§4.2.3, we see that Yn can also be obtained as a filtered colimit of coproducts
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α∈A0

j(Cα), where A0 ranges over the finite subsets of A. Since L preserves
filtered colimits (Proposition 5.5.8.10), it will suffice to show that each of the
objects

L(
∐
α∈A0

j(Cα))

belongs to Ind(C). We now invoke part (2) of Proposition 5.5.8.10 to identify
this object with j(

∐
α∈A0

Cα).

Proposition 5.5.8.15. Let C be a small ∞-category which admits finite
coproducts and let D be an ∞-category which admits filtered colimits and ge-
ometric realizations. Let FunΣ(PΣ(C),D) denote the full subcategory spanned
by those functors PΣ(C) → D which preserve filtered colimits and geometric
realizations. Then

(1) Composition with the Yoneda embedding j : C → PΣ(C) induces an
equivalence of categories

θ : FunΣ(PΣ(C),D) → Fun(C,D).

(2) Any functor g ∈ FunΣ(PΣ(C),D) preserves sifted colimits.

(3) Assume that D admits finite coproducts. A functor g ∈ FunΣ(PΣ(C),D)
preserves small colimits if and only if g ◦ j preserves finite coproducts.

Proof. Lemma 5.5.8.14 and Proposition 5.5.8.10 imply that PΣ(C) is the
smallest full subcategory of P(C) which is closed under filtered colimits, is
closed under geometric realizations, and contains the essential image of the
Yoneda embedding. Consequently, assertion (1) follows from Remark 5.3.5.9
and Proposition 4.3.2.15.

We now prove (2). Let g ∈ FunΣ(PΣ(C),D); we wish to show that g
preserves sifted colimits. It will suffice to show that for every representable
functor e : D → Sop, the composition e ◦ g preserves sifted colimits. In other
words, we may replace D by Sop and thereby reduce to the case where D

itself admits sifted colimits. Let Fun′
Σ(PΣ(C),D) denote the full subcategory

of FunΣ(PΣ(C),D) spanned by those functors which preserve sifted colimits.
Since PΣ(C) is also the smallest full subcategory of P(C) which contains the
essential image of the Yoneda embedding and is stable under sifted colimits,
Remark 5.3.5.9 implies that θ induces an equivalence

Fun′
Σ(PΣ(C),D) → Fun(C,D).

Combining this observation with (1), we deduce that the inclusion

Fun′
Σ(PΣ(C),D) ⊆ FunΣ(PΣ(C),D)

is an equivalence of ∞-categories and therefore an equality.
The “only if” direction of (3) is immediate since the Yoneda embedding

j : C → PΣ(C) preserves finite coproducts (Proposition 5.5.8.10). To prove
the converse, we first apply Lemma 5.3.5.7 to reduce to the case where D is
a full subcategory of an ∞-category D′ with the following properties:
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(i) The ∞-category D′ admits small colimits.

(ii) A small diagramK
 → D is a colimit if and only if the induced diagram
K
 → D′ is a colimit.

Let C′ denote the essential image of the Yoneda embedding j : C → P(C).
Using Lemma 5.1.5.5, we conclude that there exists a functor G : P(C) → D′

which is a left Kan extension of G|C′ = g|C′ and that G preserves small
colimits. Let G0 = G|PΣ(C). Then G0 is a left Kan extension of g|C′, so
there is a canonical natural transformation G0 → g. Let C′′ denote the
full subcategory of PΣ(C) spanned by those objects C for which the map
G0(C) → g(C) is an equivalence. Then C′′ contains C′ and is stable under fil-
tered colimits and geometric realizations and therefore contains all of PΣ(C).
We may therefore replace g by G0 and thereby assume that G|PΣ(C) = g.
Since G ◦ j = g ◦ j preserves finite coproducts, the right adjoint to G fac-
tors through PΣ(C) (Proposition 5.5.8.10), so that G is equivalent to the
composition

P(C) L→ PΣ(C) G
′→ D′

for some colimit-preserving functor G′ : PΣ(C) → D′. Restricting to the
subcategory PΣ(C) ⊆ P(C), we deduce that G′ is equivalent to g, so that g
preserves small colimits, as desired.

Remark 5.5.8.16. Let C be a small ∞-category which admits finite co-
products. It follows from Proposition 5.5.8.15 that we can identify PΣ(C)
with PK′

K (C) in each of the following three cases (for an explanation of this
notation, we refer the reader to §5.3.6):

(1) The collection K is empty, and the collection K′ consists of all small
filtered simplicial sets together with N(∆)op.

(2) The collection K is empty, and the collection K′ consists of all small
sifted simplicial sets.

(3) The collection K consists of all finite discrete simplicial sets, and the
collection K′ consists of all small simplicial sets.

Corollary 5.5.8.17. Let f : C → D be a functor between ∞-categories.
Assume that C admits small colimits. Then f preserves sifted colimits if and
only if f preserves filtered colimits and geometric realizations.

Proof. The “only if” direction is clear. For the converse, suppose that f
preserves filtered colimits and geometric realizations. Let I be a small sifted
∞-category and p : I
 → C a colimit diagram; we wish to prove that f ◦ p
is also a colimit diagram. Let p = p| I. Let J ⊆ P(I) denote a small full
subcategory which contains the essential image of the Yoneda embedding
j : I → P(I) and is closed under finite coproducts. It follows from Remark
5.3.5.9 that the functor p is homotopic to a composition q◦j, where q : J → C
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is a functor which preserves finite coproducts. Proposition 5.5.8.15 implies
that q is homotopic to a composition

J
j′→ PΣ(J)

q′→ C,

where j′ denotes the Yoneda embedding and q′ preserves small colimits. The
composition f ◦ q′ preserves filtered colimits and geometric realization and
therefore preserves sifted colimits (Proposition 5.5.8.15).

Let p′ : I
 → PΣ(J) be a colimit of the diagram j′ ◦ j. Since q′ preserves
colimits, the composition q′ ◦ p′ is a colimit of q′ ◦ j′ ◦ j � p and is therefore
equivalent to p. Consequently, it will suffice to show that f ◦ q′ ◦ p′ is a
colimit diagram. Since I is sifted, we need only verify that f ◦ q′ preserves
sifted colimits. By Proposition 5.5.8.15, it will suffice to show that f ◦ q′
preserves filtered colimits and geometric realizations. Since q′ preserves all
colimits, this follows from our assumption that f preserves filtered colimits
and geometric realizations.

In the situation of Proposition 5.5.8.15, every functor f : C → D extends
(up to homotopy) to a functor F : PΣ(C) → D, which preserves sifted
colimits. We will sometimes refer to F as the left derived functor of f . In
§5.5.9 we will explain the connection of this notion of derived functor with
the more classical definition provided by Quillen’s theory of homotopical
algebra.

Our next goal is to characterize those ∞-categories which have the form
PΣ(C).

Definition 5.5.8.18. Let C be an ∞-category which admits geometric real-
izations of simplicial objects. We will say that an object P ∈ C is projective if
the functor C → S corepresented by P commutes with geometric realizations.

Remark 5.5.8.19. Let C be an ∞-category which admits geometric real-
izations of simplicial objects. Then the collection of projective objects of C is
stable under all finite coproducts which exist in C. This follows immediately
from Lemma 5.5.8.11 and Remark 5.5.8.12.

Remark 5.5.8.20. Let C be an ∞-category which admits small colimits and
let X be an object of C. Then X is compact and projective if and only if X
corepresents a functor C → Set∆ which preserves sifted colimits. The “only
if” direction is obvious, and the converse follows from Corollary 5.5.8.17.

Example 5.5.8.21. Let A be an abelian category. Then an object P ∈
A is projective in the sense of classical homological algebra (that is, the
functor HomA(P, •) is exact) if and only if P corepresents a functor A → Set
which commutes with geometric realizations of simplicial objects. This is
not equivalent to the condition of Definition 5.5.8.18 since the fully faithful
embedding Set → S does not preserve geometric realizations. However, it is
equivalent to the requirement that P be a projective object (in the sense
of Definition 5.5.8.18) in the ∞-category underlying the homotopy theory
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of simplicial objects of A (equivalently, the theory of nonpositively graded
chain complexes with values in A; we will discuss this example in greater
detail in [50]).

Proposition 5.5.8.22. Let C be a small ∞-category which admits finite
coproducts, D an ∞-category which admits filtered colimits and geometric
realizations, and F : PΣ(C) → D a left derived functor of f = F ◦ j : C → D,
where j : C → PΣ(C) denotes the Yoneda embedding. Consider the following
conditions:

(i) The functor f is fully faithful.

(ii) The essential image of f consists of compact projective objects of D.

(iii) The ∞-category D is generated by the essential image of f under fil-
tered colimits and geometric realizations.

If (i) and (ii) are satisfied, then F is fully faithful. Moreover, F is an equiv-
alence if and only if (i), (ii), and (iii) are satisfied.

Proof. If F is an equivalence of ∞-categories, then (i) follows from Proposi-
tion 5.1.3.1 and (iii) from Lemma 5.5.8.14. To prove (ii), it suffices to show
that for each C ∈ C, the functor e : PΣ(C) → S corepresented by C pre-
serves filtered colimits and geometric realizations. We can identify e with
the composition

PΣ(C)
e′⊆ P(C) e

′′→ S,

where e′′ denotes evaluation at C. It now suffices to observe that e′ and e′′

preserve filtered colimits and geometric realizations (Lemma 5.5.8.14 and
Proposition 5.1.2.2).

For the converse, let us suppose that (i) and (ii) are satisfied. We will
show that F is fully faithful. First fix an object C ∈ C and let P′

σ(C) be the
full subcategory of PΣ(C) spanned by those objects M for which the map

MapPΣ(C)(j(C),M) → MapD(f(C), F (M))

is an equivalence. Condition (i) implies that P′
σ(C) contains the essential im-

age of j, and condition (ii) implies that P′
σ(C) is stable under filtered colimits

and geometric realizations. Lemma 5.5.8.14 now implies that P′
Σ(C) = PΣ(C).

We now define P′′
Σ(C) to be the full subcategory of PΣ(C) spanned by those

objects M such that for all N ∈ PΣ(C), the map
MapPΣ(C)(M,N) → MapD(F (M), F (N))

is a homotopy equivalence. The above argument shows that P′′
Σ(C) contains

the essential image of j. Since F preserves filtered colimits and geometric re-
alizations, P′′

Σ(C) is stable under filtered colimits and geometric realizations.
Applying Lemma 5.5.8.14, we conclude that P′′

Σ(C) = PΣ(C); this proves that
F is fully faithful.

If F is fully faithful, then the essential image of F contains f(C) and is
stable under filtered colimits and geometric realizations. If (iii) is satisfied,
it follows that F is an equivalence of ∞-categories.
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Definition 5.5.8.23. Let C be an ∞-category which admits small colimits
and let S be a collection of objects of C. We will say that S is a set of compact
projective generators for C if the following conditions are satisfied:

(1) Each element of S is a compact projective object of C.

(2) The full subcategory of C spanned by the elements of S is essentially
small.

(3) The set S generates C under small colimits.

We will say that C is projectively generated if there exists a set S of compact
projective generators for C.

Example 5.5.8.24. The ∞-category S of spaces is projectively generated.
The compact projective objects of S are precisely those spaces which are
homotopy equivalent to finite sets (endowed with the discrete topology).

Proposition 5.5.8.25. Let C be an ∞-category which admits small colimits
and let S be a set of compact projective generators for C. Then

(1) Let C0 ⊆ C be the full subcategory spanned by finite coproducts of the
objects S, let D ⊆ C0 be a minimal model for C0, and let F : PΣ(D) →
C be a left derived functor of the inclusion. Then F is an equivalence
of ∞-categories. In particular, C is a compactly generated presentable
∞-category.

(2) Let C ∈ C be an object. The following conditions are equivalent:

(i) The object C is compact and projective.

(ii) The functor e : C → Ŝ corepresented by C preserves sifted colimits.

(iii) There exists an object C ′ ∈ C0 such that C is a retract of C′.

Proof. Remark 5.5.8.19 implies that C0 consists of compact projective ob-
jects of C. Assertion (1) now follows immediately from Proposition 5.5.8.22.
We now prove (2). The implications (iii) ⇒ (i) and (ii) ⇒ (i) are obvi-
ous. To complete the proof, we will show that (i) ⇒ (iii). Using (1), we
are free to assume C = PΣ(D). Let C ∈ C be a compact projective object.
Using Lemma 5.5.8.14, we conclude that there exists a simplicial object X•
of Ind(D) and an equivalence C � |X•|. Since C is projective, we deduce
that MapC(C,C) is equivalent to the geometric realization of the simplicial
space MapC(C,X•). In particular, idC ∈ MapC(C,C) is homotopic to the
image of some map f : C → X0. Using our assumption that C is compact,
we conclude that f factors as a composition

C
f0→ j(D) → X0,

where j : D → Ind(D) denotes the Yoneda embedding. It follows that C is
a retract of j(D) in C, as desired.
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Remark 5.5.8.26. Let C be a small ∞-category which admits finite coprod-
ucts. Since the truncation functor τ≤n : S → S preserves finite products, it
induces a map τ : PΣ(C) → PΣ(C), which is easily seen to be a localization
functor. The essential image of τ consists of those functors F ∈ PΣ(C) which
take n-truncated values. We claim that these are precisely the n-truncated
objects of PΣ(C). Consequently, we can identify τ with the n-truncation
functor on PΣ(C).

One direction is clear: if F ∈ PΣ(C) is n-truncated, then for each C ∈ C the
space MapPΣ(C)(j(C), F ) � F (C) must be n-truncated. Conversely, suppose
that F : Cop → S takes n-truncated values. We wish to prove that the
space MapPΣ(C)(F ′, F ) is n-truncated for each F ′ ∈ PΣ(C). The collection
of all objects F ′ which satisfy this condition is stable under small colimits in
PΣ(C) and contains the essential image of the Yoneda embedding. It therefore
contains the entirety of PΣ(C), as desired.

We conclude this section by giving the proof of Lemma 5.5.8.13. Our
argument uses some concepts and results from Chapter 6 and may be omitted
at first reading.

Proof of Lemma 5.5.8.13. For n ≥ 0, let ∆≤n denote the full subcategory of
∆ spanned by the objects {[k]}k≤n. We will construct a compatible sequence
of functors fn : N(∆≤n)op → P(C)/X with the following properties:

(A) For n ≥ 0, let Ln denote a colimit of the composite diagram

N(∆≤n−1)op ×N(∆)op N(∆[n]/)op → N(∆≤n−1)op
fn−1→ P(C)/X → P(C)

(the nth latching object). Then there exists an object Zn ∈ P(C), which
is a small coproduct of objects in the essential image of the Yoneda
embedding C → P(C), and a map Zn → fn([n]), which together with
the canonical map Ln → fn([n]) determines an equivalence Ln

∐
Zn �

fn([n]).

(B) For n ≥ 0, let Mn denote the limit of the diagram

N(∆≤n−1)op ×N(∆)op N(∆/[n])op → N(∆≤n−1)op
fn−1→ P(C)/X

(the nth matching object) and let Mn denote its image in P(C). Then
the canonical map fn([n]) → Mn is an effective epimorphism in P(C)
(see §6.2.3).

The construction of the functors fn proceeds by induction on n, the case
n < 0 being trivial. For n ≥ 0, we invoke Remark A.2.9.16: to extend fn−1

to a functor fn satisfying (A) and (B), it suffices to produce an object Zn and
a morphism ψ : Zn → Mn in P(C), such that the coproduct Ln

∐
Zn → Mn

is an effective epimorphism. This is satisfied in particular if ψ itself is an
effective epimorphism.

The maps fn together determine a simplicial object Y • of P(C)/X , which
we can identify with a simplicial object Y• in P(C) equipped with a map θ :
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lim−→Y• → X. Assumption (B) guarantees that θ is a hypercovering of X (see
§6.5.3), so that the map θ is ∞-connective (Lemma 6.5.3.11). The ∞-topos
P(C) has enough points (given by evaluation at objects of C) and is therefore
hypercomplete (Remark 6.5.4.7). It follows that θ is an equivalence. We now
complete the proof by observing that for n ≥ 0, we have an equivalence
Yn � ∐

[n]→[k] Zk where the coproduct is taken over all surjective maps of
linearly ordered sets [n] → [k], so that Yn is itself a small coproduct of objects
lying in the essential image of the Yoneda embedding j : C → P(C).

5.5.9 Quillen’s Model for PΣ(C)

Let C be a small category which admits finite products. Then N(C)op is
an ∞-category which admits finite coproducts. In §5.5.8, we studied the
∞-category PΣ(N(C)op), which we can view as the full subcategory of the
presheaf ∞-category Fun(N(C), S) spanned by those functors which preserve
finite products. According to Proposition 4.2.4.4, Fun(N(C), S) can be iden-
tified with the ∞-category underlying the simplicial model category of di-
agrams SetC

∆ (which we will endow with the projective model structure de-
scribed in §A.3.2). It follows that every functor f : N(C) → S is equivalent
to the (simplicial) nerve of a functor F : C → Kan. Moreover, f belongs
to PΣ(N(C)op) if and only if the functor F is weakly product-preserving in
the sense that for any finite collection of objects {Ci ∈ C}1≤i≤n, the natural
map

F (C1 × · · · × Cn) → F (C1) × · · · × F (Cn)

is a homotopy equivalence of Kan complexes. Our goal in this section is
to prove a refinement of Proposition 4.2.4.4: if f preserves finite products,
then it is possible to arrange that F preserves finite products (up to iso-
morphism rather than up to homotopy equivalence). This result is most
naturally phrased as an equivalence between model categories (Proposition
5.5.9.2) and is due to Bergner (see [9]). We begin by recalling the following
result of Quillen (for a proof, we refer the reader to [63]):

Proposition 5.5.9.1 (Quillen). Let C be a category which admits finite
products and let A denote the category of functors F : C → Set∆ which
preserve finite products. Then A admits a simplicial model structure which
may be described as follows:

(W ) A natural transformation α : F → F ′ of functors is a weak equiva-
lence in A if and only if α(C) : F (C) → F ′(C) is a weak homotopy
equivalence of simplicial sets for every C ∈ C.

(F ) A natural transformation α : F → F ′ of functors is a fibration in A if
and only if α(C) : F (C) → F ′(C) is a Kan fibration of simplicial sets
for every C ∈ C.

Suppose that C and A are as in the statement of Proposition 5.5.9.1. Then
we may regard A as a full subcategory of the category SetC

∆ of all functors
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from C to Set∆, which we regard as endowed with the projective model
structure (so that fibrations and weak equivalences are given pointwise).
The inclusion G : A ⊆ SetC

∆ preserves fibrations and trivial fibrations and
therefore determines a Quillen adjunction

SetC
∆

F ��A
G

�� .

(A more explicit description of the adjoint functor F will be given below.)
Our goal in this section is to prove the following result:

Proposition 5.5.9.2 (Bergner). Let C be a small category which admits
finite products and let

SetC
∆

F ��A
G

��

be as above. Then the right derived functor

RG : hA → hSetC
∆

is fully faithful, and an object f ∈ hSetC
∆ belongs to the essential image of RG

if and only if f preserves finite products up to weak homotopy equivalence.

Corollary 5.5.9.3. Let C be a small category which admits finite products
and let A be as in Proposition 5.5.9.2. Then the natural map N(A◦) →
PΣ(N(C)op) is an equivalence of ∞-categories.

The proof of Proposition 5.5.9.2 is somewhat technical and will occupy
the rest of this section. We begin by introducing some preliminaries.

Notation 5.5.9.4. Let C be a small category. We define a pair of categories
Env(C) ⊆ Env+(C) as follows:

(i) An object of Env+(C) is a pair C = (J, {Cj}j∈J ), where J is a finite
set and each Cj is an object of C. The object C belongs to Env(C) if
and only if J is nonempty.

(ii) Given objects C = (J, {Cj}j∈J) and C ′ = (J ′, {C′
j′}j′∈J′) of Env+(C),

a morphism C → C′ consists of the following data:

(a) A map f : J ′ → J of finite sets.

(b) For each j′ ∈ J ′, a morphism Cf(j′) → C′
j′ in the category C.

Such a morphism belongs to Env(C) if and only if both J and J ′ are
nonempty and f is surjective.

There is a fully faithful embedding functor θ : C → Env(C) given by
C �→ (∗, {C}). We can view Env+(C) as the category obtained from C by
freely adjoining finite products. In particular, if C admits finite products,
then θ admits a (product-preserving) left inverse φ+

C given by the formula
(J, {Cj}j∈J) �→ ∏

j∈J Cj . We let φC denote the restricton φ+
C |Env(C).
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Given a functor F ∈ SetC
∆, we let E+(F) ∈ SetEnv+(C)

∆ denote the compo-
sition

Env+(C)
Env+(F)→ Env+(Set∆)

φ+
Set∆→ Set∆

(J, {Cj}j∈J) �→
∏

f(Cj).

We let E(F) denote the restriction E+(F)|Env(C) ∈ SetEnv(C)
∆ .

If the category C admits finite products, then we let L,L+ : SetC
∆ → SetC

∆

denote the compositions

SetC
∆

E→ SetEnv(C)
∆

(φC)!→ SetC
∆

SetC
∆
E+

→ SetEnv+(C)
∆

(φ+
C

)!→ SetC
∆,

where (φC)! and (φ+
C )! indicate left Kan extension functors. There is a

canonical isomorphism θ∗ ◦ E � id which induces a natural transformation
α : id → L. Let β : L → L+ indicate the natural transformation induced by
the inclusion Env(C) ⊆ Env+(C).

Remark 5.5.9.5. Let C be a small category. The functor E+ : SetC
∆ →

SetEnv+(C)
∆ is fully faithful and has a left adjoint given by θ∗.

We begin by constructing the left adjoint which appears in the statement
of Proposition 5.5.9.2.

Lemma 5.5.9.6. Let C be a simplicial category which admits finite products
and let F ∈ SetC

∆. Then

(1) The object L+(F) ∈ SetC
∆ is product-preserving.

(2) If F′ ∈ SetC
∆ is product-preserving, then composition with β ◦α induces

an isomorphism of simplicial sets

MapSetC
∆
(L+(F),F′) → MapSetC

∆
(F,F′).

Proof. Suppose we are given a finite collection of objects {C1, . . . , Cn} in C

and let

u : L+(F)(C1 × · · · × Cn) → L+(F)(C1) × · · · × L+(F)(Cn)

be the product of the projection maps. We wish to show that u is an isomor-
phism of simplicial sets. We will give an explicit construction of an inverse to
u. For C ∈ C, we let Env+(C)/C denote the fiber product Env+(C) ×D C/C .
For 1 ≤ i ≤ n, let Gi denote the restriction of E+(F) to Env+(C)/Ci

and let

G :
∏

Env+(D)/Ci
→ Set∆

be the product of the functors Gi. We observe that L+(F)(Ci) � lim−→(Gi), so
that the product

∏
L+(F)(Ci) � lim−→(G). We now observe that the formation

of products in E+(C) gives an identification of G with the composition∏
Env+(C)/Ci

→ Env+(D)/C1×···×Cn

E+(F)→ Set∆ .
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We thereby obtain a morphism

v : lim−→(G) → lim−→(E+(F)|Env+(D)/C1×···×Cn
� L+(F)(C1 × · · · × Cn).

It is not difficult to check that v is an inverse to u.
We observe that (2) is equivalent to the assertion that composition with

θ∗ induces an isomorphism

Map
Set

Env+(C)
∆

(E+(F), (φ+
C )∗(F′)) → MapSetC

∆
(F,F′).

Because G is product-preserving, there is a natural isomorphism (φ+
C )∗(F′) �

E+(F′). The desired result now follows from Remark 5.5.9.5.

It follows that the functor L+ : SetC
∆ → SetC

∆ factors through A and
can be identified with a left adjoint to the inclusion A ⊆ SetC

∆. In order to
prove Proposition 5.5.9.2, we need to be able to compute the functor L+.
We will do this in two steps: first, we show that (under mild hypotheses) the
natural transformation L → L+ is a weak equivalence. Second, we will see
that the colimit defining L is actually a homotopy colimit and therefore has
good properties. More precisely, we have the following pair of lemmas whose
proofs will be given at the end of this section.

Lemma 5.5.9.7. Let C be a small category which admits finite products and
let F ∈ SetC

∆ be a functor which carries the final object of C to a contractible
Kan complex K. Then the canonical map β : L(F) → L+(F) is a weak
equivalence in SetC

∆.

Lemma 5.5.9.8. Let C be a small simplicial category. If F is a projec-
tively cofibrant object of SetC

∆, then E(F) is a projectively cofibrant object of
SetEnv(C)

∆ .

We are now almost ready to give the proof of Proposition 5.5.9.2. The
essential step is contained in the following result:

Lemma 5.5.9.9. Let C be a simplicial category that admits finite products
and let

SetC
∆

F ��A
G

��

be as in the statement of Proposition 5.5.9.2. Then

(1) The functors F and G are Quillen adjoints.

(2) If F ∈ SetC
∆ is projectively cofibrant and weakly product-preserving,

then the unit map F → (G ◦ F )(F) is a weak equivalence.

Proof. Assertion (1) is obvious since G preserves fibrations and trivial cofi-
brations. It follows that F preserves weak equivalences between projectively
cofibrant objects. Let K ∈ Set∆ denote the image under F of the final ob-
ject of D. In proving (2), we are free to replace F by any weakly equivalent
diagram which is also projectively cofibrant. Choosing a fibrant replacement



PRESENTABLE AND ACCESSIBLE ∞-CATEGORIES 519

for F, we may suppose that K is a Kan complex. Since F is weakly product-
preserving, K is contractible.

In view of Lemma 5.5.9.6, we can identify the composition G ◦F with L+

and the unit map with the composition

F
α→ L(F)

β→ L+(F).

Lemma 5.5.9.7 implies that β is a weak equivalence. Consequently, it will
suffice to show that α is a weak equivalence.

We recall the construction of α. Let θ : C → Env(C) be as in Notation
5.5.9.4, so that there is a canonical isomorphism F � θ∗E(F). This isomor-
phism induces a natural transformation α : θ! F → E(F). The functor α is
obtained from α by applying the functor (φC)! and identifying ((φC)! ◦θ!)(F)
with F. We observe that (φC)! preserves weak equivalences between pro-
jectively cofibrant objects. Since θ! preserves projective cofibrations, θ! F is
projectively cofibrant. Lemma 5.5.9.8 asserts that E(F) is projectively cofi-
brant. Consequently, it will suffice to prove that α is a weak equivalence in
SetEnv(C)

∆ . Unwinding the definitions, this reduces to the condition that F be
weakly compatible with (nonempty) products.

Proof of Proposition 5.5.9.2. Lemma 5.5.9.9 shows that (F,G) is a Quillen
adjunction. To complete the proof, we must show:

(i) The counit transformation LF ◦RG → id is an isomorphism of functors
from the homotopy category hA to itself.

(ii) The essential image of RG : hA → hSetC
∆ consists precisely of those

functors which are weakly product-preserving.

We observe that G preserves weak equivalences, so we can identify RG
with G. Since G also detects weak equivalences, (i) will follow if we can
show that the induced transformation θ : G◦LF ◦G → G is an isomorphism
of functors from the homotopy category hA to itself. This transformation
has a right inverse given by composing the unit transformation id → G◦LF
with G. Consequently, (i) follows immediately from Lemma 5.5.9.9.

The image of G consists precisely of the product-preserving diagrams C →
Set∆; it follows immediately that every diagram in the essential image of
G is weakly product-preserving. Lemma 5.5.9.9 implies the converse: every
weakly product-preserving functor belongs to the essential image of G. This
proves (ii).

Remark 5.5.9.10. Proposition 5.5.9.2 can be generalized to the situation
where C is a simplicial category which admits finite products. We leave the
necessary modifications to the reader.

It remains to prove Lemmas 5.5.9.8 and 5.5.9.7.

Proof of Lemma 5.5.9.8. For every object C ∈ C and every simplicial set
K, we let FKC ∈ SetC

∆ denote the functor given by the formula FKC (D) =
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MapC(C,D) × K. A cofibration K → K ′ induces a projective cofibration
FKC → FK

′
C . We will refer to a projective cofibration of this form as a gener-

ating projective cofibration.
The small object argument implies that if F ∈ SetC

∆, then there is a trans-
finite sequence

F0 ⊆ F1 ⊆ · · · ⊆ Fα

with the following properties:

(a) The functor F0 : D → Set∆ is constant, with value ∅.
(b) If λ ≤ α is a limit ordinal, then Fλ =

⋃
β<λ Fβ .

(c) For each β < α, the inclusion Fβ ⊆ Fβ+1 is a pushout of a generating
projective cofibration.

(d) The functor F is a retract of Fα.

The functor G �→ E(G) preserves initial objects, filtered colimits, and re-
tracts. Consequently, to show that E(F) is projectively cofibrant, it will
suffice to prove the following assertion:

(∗) Suppose we are given a cofibration K → K ′ of simplicial sets and a
pushout diagram

FKC

��

�� G

��
FK

′
C

�� G′

in SetC
∆. If E(G) is projectively cofibrant, then E(G′) is projectively

cofibrant.

To prove this, we will need to analyze the structure of E(G′). Given an
object C ′ = (J, {C ′

j}j∈J) of Env(C), we have

E(G′)(C′) =
∏
j∈J

(G(C ′
j)

∐
K×MapC(C,C′

j)

(K′ × MapC(C,C′
j))).

Let σ : ∆n → E(G′)(C ′) be a simplex and let Jσ ⊆ J be the collection of all
indices j for which the corresponding simplex σ(j) : ∆n → G′(C ′

j) does not
factor through G(C′

j). In this case, we can identify σ(j) with an n-simplex of
K ′ which does not belong to K. We will say that σ is of index ≤ k if the set
{σ(j) : j ∈ Jσ} has cardinality ≤ k. Note that σ can be of index smaller than
the cardinality of Jσ since it is possible for σ(j) = σ(j′) ∈ MapSet∆(∆n,K ′)
even if j �= j′.

Let E(G′)(k)(C ′) be the full simplicial subset of E(G′)(C ′) spanned by
those simplices which are of index ≤ k. It is easy to see that that E(G′)(k)(C ′)
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depends functorially on C ′, so we can view E(G′)(k) as an object of SetEnv(C)
∆ .

We observe that

E(G) � E(G′)(0) ⊆ E(G′)(1) ⊆ · · ·
and that the union of this sequence is E(G′). Consequently, it will suffice
to prove that each of the inclusions E(G′)(k−1) ⊆ E(G′)(k) is a projective
cofibration.

First, we need a bit of notation. Let us say that a simplex ofK ′k is new if it
consists of k distinct simplices of K ′, none of which belong to K. We will say
that a simplex of K′k is old if it is not new. The collection of old simplices of
K ′k determines a simplicial subset which we will denote by K ′(k). We define
a functor ψ : Env(C) → Env(C) by the formula

ψ(J, {C′
j}j∈J) = (J ∪ {1, . . . , k}, {C ′

j}j∈J ∪ {C}{1...k}).
Let ψ∗ : SetEnv(C)

∆ → SetEnv(C)
∆ be given by composition with ψ and let

ψ! : SetEnv(C)
∆ → SetEnv(C)

∆ be a left adjoint to ψ∗ (a functor of left Kan
extension). Since ψ∗ preserves projective fibrations and weak equivalences,
ψ! preserves projective cofibrations.

Recall that SetEnv(C)
∆ is tensored over the category of simplicial sets: given

an object M ∈ SetEnv(C)
∆ and a simplicial set A, we let M⊗A ∈ SetEnv(C)

∆

be defined by the formula (M⊗A)(D′) = M(D′) × A. If M is projectively
cofibrant, then the operation M �→ M⊗A preserves cofibrations in A.

There is an obvious map E(G)⊗K ′k → ψ∗E(G′)(k) which restricts to a map
E(G)⊗K ′(k) → ψ∗E(G′)(k−1). Passing to adjoints, we obtain a commutative
diagram

ψ!(E(G) ⊗K′(k))

��

�� E(G′)(k−1)

��
ψ!(E(G) ⊗K′k) �� E(G′)(k).

An easy computation shows that this diagram is coCartesian. Since E(G) is
projectively cofibrant, the above remarks imply that the left vertical map is
a projective cofibration. It follows that the right vertical map is a projective
cofibration as well, which completes the proof.

The proof of Lemma 5.5.9.7 is somewhat more difficult and will require
some preliminaries.

Notation 5.5.9.11. Let M : Set → Set be the covariant functor which
associates to each set S the collection of M(S) of nonempty finite subsets of
S. If K is a simplicial set, we let M(K) denote the composition of K with M,
so that an m-simplex of M(K) is a finite nonempty collection of m-simplices
of K.

Lemma 5.5.9.12. Let K be a finite simplicial set and let X ⊆ M(K
)×∆n

be a simplicial subset with the following properties:
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(i) The projection X → ∆n is surjective.

(ii) If τ = (τ ′, τ ′′) : ∆m → M(K
)×∆n belongs to X and τ ′ ⊆ τ ′ as subsets
of HomSet∆(∆m,K
), then (τ ′, τ ′′) : ∆m → M(K
) × ∆n belongs to
X.

Then X is weakly contractible.

Proof. Let X ′ ⊆ X be the simplicial subset spanned by those simplices
τ = (τ ′, τ ′′) : ∆m → M(K
) × ∆n which factor through X and for which
τ ′ ⊆ HomSet∆(∆m,K
) includes the constant simplex at the cone point of
K
. Our first step is to show that X ′ is a deformation retract of X. More
precisely, we will construct a map

h : M(K
) × ∆n × ∆1 → M(K
) × ∆n

with the following properties:

(a) The map h carries X × ∆1 into X and X ′ × ∆1 into X ′.

(b) The restriction h|M(K
) × ∆n × {0} is the identity map.

(c) The restriction h|X × {1} factors through X ′.

The map h will be the product of a map h′ : M(K
) × ∆1 → M(K
) and
the identity map on ∆n. To define h′, we consider an arbitrary simplex
τ : ∆m → M(K
) × ∆1 corresponding to a subset S ⊆ HomSet∆(∆m,K
)
and a decomposition [m] = {0, . . . , i} ∪ {i + 1, . . . ,m}. The subset h′(τ) ⊆
HomSet∆(∆m,K
) is defined as follows: an arbitrary simplex σ : ∆m → K


belongs to h′(τ) if there exists σ′ ∈ S, i < j ≤ n such that σ′|∆{0,...,j−1} =
σ|∆{0,...,j−1}, and σ|∆{j,...,m} is constant at the cone point of K
. It is easy
to check that h′ has the desired properties.

It remains to prove that X ′ is weakly contractible. At this point, it is
convenient to work in the setting of semisimplicial sets: that is, we will
ignore the degeneracy operations. Let X ′′ be the semisimplicial subset of
M(K
) × ∆n spanned by those maps τ = (τ ′, τ ′′) : ∆m → M(K
) × ∆n for
which τ ′ = HomSet∆(∆m,K
) (we observe that X ′′ is not stable under the
degeneracy operators on M(K
) × ∆n). Assumptions (i) and (ii) guarantee
that X ′′ ⊆ X ′. Moreover, the projection X → ∆n induces an isomorphism
of semisimplicial sets X ′′ → ∆n. Consequently, it will suffice to prove that
X ′′ is a deformation retract of X ′.

The proof now proceeds by a variation on our earlier construction. Namely,
we will define a map of semisimplicial sets

g : M(K
) × ∆n × ∆1 → M(K
) × ∆n

with the following properties:

(a) The map g carries X ′ × ∆1 into X ′ and X ′′ × ∆1 into X ′′.

(b) The restriction g|X ′ × {1} is the identity map.
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(c) The restriction g|M(K
) × ∆n × {0} factors through X ′.

As before, g is the product of a map g′ : M(K
) × ∆1 → M(K
) with
the identity map on ∆n. To define g′, we consider an arbitrary simplex
τ : ∆m → M(K
) × ∆1, corresponding to a subset S ⊆ HomSet∆(∆m,K
)
and a decomposition [m] = {0, . . . , i} ∪ {i + 1, . . . ,m}. We let g′(τ) ⊆
HomSet∆(∆m,K
) = S ∪ S′, where S′ is the collection of all simplices
σ : ∆m → K
 such that σ|∆{i+1,...,m} is the constant map at the cone
poine of K
. It is readily checked that g′ has the desired properties.

Lemma 5.5.9.13. Let K be a contractible Kan complex and let

X ⊆ M(K) × ∆n

be a simplicial subset with the following properties:

(i) The projection X → ∆n is surjective.

(ii) If τ = (τ ′, τ ′′) : ∆m → M(K)×∆n belongs to X and τ ′ ⊆ τ ′ as subsets
of HomSet∆(∆m,K), then (τ ′, τ ′′) : ∆m → M(K) × ∆n belongs to X.

Then X is weakly contractible.

Proof. It will suffice to show that for every finite simplicial subset X ′ ⊆ X,
the inclusion ofX ′ intoX is weakly nullhomotopic. EnlargingX ′ if necessary,
we may assume that X ′ = (M(K ′)×∆n)∩X, where K ′ is a finite simplicial
subset ofK. By further enlargement, we may suppose that the mapX′ → ∆n

is surjective. Since K is a contractible Kan complex, the inclusion K ′ ⊆ K
extends to a map i : K′
 → K. Let X ⊆ M(K ′
) × ∆n denote the inverse
image of X. Then the inclusion X ′ ⊆ X factors through X, and Lemma
5.5.9.12 implies that X is weakly contractible.

Proof of Lemma 5.5.9.7. Fix an object C ∈ C. The simplicial set L(F)(C)
can be described as follows:

(∗) For every n ≥ 1, every map f : C1 × · · · × Cn → C in C, and every
collection of simplices {σi : ∆k → F(Ci)}, there is a simplex f({σi}) :
∆k → L(F)(C).

The simplices f({σi}) satisfy relations which are determined by morphisms
in the simplicial category Env(C).

To every k-simplex τ : ∆k → L(F)(D) we can associate a nonempty finite
subset Sτ ⊆ HomSet∆(∆k,K). If τ = f({σi}), we assign the set of images
of the simplices σi under the canonical maps F(Ci) → F(1) = K. It is easy
to see that Sτ is independent of the representation f({σi}) chosen for τ and
depends functorially on τ . Consequently, we obtain a map of simplicial sets
L(F)(C) → M(K). Moreover, this map has the following properties:

(i) The product map β′ : L(F)(C) → M(K) × L+(F)(C) is a monomor-
phism of simplicial sets.
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(ii) If a k-simplex τ = (τ ′, τ ′′) : ∆k → M(K) → L+(F)(C) belongs to
the image of β and τ ′ ⊆ τ ′ as finite subsets of HomSet∆(∆k,K), then
(τ ′, τ ′′) : ∆k → M(K) × L+(F)(C) belongs to the image of β′.

We wish to show that β : L(F)(C) → L+(F)(C) is a weak homotopy
equivalence. It will suffice to show that for every simplex ∆k → L+(F)(C),
the fiber product L(F)(C)×L+(F)(C)∆k is weakly contractible. In view of (i),
we can identify this fiber product with a simplicial subset X ⊆ ∆k ×M(K).
The surjectivity of β and condition (ii) imply that X satisfies the hypotheses
of Lemma 5.5.9.13, so that X is weakly contractible, as desired.

The model category A appearing in Proposition 5.5.9.1 is very well suited
to certain calculations, such as the formation of homotopy colimits of sim-
plicial objects. The following result provides a precise formulation of this
idea:

Proposition 5.5.9.14. Let C be a category which admits finite products,
and A ⊆ SetC

∆, A ⊆ SetC the full subcategories spanned by the product-
preserving functors. Let F : ∆op → A be a simplicial object of A which we
can identify with a bisimplicial object F : ∆op×∆op → A. Composition
with the diagonal

∆op → ∆op×∆op F→ A

gives a simplicial object of A which we can identify with an object |F | ∈ A.
Then the homotopy colimit of F is canonically isomorphic to |F | in the
homotopy category hA.

The proof requires the following lemma:

Lemma 5.5.9.15. Let C be a category which admits finite products and let
A ⊆ SetC

∆ be the full subcategory spanned by the product-preserving functors.
For every object C ∈ C, the evaluation map A → Set∆ preserves homotopy
colimits of simplicial objects.

Proof. In view of Corollary 5.5.9.3 and Theorem 4.2.4.1, it will suffice to show
that the evaluation functor PΣ(N(C)op) → Set∆ preserves N(∆)op-indexed
colimits. This follows from Proposition 5.5.8.10 since N(∆)op is sifted (see
Lemma 5.5.8.4).

Proof of Proposition 5.5.9.14. Since A is a combinatorial simplicial model
category, Corollary A.2.9.30 implies the existence of a canonical map

γ : hocolim F → |F |
in the homotopy category hA; we wish to prove that γ is an isomorphism.
To prove this, it will suffice to show that the induced map

γC : (hocolimF)(C) → |F |(C)
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is an isomorphism in the homotopy category of simplicial sets for each object
C ∈ C. This map fits into a commutative diagram

hocolim(F(C))
γ′

C ��

��

|F(C)|

��
hocolim(F)(C) �� |F |(C).

The left vertical map is an isomorphism in the homotopy category of sim-
plicial sets by Lemma 5.5.9.15, the right vertical map is evidently an iso-
morphism, and the map γ′C is an isomorphism in the homotopy category by
Example A.2.9.31; it follows that γC is also an isomorphism, as desired.



Chapter Six

∞-Topoi

In this chapter, we come to the main subject of this book: the theory of ∞-
topoi. Roughly speaking, an ∞-topos is an ∞-category which “looks like” the
∞-category of spaces, just as an ordinary topos is a category which “looks
like” the category of sets. As in classical topos theory, there are various ways
of making this precise. We will begin in §6.1 by reviewing several possible
definitions and proving that they are equivalent to one another.

The main result of §6.1 is Theorem 6.1.0.6, which asserts that an ∞-
category X is an ∞-topos if and only if X arises as an (accessible) left exact
localization of an ∞-category of presheaves. In §6.2, we consider the problem
of constructing left exact localizations. In classical topos theory, there is a
bijective correspondence between left exact localizations of a presheaf cate-
gory P(C) and Grothendieck topologies on C. In the ∞-category categorical
context, one can again use Grothendieck topologies to construct examples of
left exact localizations. Unfortunately, not every ∞-topos arises in this way.
Nevertheless, the construction of an ∞-category of sheaves Shv(C) from a
Grothendieck topology on C is an extremely useful construction, which will
play an important role throughout Chapter 7.

In order to understand higher topos theory, we will need to consider ∞-
topoi not only individually but in relation to one another. In §6.3, we will
introduce the notion of a geometric morphism of ∞-topoi. The collection of
all ∞-topoi and geometric morphisms between them can be organized into
an ∞-category RTop. We will study the problem of constructing colimits
and (certain) limits in RTop. In the course of doing so, we will show that
the class of ∞-topoi is stable under various categorical constructions.

One of our goals in this book is to apply ideas from higher category theory
to study more classical mathematical objects such as topological spaces or
ordinary topoi. In order to do so, it is convenient to work in a setting where
all of these objects can be considered on the same footing. In §6.4, we will
introduce the definition of an n-topos for all 0 ≤ n ≤ ∞. When n = ∞,
this will reduce to the theory introduced in §6.1. The case n = 1 will re-
cover classical topos theory, and the case n = 0 is almost equivalent to the
theory of topological spaces. We will study the theory of n-topoi and intro-
duce constructions which allow us to pass between n-topoi and ∞-topoi. In
particular, we associate an ∞-topos Shv(X) to every topological space X,
which will be the primary object of study in Chapter 7.

There are several different ways of thinking about what an ∞-topos X is.
On the one hand, we can view X as a generalized topological space; on the



∞-TOPOI 527

other hand, we can think of X as an alternative universe in which we can
do homotopy theory. In §6.5, we will reinforce the second point of view by
studying the internal homotopy theory of an ∞-topos X. Just as in classical
homotopy theory, one can define homotopy groups, Postnikov towers, Eilen-
berg MacLane spaces, and so forth. In Chapter 7, we will bring together
these two points of view by showing that classical geometric properties of a
topological space X are reflected in the internal homotopy of the ∞-topos
Shv(X) of sheaves on X.

There are several papers on higher topos theory in the literature. The
papers [74] and [11] both discuss a notion of 2-topos (the second from an
elementary point of view). However, the basic model for these 2-topoi is
the 2-category of (small) categories rather than the 2-category of (small)
groupoids. Jardine ([41]) has exhibited a model structure on the category
of simplicial presheaves on a Grothendieck site, and the ∞-category associ-
ated to this model category is an ∞-topos in our sense. This construction is
generalized from ordinary categories with a Grothendieck topology to sim-
plicial categories with a Grothendieck topology in [78] (and again produces
∞-topoi). However, not every ∞-topos arises in this way: one can construct
only ∞-topoi which are hypercomplete (called t-complete in [78]); we will
summarize the situation in Section 6.5.2. Our notion of an ∞-topos is es-
sentially equivalent to the notion of a Segal topos introduced in [78] and to
Charles Rezk’s notion of a model topos. We note also that the paper [78] has
considerable overlap with the ideas discussed here.

6.1 ∞-TOPOI: DEFINITIONS AND CHARACTERIZATIONS

Before we study the ∞-categorical version of topos theory, it seems appro-
priate to briefly review the classical theory. Recall that a topos is a category
C which behaves like the category of sets or (more generally) the category of
sheaves of sets on a topological space. There are several (equivalent) ways of
making this idea precise. The following result is proved (in a slightly different
form) in [2]:

Proposition 6.1.0.1. Let C be a category. The following conditions are
equivalent:

(A) The category C is (equivalent to) the category of sheaves of sets on
some Grothendieck site.

(B) The category C is (equivalent to) a left exact localization of the category
of presheaves of sets on some small category C0.

(C) Giraud’s axioms are satisfied:

(i) The category C is presentable (that is, C has small colimits and a
set of small generators).
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(ii) Colimits in C are universal.

(iii) Coproducts in C are disjoint.

(iv) Equivalence relations in C are effective.

Definition 6.1.0.2. A category C is called a topos if it satisfies the equiva-
lent conditions of Proposition 6.1.0.1.

Remark 6.1.0.3. A reader who is unfamiliar with some of the terminology
used in the statement of Proposition 6.1.0.1 should not worry: we will re-
view the meaning of each condition in §6.1.1 as we search for ∞-categorical
generalizations of axioms (i) through (iv).

Our goal in this section is to introduce the ∞-categorical analogue of
Definition 6.1.0.2. Proposition 6.1.0.1 suggests several possible approaches.
We begin with the simplest of these:

Definition 6.1.0.4. Let X be an ∞-category. We will say that X is an
∞-topos if there exists a small ∞-category C and an accessible left exact
localization functor P(C) → X.

Remark 6.1.0.5. Definition 6.1.0.4 involves an accessibility condition which
was not mentioned in Proposition 6.1.0.1. This is because every left exact
localization of a category of set-valued presheaves is automatically accessible
(see Proposition 6.4.3.9). We do not know if the corresponding result holds
for S-valued presheaves. However, it is true under a suitable hypercomplete-
ness assumption: see [79].

Adopting Definition 6.1.0.4 amounts to selecting an extrinsic approach to
higher topos theory: the class of ∞-topoi is defined to be the smallest collec-
tion of ∞-categories which contains S and is stable under certain construc-
tions (left exact localizations and the formation of functor categories). The
main objective of this section is to give several reformulations of Definition
6.1.0.2 which have a more intrinsic flavor. Our results may be summarized
in the following statement (all our our terminology will be explained later
in this section):

Theorem 6.1.0.6. Let X be an ∞-category. The following conditions are
equivalent:

(1) The ∞-category X is an ∞-topos.

(2) The ∞-category X is presentable, and for every small simplicial set K
and every natural transformation α : p → q of diagrams p, q : K
 → X,
the following condition is satisfied:

– If q is a colimit diagram and α = α|K is a Cartesian trans-
formation, then p is a colimit diagram if and only if α is a Carte-
sian transformation.
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(3) The ∞-category X satisfies the following ∞-categorical analogues of
Giraud’s axioms:

(i) The ∞-category X is presentable.
(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.
(iv) Every groupoid object of X is effective.

We will review the meanings of conditions (i) through (iv) in §6.1.1 and
§6.1.2. In §6.1.3, we will give several equivalent formulations of (2) and prove
the implications (1) ⇒ (2) ⇒ (3). The implication (3) ⇒ (1) is the most dif-
ficult; we will give the proof in §6.1.5 after establishing a crucial technical
lemma in §6.1.4. Finally, in §6.1.6 we will establish yet another characteri-
zation of ∞-topoi based on the theory of classifying objects.

Remark 6.1.0.7. The characterization of the class of ∞-topoi given in part
(2) of Theorem 6.1.0.6 is due to Rezk, as are many of the ideas presented in
§6.1.3.

The equivalence (1) ⇔ (3) of Theorem 6.1.0.6 can be viewed as an ∞-
categorical analogue of the equivalence (B) ⇔ (C) in Proposition 6.1.0.1.
It is natural to ask if there is also some equivalent of the characterization
(A). To put the question another way: given a small ∞-category C, does
there exist some natural description of the class of all left exact localizations
of C? Experience with classical topos theory suggests that we might try to
characterize such localizations in terms of Grothendieck topologies on C. We
will introduce a theory of Grothendieck topologies on ∞-categories in §6.2.2
and show that every Grothendieck topology on C determines a left exact
localization of P(C). However, it turns out that not every ∞-topos arises
via this construction. This raises a natural question: is it possible to give an
explicit description of all left exact localizations of P(C), perhaps in terms of
some more refined theory of Grothendieck topologies? We will give a partial
answer to this question in §6.5.

6.1.1 Giraud’s Axioms in the ∞-Categorical Setting

Our goal in this section is to formulate higher-categorical analogues of con-
ditions (i) through (iv) of Proposition 6.1.0.1. We consider each axiom in
turn. In each case, our objective is to find an analogous axiom which makes
sense in the setting of ∞-categories and is satisfied by the ∞-category S of
spaces.

(i) The category C is presentable.

The generalization to the case where C is a ∞-category is obvious: we
should merely require C to be a presentable ∞-category in the sense of
Definition 5.5.0.1. According to Example 5.5.1.8, this condition is satisfied
when C is the ∞-category of spaces.
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(ii) Colimits in C are universal.

Let us first recall the meaning of this condition in classical category theory.
If the axiom (i) is satisfied, then C is presentable and therefore admits all
(small) limits and colimits. In particular, every diagram

X → S
f← T

has a limit XT = X ×S T . This construction determines a functor

f∗ : C/S → C/T

X �→ XT ,

which is a right adjoint to the functor given by composition with f .
We say that colimits in C are universal if the functor f∗ is preserves

colimits for every map f : T → S in C. (In other words, colimits are universal
in C if any colimit in C remains a colimit in C after pulling back along a
morphism T → S.)

Let us now attempt to make this notion precise in the setting of an arbi-
trary ∞-category C. Let OC = Fun(∆1,C) and let p : OC → C be given by
evaluation at {1} ⊆ ∆1. Corollary 2.4.7.12 implies that p is a coCartesian
fibration.

Lemma 6.1.1.1. Let X be an ∞-category and let p : OX → X be defined as
above. Let F be a morphism in OX corresponding to a diagram σ : ∆1×∆1 �
(Λ2

2)
	 → X, which we will denote by

X ′ f ′
��

��

Y ′

g

��
X

f �� Y.

Then F is p-Cartesian if and only if the above diagram is a pullback in X. In
particular, p is a Cartesian fibration if and only if the ∞-category X admits
pullbacks.

Proof. For every simplicial set K, let K+ denote the full simplicial subset of
(K  {x}  {y}) × ∆1 spanned by all of the vertices except (x, 0) and define
a simplicial set C by setting

Fun(K,C) = {m : K+ → X : m|({x}  {y}) × {1} = f,m|{y} × ∆1 = g}.
We observe that we have a commutative diagram

C ��

��

(OX)/g

��
X/f �� X/Y ′

which induces a map q : C → (OX)/g ×X/Y ′ X/f . We first claim that q
is a trivial fibration. Unwinding the definitions, we observe that the right
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lifting property of q with respect to an inclusion ∂∆n ⊆ ∆n follows from the
extension property of X with respect to Λn+2

n+1, which follows in turn from
our assumption that X is an ∞-category.

The inclusion K+ ⊆ K × ∆1 induces a projection q′ : (OX)/F → C which
fits into a pullback diagram

(OX)/F ��

��

C

g

��
X/σ

q′′ �� X/σ|Λ2
2
.

It follows that q′ is a right fibration and that q′ is trivial if σ is a pullback
diagram. Conversely, we observe that (Λ2

2)
	 is a retract of (∆0)+, so that

the map g is surjective on vertices. Consequently, if q′ is a trivial fibration,
then the fibers of q′′ are contractible, so that q′′ is a trivial fibration (Lemma
2.1.3.4) and σ is a pullback diagram.

By definition, F is p-Cartesian if and only if the composition
q ◦ q′ : (OX)/F → (OX)/g ×X/Y ′ X/f

is a trivial fibration. Since q is a trivial fibration and q′ is a right fibration,
this is also equivalent to the assertion that q′ is a trivial fibration (Lemma
2.1.3.4).

Now suppose that X is an ∞-category which admits pullbacks, so that
the projection p : OX → X is both a Cartesian fibration and a coCartesian
fibration. Let f : S → T be a morphism in X. Taking the pullback of p
along the corresponding map ∆1 → X, we obtain a correspondence from
p−1(S) = X/S to p−1(T ) = X/T associated to a pair of adjoint functors

X/X
f! ��

X/T .
f∗

��

The functors f! and f∗ are well-defined up to homotopy (in fact, up to a
contractible space of choices). We may think of f! as the functor given by
composition with f , and f∗ as the functor given by pullback along f (in view
of Lemma 6.1.1.1).

We can now formulate the ∞-categorical analogue of (ii):

Definition 6.1.1.2. Let C be a presentable ∞-category. We will say that
colimits in C are universal if, for any morphism f : T → S in C, the associated
pullback functor

f∗ : C/S → C/T

preserves (small) colimits.

Assume that C is a presentable ∞-category and let f : T → S be a
morphism in C. By the adjoint functor theorem, f∗ : C/S → C/T preserves
all colimits if and only if it has a right adjoint f∗. Since the existence of
adjoint functors can be tested inside the enriched homotopy category, this
gives a convenient criterion which allows us to test whether or not colimits
in C are universal.
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Remark 6.1.1.3. Let X be an ∞-category. The assumption that colimits
in X are universal can be viewed as a kind of distributive law. We have the
following table of vague analogies:

Higher Category Theory Algebra

∞-Category Set

Presentable ∞-category Abelian group

Colimits Sums

Limits Products

lim−→(Xα) ×S T � lim−→(Xα ×S T ) (x+ y)z = xz + yz

∞-Topos Commutative ring

Definition 6.1.1.2 has a reformulation in the language of classifying func-
tors (§3.3.2):

Proposition 6.1.1.4. Let X be an ∞-category which admits finite limits.
The following conditions are equivalent:

(1) The ∞-category X is presentable, and colimits in X are universal.

(2) The Cartesian fibration p : OX → X is classified by a functor Xop →
PrL.

Proof. We can restate condition (2) as follows: each fiber X/U of p is present-
able, and each of the pullback functors f∗ : X/V → X/U preserves small
colimits. It is clear that (1) ⇒ (2) and that (2) implies that colimits in X

are universal. Since X admits finite limits, it has a final object 1; condition
(2) implies that X � X/1 is presentable, which proves (1).

(iii) Coproducts in C are disjoint.

If C is an ∞-category which admits finite coproducts, then we will say
that coproducts in C are disjoint if every coCartesian diagram

∅

���
��

��
��

��
�

+���
��
��
��
��

X

��*
**

**
**

** Y

"���
��
��
��
�

X
∐
Y
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is also Cartesian, provided that ∅ is an initial object of C. More informally,
to say that coproducts are disjoint is to say that the intersection of X and
Y inside the union X

∐
Y is empty.

We now come to the most subtle and interesting of Giraud’s axioms:

(iv) Every equivalence relation in C is effective.

Recall that if X is an object in an (ordinary) category C, then an equiva-
lence relation R on X is an object of C equipped with a map p : R → X×X
such that for any S, the induced map

HomC(S,R) → HomC(S,X) × HomC(S,X)

exhibits HomC(S,R) as an equivalence relation on HomC(S,X).
If C admits finite limits, then it is easy to construct equivalence relations

in C: given any map X → Y in C, the induced map X ×Y X → X ×X is an
equivalence relation on X. If the category C admits finite colimits, then one
can attempt to invert this process: given an equivalence relation R on X, one
can form the coequalizer of the two projections R → X to obtain an object
which we will denote by X/R. In the category of sets, one can recover R as
the fiber product X×X/RX. In general, this need not occur: one always has
R ⊆ X ×X/R X, but the inclusion may be strict (as subobjects of X ×X).
If equality holds, then R is said to be an effective equivalence relation and
the map X → X/R is said to be an effective epimorphism.

Remark 6.1.1.5. Recall that a map f : X → Y in a category C is said to be
a categorical epimorphism if the natural map HomC(Y,Z) → HomC(X,Z)
is injective for every object Z ∈ C, so that we may identify HomC(Y, Z)
with a subset of HomC(X,Z). To say that f is an effective epimorphism is
to say that we can characterize this subset: it is the collection of all maps
g : X → Z such that the diagram

X

���
��

��
��

�
g

����
���

���
���

���

X ×Y X

�����������

 ! 
  

  
  

  
Y ��444 Z

X

����������
g

����������������

commutes (which is obviously a necessary condition for the indicated dotted
arrow to exist).

Using the terminology introduced above, we can neatly summarize some
of the fundamental properties of the category of sets:

Fact 6.1.1.6. In the category of sets, every equivalence relation is effective
and the effective epimorphisms are precisely the surjective maps.
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The first assertion of Fact 6.1.1.6 remains valid in any topos. According
to the axiomatic point of view, it is one of the defining features of a topos.

If C is a category with finite limits and colimits in which all equivalence
relations are effective, then we obtain a one-to-one correspondence between
equivalence relations on an objectX and quotients ofX (that is, isomorphism
classes of effective epimorphisms X → Y ). This correspondence is extremely
useful because it allows us to make elementary descent arguments: one can
deduce statements about quotients of X from statements about X and about
equivalence relations on X (which live over X). We would like to formulate
an ∞-categorical analogue of this condition which will allow us to make
similar arguments.

In the ∞-category S of spaces, the situation is more complicated. The
correct notion of surjection of spaces X → Y is a map which induces a
surjection on path components π0X → π0Y . However, in this case, the
(homotopy) fiber product R = X×Y X does not give an equivalence relation
on X because the map R → X × X is not necessarily injective in any
reasonable sense. However, it does retain some of the pleasant features of an
equivalence relation: instead of transitivity, we have a coherently associative
composition law R×X R → R (this is perhaps most familiar in the situation
where X is a point: in this case, R can be identified with the based loop
space of Y , which is endowed with a multiplication given by concatenation
of loops). In §6.1.2, we will make this idea precise and define groupoid objects
and effective groupoid objects in an arbitrary ∞-category. Granting these
notions for the moment, we have a natural candidate for the ∞-categorical
generalization of condition (iv):

(iv)′ Every groupoid object of C is effective.

6.1.2 Groupoid Objects

Let C be a category which admits finite limits. A groupoid object of C is a
functor F from C to the category Cat of (small) groupoids, which has the
following properties:

(1) There exists an object X0 ∈ C and a (functorial) identification of
HomC(C,X0) with the set of objects in the groupoid F (C) for each
C ∈ C.

(2) There exists an object X1 ∈ C and a (functorial) identification of
HomC(C,X1) with the set of morphisms in groupoid F (C) for each
C ∈ C.

Example 6.1.2.1. Let C be the category Set of sets. Then a groupoid object
of C is simply a (small) groupoid.

Giving a groupoid object of a category C is equivalent to giving a pair
of objects X0 ∈ C (the “object classifier”) and X1 ∈ C (the “morphism
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classifier”) together with a collection of maps which relate X0 to X1 and
satisfy appropriate identities, which imitate the usual axiomatics of category
theory. These identities can be very efficiently encoded using the formalism
of simplicial objects. For every n ≥ 0, let [n] denote the category associated
to the linearly ordered set {0, . . . , n} and consider the functor Fn : C → Set
defined so that

Fn(C) = HomCat([n], F (C)).

By assumption, F0 and F1 are representable by objects X0, X1 ∈ C. Since C

is stable under finite limits, it follows that

Fn = F1 ×F0 · · · ×F0 F1

is representable by an object Xn = X1 ×X0 · · · ×X0 X1. The objects Xn

can be assembled into a simplicial object X• of C. We can think of this
construction as a generalization of the process which associates to every
groupoid D its nerve N(D) (a simplicial set). Moreover, as in the classical
case, the association F �→ X• is fully faihtful. In other words, we can identify
groupoid objects of C with the corresponding simplicial objects. Of course,
not every simplicial object X• of C arises via this construction. This is true
if and only if certain additional conditions are met: for instance, the diagram

X2
d0 ��

d2

��

X1

d1

��
X1

d0 �� X0

must be Cartesian.
The purpose of this section is to generalize the notion of a groupoid object

to the setting where C is an ∞-category. We begin by introducing the class
of simplicial objects of C; we then define groupoid objects to be simplicial
objects which satisfy additional conditions.

Definition 6.1.2.2. Let ∆+ denote the category of finite (possibly empty)
linearly ordered sets. A simplicial object of an ∞-category C is a map of
∞-categories

U• : N(∆)op → C .

An augmented simplicial object of C is a map

U+
• : N(∆+)op → C .

We let C∆ denote the ∞-category Fun(N(∆)op,C); we will refer to C∆ as
the ∞-category of simplicial objects of C. Similarly, we will refer to the ∞-
category Fun(N(∆+)op,C) as the ∞-category of augmented simplicial objects
of C, and we will denote it by C∆+ .

If U• is an (augmented) simplicial object of C and n ≥ 0 (n ≥ −1), we
will write Un for the object U([n]) ∈ C.
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Remark 6.1.2.3. In the case where C is the nerve of an ordinary category
D, Definition 6.1.2.2 recovers the usual notion of a simplicial object of D.
More precisely, the ∞-category C∆ of simplicial objects of C is naturally
isomorphic to the nerve of the category of simplicial objects of D.

Lemma 6.1.2.4. Let f : X → Y be a map of simplicial sets satisfying the
following conditions:

(1) The map f induces a bijection X0 → Y0 on vertex sets.

(2) The simplicial set Y is a Kan complex.

(3) The map f has the right lifting property with respect to every horn
inclusion Λni ⊆ ∆n for n ≥ 2.

(4) The map f is a weak homotopy equivalence.

Then f is a trivial Kan fibration.

Proof. In view of condition (4), it suffices to prove that f is a Kan fibration.
In other words, we must show that p has the right lifting property with
respect to every horn inclusion Λni ⊆ ∆n. If n > 1, this follows from (3).
We may therefore reduce to the case where n = 1; by symmetry, we may
suppose that i = 0.

Let e : y → y′ be an edge of Y . Condition (1) implies that there is a
(unique) pair of vertices x, x′ ∈ X0 with y = f(x), y′ = f(x′). Since f is a
homotopy equivalence, there is a path p from x to x′ in the topological space
|X| such that the induced path |f |◦p in |Y | is homotopic to e via a homotopy
which keeps the endpoints fixed. By cellular approximation, we may suppose
that this path is contained in the 1-skeleton of |X|. Consequently, there is a
positive integer k, a sequence of vertices {z0, . . . , zk} with z0 = x, zk = x′

such that each adjacent pair (zi, zi+1) is joined by an edge pi (running in
either direction), such that p is homotopic (relative to its boundary) to the
path obtained by concatenating the edges pi. Using conditions (2) and (3),
we note that X has the extension property with respect to the inclusion
Λni ⊆ ∆n for each n ≥ 2. It follows that we may assume that pi runs from
zi to zi+1: if it runs in the opposite direction, then we can extend the map

(pi, s0zi, •) : Λ2
2 → X

to a 2-simplex σ : ∆2 → X and then replace pi by d2σ.
Without loss of generality, we may suppose that k > 0 is chosen as small

as possible. We claim that k = 1. Otherwise, we choose an extension τ :
∆2 → X of the map

(p1, •, p0) : Λ2
1 → X.

We can then replace the initial segment

z0
p0→ z1

p1→ z2
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by the edge d1(τ) : z0 → z2 and obtain a shorter path from x to x′, contra-
dicting the minimality of k.

The edges e and f(p0) are homotopic in Y relative to their endpoints.
Using (3), we see that p0 is homotopic (relative to its endpoints) to an
edge e which satisfies f(e) = e. This completes the proof that f is a Kan
fibration.

Notation 6.1.2.5. Let K be a simplicial set. We let ∆/K denote the cate-
gory of simplices of K defined in §4.2.3. The objects of ∆/K are pairs (J, η),
where J is an object of ∆ and η ∈ HomSet∆(∆J ,K). A morphism from (J, η)
to (J ′, η′) is a commutative diagram

∆J ��

���
��

��
��

� ∆J ′

&&%%
%%
%%
%%

K.

Equivalently, we can describe ∆/K as the fiber product ∆×Set∆(Set∆)/K .
If C is an ∞-category, U : N(∆)op → C is a simplicial object of C, and K

is a simplicial set, then we let U [K] denote the composite map

N(∆/K)op → N(∆)op → C .

Proposition 6.1.2.6. Let C be an ∞-category and U : N(∆)op → C a
simplicial object of C. The following conditions are equivalent:

(1) For every weak homotopy equivalence f : K → K ′ of simplicial sets
which induces a bijection K0 → K ′

0 on vertices, the induced map
C/U [K′] → C/U [K] is a categorical equivalence.

(2) For every cofibration f : K → K ′ of simplicial sets which is a weak
homotopy equivalence and bijective on vertices, the induced map

C/U [K′] → C/U [K]

is a categorical equivalence.

(2′) For every cofibration f : K → K′ of simplicial sets which is a weak
homotopy equivalence and bijective on vertices, the induced map

C/U [K′] → C/U [K]

is a trivial fibration.

(3) For every n ≥ 2 and every 0 ≤ i ≤ n, the induced map

C/U [∆n] → C/U [Λn
i ]

is a categorical equivalence.

(3′) For every n ≥ 2 and every 0 ≤ i ≤ n, the induced map

C/U [∆n] → C/U [Λn
i ]

is a trivial fibration.
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(4) For every n ≥ 0 and every partition [n] = S ∪ S′ such that S ∩ S′

consists of a single element s, the induced map

C/U [∆n] → C/U [K]

is a categorical equivalence, where K = ∆S
∐

{s} ∆S′ ⊆ ∆n.

(4′) For every n ≥ 0 and every partition [n] = S ∪ S′ such that S ∩ S′

consists of a single element s, the induced map

C/U [∆n] → C/U [K]

is a trivial fibration, where K = ∆S
∐

{s} ∆S′ ⊆ ∆n.

(4′′) For every n ≥ 0 and every partition [n] = S ∪ S′ such that S ∩ S′

consists of a single element s, the diagram

U([n]) ��

��

U(S)

��
U(S′) �� U({s})

is a pullback square in the ∞-category C.

Proof. The dual of Proposition 2.1.2.1 implies that any monomorphismK →
K ′ of simplicial sets induces a right fibration C/U [K] → C/U [K]. By Corollary
2.4.4.6, a right fibration is a trivial fibration if and only if it is a categorical
equivalence. This proves that (2) ⇔ (2′), (3) ⇔ (3′), and (4) ⇔ (4′). The
implications (1) ⇒ (2) ⇒ (3) are obvious.

We now prove that (3) implies (1). Let A denote the class of all morphisms
f : K′ → K which induce a categorical equivalence C/U [K] → C/U [K′]. Let
A′ denote the class of all cofibrations which have the same property; equiv-
alently, A′ is the class of all cofibrations which induce a trivial fibration
C/U [K] → C/U [K′]. From this characterization it is easy to see that A′ is
weakly saturated. Let A′′ be the weakly saturated class of morphisms gen-
erated by the inclusions Λni ⊆ ∆n for n > 1. If we assume (3), then we have
the inclusions A′′ ⊆ A′ ⊆ A.

Let f : K → K ′ be an arbitrary morphism of simplicial sets. By Propo-
sition A.1.2.5, we can choose a map h′ : K ′ → M ′ which belongs to A′′,
where M ′ has the extension property with respect to Λni ⊆ ∆n for n > 1
and is therefore a Kan complex. Applying Proposition A.1.2.5 again, we can
construct a commutative diagram

K

f

��

h �� M

g

��
K′ h′

�� M ′,

where the horizontal maps belong to A′′ and g has the right lifting property
with respect to every morphism in A′′. If f is a weak homotopy equivalence
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which is bijective on vertices, then g has the same properties, so that g is
a trivial fibration by Lemma 6.1.2.4. It follows that g has the right lifting
property with respect to the cofibration g ◦ h : K → M ′, so that g ◦ h is a
retract of h and therefore belongs to A′′. Since g ◦ h = h′ ◦ f and h′ belong
to A′′ ⊆ A, it follows that f belongs to A.

It is clear that (1) ⇒ (4). We next prove that (4′) ⇒ (3). We must show
that if n > 1, then every inclusion Λni ⊆ ∆n belongs to the class A defined
above. The proof is by induction on n. Replacing i by n− i if necessary, we
may suppose that i < n. If (n, i) �= (2, 0), we consider the composition

∆n−1
∐

{n−1}
∆{n−1,n} f

↪→ Λni
f ′
↪→ ∆n.

Here f belongs to A′ by the inductive hypothesis and f ′ ◦f belongs to A′ by
virtue of assumption (4′); therefore f ′ also belongs to A. If n = 2 and i = 0,
then we observe that the inclusion Λ2

1 ⊆ ∆2 is of the form ∆S
∐

{s} ∆S′ ⊆ ∆2,
where S = {0, 1} and S′ = {0, 2}.

To complete the proof, we show that (4) is equivalent to (4′′). Fix n ≥ 0,
let S ∪ S′ = [n] be such that S ∩ S′ = {s}, and let K = ∆S

∐
{s} ∆S′ ⊆ ∆n.

Let I′ denote the full subcategory of ∆/∆n spanned by the objects [n], S, S′,
and {s}. Let I ⊆ I′ be the full subcategory obtained by omitting the object
[n]. Let p′ denote the composition

N(I′)op → N(∆)op U→ C

and let p = p′|N(I)op. Consider the diagram

C/U [∆n]
��

u

��

C/U [K]

v

��
C/p′ �� C/p .

Condition (4) asserts that the upper horizontal map is a categorical equiv-
alence, and condition (4′′) asserts that the lower horizontal map is a cate-
gorical equivalence. To prove that (4) ⇔ (4′′), it suffices to show that the
vertical maps u and v are categorical equivalences.

We have a commutative diagram

C/U [∆n]
u ��

!"22
222

222
22

C/p′

))���
��
��
��

C/U [∆n] .

Since ∆n is a final object of both ∆/∆n and I′, the unlabelled maps are
trivial fibrations. It follows that u is a categorical equivalence.

To prove that v is a categorical equivalence, it suffices to show that the
inclusion g : I ⊆ ∆/K induces a right anodyne map

N(g) : N(I) ⊆ N(∆/K)
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of simplicial sets. We observe that the functor g has a left adjoint f , which
associates to each simplex σ : ∆m → K the smallest simplex in I which
contains the image of σ. The map N(g) is a section of N(f), and there is a
(fiberwise) simplicial homotopy from idN(∆/K) to N(g)◦N(f). We now invoke
Proposition 2.1.2.11 to deduce that N(g) is right anodyne, as desired.

Definition 6.1.2.7. Let C be an ∞-category. We will often denote simplicial
objects of C by U• and write Un for U•([n]) ∈ C. We will say that a simplicial
object U• ∈ C∆ is a groupoid object of C if it satisfies the equivalent conditions
of Proposition 6.1.2.6. We will let Gpd(C) denote the full subcategory of C∆

spanned by the groupoid objects of C.

Remark 6.1.2.8. It follows from the proof of Proposition 6.1.2.6 that to
verify that a simplicial object X• ∈ C∆ is a groupoid object, we need only
verify condition (4′′) in a small class of specific examples, but we will not
need this observation.

Proposition 6.1.2.9. Let C be a presentable ∞-category. The full subcate-
gory Gpd(C) ⊆ C∆ is strongly reflective.

Proof. Let n ≥ 0 and [n] = S ∪ S′ be as in statement (4′′) of Proposi-
tion 6.1.2.6. Let D(S, S′) ⊆ C∆ be the full subcategory consisting of those
simplicial objects U ∈ C∆ for which the associated diagram

U([n]) ��

��

U(S)

��
U(S′) �� U({s})

is Cartesian. Lemmas 5.5.4.19 and 5.5.4.17 imply that D(S, S′) is a strongly
reflective subcategory of C∆. Let D denote the intersection of all these sub-
categories taken over all n ≥ 0 and all such decompositions [n] = S ∪ S′.
Lemma 5.5.4.18 implies that D ⊆ C∆ is strongly reflective, and Proposition
6.1.2.6 implies that D = Gpd(C).

Our next step is to exhibit a large class of examples of groupoid objects.
We first sketch the idea. Suppose that C is an ∞-category which admits
finite limits and let u : U → X be a morphism in C. Using this data, we
can construct a simplicial object U• of C, where Un is given by the (n+ 1)-
fold fiber power of U over X. In order to describe this construction more
precisely, we need to introduce a bit of notation.

Notation 6.1.2.10. Let ∆≤n
+ denote the full subcategory of ∆+ spanned

by the objects {[k]}−1≤k≤n.

Proposition 6.1.2.11. Let C be an ∞-category and let U+
• : N(∆+)op → C

be an augmented simplicial object of C. The following conditions are equiva-
lent:
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(1) The augmented simplicial object U+
• is a right Kan extension of

U+
• |N(∆≤0

+ )op.

(2) The underlying simplicial object U• is a groupoid object of C, and the
diagram U+

• |N(∆≤1
+ )op is a pullback square

U1
��

��

U0

��
U0

�� U−1

in the ∞-category C.

Proof. Suppose first that (1) is satisfied. It follows immediately from the
definition of right Kan extensions that the diagram

U1
��

��

U0

��
U0

�� U−1

is a pullback. To prove that U• is a groupoid, we show that U• satisfies
criterion (4′′) of Proposition 6.1.2.6. Let S and S′ be sets with union [n]
and intersection S ∩ S′ = {s}. Let I be the nerve of the category (∆+)/∆n .
For each subset J ⊆ [n], let I(J) denote the full subcategory of I spanned
by the initial object together with the inclusions {j} → ∆n, j ∈ S. By
assumption, U+

• exhibits U•(S) as a limit of U+
• |N(I(S)), U•(S′) as a limit

of U+
• |N(I(S′)), U•([n]) as a limit of U+

• |N(I([n])), and U•({s}) as a limit
of U+

• |N(I({s})). It follows from Corollary 4.2.3.10 that the diagram

U•([n]) ��

��

U•(S)

��
U•(S′) �� U•({s})

is a pullback.
We now prove that (2) implies (1). Using the above notation, we must

show that for each n ≥ −1, U+
• exhibits U+

• ([n]) as a limit of U+
• | I([n]). For

n ≤ 0, this is obvious; for n = 1, it is equivalent to the assumption that

U1
��

��

U0

��
U0

�� U−1

is a pullback diagram. We prove the general case by induction on n. Using
the inductive hypothesis, we conclude that U•(∆S) is a limit of U+

• | I(S)
for all proper subsets S ⊂ [n]. Choose a decomposition {0, . . . , n} = S ∪ S′,
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where S ∩ S′ = {s}. According to Proposition 4.4.2.2, the desired result is
equivalent to the assertion that

U•([n]) ��

��

U•(S)

��
U•(S′) �� U•({s})

is a pullback diagram, which follows from our assumption that U• is a
groupoid object of C.

We will say that an augmented simplicial object U+
• in an ∞-category C is

a Čech nerve if it satisfies the equivalent conditions of Proposition 6.1.2.11.
In this case, U+

• is determined up to equivalence by the map u : U0 → U−1;
we will also say that U+

• is the Čech nerve of u.

Notation 6.1.2.12. Let U• be a simplicial object in an ∞-category C.
We may regard U• as a diagram in C indexed by N(∆)op. We let |U•| :
N(∆+)op → C denote a colimit for U• (if such a colimit exists). We will refer
to any such colimit as a geometric realization of U•.

Remark 6.1.2.13. Note that we are regarding |U•| as a colimit diagram
in C, not as an object of C. We also note that our notation is somewhat
abusive since |U•| is not uniquely determined by U•. However, if a colimit of
U• exists, then it is determined up to contractible ambiguity.

Definition 6.1.2.14. Let U• be a simplicial object of an ∞-category C.
We will say that U• is an effective groupoid if can be extended to a colimit
diagram U+

• : N(∆+)op → C such that U+
• is a Čech nerve.

Remark 6.1.2.15. It follows easily from characterization (3) of Proposition
6.1.2.11 that any effective groupoid U• is a groupoid.

We can now state the ∞-categorical counterpart of Fact 6.1.1.6: every
groupoid object in S is effective. This statement is somewhat less trivial than
its classical analogue. For example, a groupoid object U• in S with U0 = ∗
can be thought of as a space U1 equipped with a coherently associative
multiplication operation. If U• is effective, then there exists a fiber diagram

U1
��

��

∗

��
∗ �� U−1

so that U1 is homotopy equivalent to a loop space. This is a classical result
(see, for example, [73]). We will give a somewhat indirect proof in the next
section.



∞-TOPOI 543

6.1.3 ∞-Topoi and Descent

In this section, we will describe an elegant characterization of the notion
of an ∞-topos based on the theory of descent. We begin by explaining the
idea in informal terms. Let X be an ∞-category. To each object U of X

we can associate the overcategory X/U . If X admits finite limits, then this
construction gives a contravariant functor from X to the ∞-category Ĉat∞
of (not necessarily small) ∞-categories. If X is an ∞-topos, then this functor
carries colimits in X to limits of ∞-categories. In other words, if an object
X ∈ X is obtained as the colimit of some diagram {Xα} in X, then giving a
morphism Y → X is equivalent to giving a suitably compatible diagram of
morphisms {Yα → Xα}. Moreover, we will eventually show that this property
characterizes the class of ∞-topoi. The ideas presented in this section are
due to Charles Rezk.

Definition 6.1.3.1. Let X be an ∞-category, K a simplicial set, and p, q :
K → X two diagrams. We will say that a natural transformation α : p → q
is Cartesian if, for each edge φ : x → y in K, the associated diagram

p(x)
p(φ) ��

α(x)

��

p(y)

α(y)

��
q(x)

q(φ) �� q(y)

is a pullback in X.

Lemma 6.1.3.2. Let X be an ∞-category, and let α : p → q be a natural
transformation of diagrams p, q : K �∆0 → X. Suppose that, for every vertex
x of K, the associated transformation

p|{x} � ∆0 → q|{x} � ∆0

is Cartesian. Then α is Cartesian.

Proof. Let z be the cone point ofK�∆0. We note that to every edge e : x → y
in K � ∆0 we can associate a diagram

x

e

��

��
g

���
��

��
��

� z

idz

��
y �� z.

The transformation α restricts to a Cartesian transformation on the hori-
zontal edges and the right vertical edge, either by assumption or because
they are degenerate. Applying Lemma 4.4.2.1, we deduce first that α(g) is a
Cartesian transformation, then that α(e) is a Cartesian transformation.

The condition that an ∞-category has universal colimits can be formulated
in the language of Cartesian transformations:
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Lemma 6.1.3.3. Let X be a presentable ∞-category. The following condi-
tions are equivalent:

(1) Colimits in X are universal.

(2) Let p, q : (K
 � ∆0) → X be diagrams which carry ∆0 to vertices
X,Y ∈ X and let α : p → q be a Cartesian transformation. If the map
q′ : K
 → X/Y associated to q is a colimit diagram, then the map
p′ : K
 → X/X associated to p is a colimit diagram.

(3) Let p, q : K∆1 → X be diagrams which carry {1} to vertices X,Y ∈ X

and let α : p → q be a Cartesian transformation. If the map K
 →
X/Y associated to q is a colimit diagram, then the map K
 → X/X
associated to p is a colimit diagram.

(4) Let p, q : K∆1 → X be diagrams which carry {1} to vertices X,Y ∈ X

and let α : p → q be a Cartesian transformation. If q|K{0} is a colimit
diagram, then p|K  {0} is a colimit diagram.

(5) Let α : p → q be a Cartesian transformation of diagrams K
 → X. If
q is a colimit diagram, then p is a colimit diagram.

Proof. Assume that (1) is satisfied; we will prove (2). The transformation α
induces a map f : X → Y . Consider the map

φ : Fun(K
,OX) → Fun(K
,X)

given by evaluation at the final vertex of ∆1. Let δ(f) denote the image of f
under the diagonal map δ : X → Fun(K
,X). Then we may identify α with
an edge e of Fun(K
,OX) which covers δ(f). Since α is Cartesian, we can
apply Lemma 6.1.1.1 and Proposition 3.1.2.1 to deduce that e is φ-Cartesian.
The composition f∗ ◦ q′ is the origin of a φ-Cartesian edge e′ : f∗ ◦ q′ → q′ of
Fun(K
,OX) covering δ(f), so we conclude that f∗ ◦ q′ and p′ are equivalent
in Fun(K
,X/X). Since q′ is a colimit diagram and f∗ preserves colimits,
f∗ ◦q′ is a colimit diagram. It follows that p′ is a colimit diagram, as desired.

We now prove that (2) ⇒ (1). Let f : X → Y be a morphism in X

and let q′ : K
 → X/Y be a colimit diagram. Choose a φ-Cartesian edge
e′ : f∗ ◦ q′ → q′ as above, corresponding to a natural transformation α :
p → q of diagrams p, q : (K
 � ∆0) → X. Since e is φ-Cartesian, we may
invoke Proposition 3.1.2.1 and Lemma 6.1.1.1 to deduce that α restricts to
a Cartesian transformation p|({x} � ∆0) → q|({x} � ∆0) for every vertex x
of K
. It follows from Lemma 6.1.3.2 that α is Cartesian. Invoking (2), we
conclude that f∗ ◦ q′ is a colimit diagram, as desired.

The equivalence (2) ⇔ (3) follows from Proposition 4.2.1.2, and the equiv-
alence (3) ⇔ (4) follows from Proposition 1.2.13.8. The implication (5) ⇒ (4)
is obvious. The converse implication (4) ⇒ (5) follows from the observation
that K  {0} is a retract of K ∆1.
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Notation 6.1.3.4. Let X be an ∞-category which admits pullbacks and let
S be a class of morphisms in X. We will say that S is stable under pullback
if for any pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y

in X such that f belongs to S, f ′ also belongs to S. We let OSX denote the
full subcategory of OX spanned by S, and O

(S)
X the subcategory of OX whose

objects are elements of S and whose morphisms are pullback diagrams as
above. We observe that evaluation at {1} ⊆ ∆1 induces a Cartesian fibration
OSX → X, which restricts to a right fibration O

(S)
X → X (Corollary 2.4.2.5).

Lemma 6.1.3.5. Let X be a presentable ∞-category and suppose that co-
limits in X are universal. Let S be a class of morphisms of X which is stable
under pullback, K a small simplicial set, and q : K
 → X a colimit diagram.
The following conditions are equivalent:

(1) The composition f ◦ q : K
 → Ĉat
op

∞ is a colimit diagram, where f :
X → Ĉat

op

∞ classifies the Cartesian fibration OSX → X.

(2) The composition f ′ ◦q : K
 → Ŝ
op

is a colimit diagram, where f : X →
Ŝ
op

classifies the right fibration O
(S)
X → X.

(3) For every natural transformation α : p → q of colimit diagrams K
 →
X, if α = α|K is a Cartesian transformation and α(x) ∈ S for each
vertex x ∈ K, then α is a Cartesian transformation and α(∞) ∈ S,
where ∞ denotes the cone point of K
.

Proof. Let C = Fun(K
,X)/q and C = Fun(K,X)/q. Let C
0

denote the full
subcategory of C spanned by Cartesian natural tranformations α : p → q
with the property that α(x) belongs to S for each vertex x ∈ K
 and let C0

be defined similarly. Finally, let C
1

denote the full subcategory of C spanned
by those natural transformations α : p → q such that p is a colimit diagram,
α = α|K is a Cartesian transformation, and α(x) belongs to S for each
vertex x ∈ K. Lemma 6.1.3.3 implies that C

0 ⊆ C
1
.

Let D denote the full subcategory of Fun(K
,X) spanned by the colimit di-
agrams. Proposition 4.3.2.15 asserts that the restriction map D → Fun(K,X)
is a trivial fibration. It follows that the associated map D/q → Fun(K,X)/q

is also a trivial fibration and therefore restricts to a trivial fibration C
1 → C0.

According to Proposition 3.3.3.1, condition (1) is equivalent to the as-
sertion that the projection C

0 → C0 is an equivalence of ∞-categories. In
view of the above argument, this is equivalent to the assertion that the fully
faithful inclusion C

0 ⊆ C
1

is essentially surjective. Since C
0

is clearly stable
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under equivalence in C, (1) holds if and only if C
0

= C
1
, which is manifestly

equivalent to (3). The proof that (2) ⇔ (3) is similar but uses Proposition
3.3.3.3 in place of Proposition 3.3.3.1.

Lemma 6.1.3.6. Let X be a presentable category in which colimits are uni-
versal. Let f : X → ∅ be a morphism in X, where ∅ is an initial object of X.
Then X is also initial.

Proof. Observe that id∅ is both an initial object of X/∅ (Proposition 1.2.13.8)
and a final object of X/∅. Let f∗ : X/∅ → X/X be a pullback functor. Then
f∗ preserves limits (since it is a right adjoint) and colimits (since colimits
in X are universal). Therefore f∗ id∅ is both initial and final in X/X . It
follows that idX : X → X, being another final object of X/X , is also initial.
Applying Proposition 1.2.13.8, we deduce that X is an initial object of X,
as desired.

Lemma 6.1.3.7. Let X be a presentable ∞-category in which colimits are
universal and let S be a class of morphisms in X which is stable under
pullback. The following conditions are equivalent:

(1) The Cartesian fibration OSX → X is classified by a colimit-preserving
functor X → Ĉat

op

∞.

(2) The right fibration O
(S)
X → X is classified by a colimit-preserving func-

tor X → Ŝ
op

.

(3) The class S is stable under small coproducts, and for every pushout
diagram

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in OX, if α and β are Cartesian transformations and f, f ′, g ∈ S, then
α′ and β′ are also Cartesian transformations and g′ ∈ S.

Proof. The equivalence of (1) and (2) follows easily from Lemma 6.1.3.5. Let
s : X → Ĉat

op

∞ be a functor which classifies OX. Then (1) is equivalent to
the assertion that s preserves small colimits. Supposing that (1) is satisfied,
we deduce (3) by applying Lemma 6.1.3.5 in the special cases of sums and
coproducts. For the converse, let us suppose that (3) is satisfied. Let ∅ denote
an initial object of X. Since colimits in X are universal, Lemma 6.1.3.6 implies
that X/∅ is equivalent to a final ∞-category ∆0. Since the morphism id∅
belongs to S (since S is stable under empty coproducts), we conclude that
s(∅) is a final ∞-category, so that s preserves initial objects. It follows from
Corollary 4.4.2.5 that s preserves finite coproducts. According to Proposition
4.4.2.6, it will suffice to prove that s preserves arbitrary coproducts. To
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handle the case of infinite coproducts we apply Lemma 6.1.3.5 again: we
must show that if {fα}α∈A is a collection of elements of S having a coproduct
f =

∐
α∈A fα, then f ∈ S and each of the maps fα → f is a Cartesian

transformation. The first condition is true by assumption; for the second we
let f ′ be a coproduct of the family {fβ}β∈A,β 
=α, so that f � f ′

∐
fα and f ′ ∈

S. Applying Lemma 6.1.3.5 (and the fact that s preserves finite coproducts),
we deduce that fα → f is a Cartesian transformation, as desired.

Definition 6.1.3.8. Let X be a presentable ∞-category in which colimits
are universal and let S be a class of morphisms in X. We will say that S is
local if it is stable under pullbacks and satisfies the equivalent conditions of
Lemma 6.1.3.7.

Theorem 6.1.3.9. Let X be a presentable ∞-category. The following con-
ditions are equivalent:

(1) Colimits in X are universal, and for every pushout diagram

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in OX, if α and β are Cartesian transformations, then α′ and β′ are
also Cartesian transformations.

(2) Colimits in X are universal, and the class of all morphisms in X is
local.

(3) The Cartesian fibration OX → X is classified by a limit-preserving
functor Xop → PrL.

(4) Let K be a small simplicial set and α : p → q a natural transformation
of diagrams p, q : K
 → X. Suppose that q is a colimit diagram, and
that α = α|K is a Cartesian transformation. Then p is a colimit dia-
gram if and only if α is a Cartesian transformation.

Proof. The equivalences (1) ⇔ (2) ⇔ (3) follow from Lemma 6.1.3.7 and
Proposition 6.1.1.4. The equivalence (3) ⇔ (4) follows from Lemmas 6.1.3.3
and 6.1.3.5.

We now have most of the tools required to establish the implication (1) ⇒
(2) of Theorem 6.1.0.6. In view of Theorem 6.1.3.9, it will suffice to prove
the following:

Proposition 6.1.3.10. Let X be an ∞-topos. Then

(1) Colimits in X are universal.
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(2) For every pushout diagram

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in OX, if α and β are Cartesian transformations, then α′ and β′ are
also Cartesian transformations.

Remark 6.1.3.11. Once we have established Theorem 6.1.0.6 in its entirety,
it will follow from Theorem 6.1.3.9 that the converse of Proposition 6.1.3.10
is also valid: a presentable ∞-category X is an ∞-topos if and only if it
satisfies conditions (1) and (2) as above. Condition (1) is equivalent to the
requirement that for every morphism f : X → Y in X, the pullback functor
f∗ : X/Y → X/X has a right adjoint (in the case where Y is a final object of
X, this simply amounts to the requirement that every object Z ∈ X admits
an exponential ZX ; in other words, the requirement that X be Cartesian
closed), and condition (2) involves only finite diagrams in the ∞-category X.
One could conceivably obtain a theory of elementary ∞-topoi by dropping
the requirement that X be presentable (or replacing it by weaker conditions
which are also finite in nature). We will not pursue this idea further.

Before giving the proof of Proposition 6.1.3.10, we need to establish a few
easy lemmas.

Lemma 6.1.3.12. Let

φ
p ��

q

��

ψ

q′

��
φ′ p′ �� ψ′

be a coCartesian square in the category of arrows of Set∆. Suppose that p
and q are homotopy Cartesian and that q is a cofibration. Then

(1) The maps p′ and q′ are homotopy Cartesian.

(2) Given any map of arrows r : ψ′ → θ such that r ◦ p′ and r ◦ q′ are
homotopy Cartesian, the map r is itself homotopy Cartesian.

Proof. Let r : ψ′ → θ be as in (2). We must show that r is homotopy
Cartesian if and only if r ◦ p′ and r ◦ q′ are homotopy Cartesian (taking
r = idψ′ , we will deduce (1)). Without loss of generality, we may replace φ,
ψ, φ′, and θ with minimal Kan fibrations. We now observe that r, r ◦p′, and
r ◦ q′ are homotopy Cartesian if and only if they are Cartesian; the desired
result now follows immediately.

Lemma 6.1.3.13. Let A be a simplicial model category containing an ob-
ject Z which is both fibrant and cofibrant and let A/Z be endowed with the
induced model structure. Then the natural map θ : N(A◦

/Z) → N(A◦)/Z is
an equivalence of ∞-categories.
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Proof. Let φ : Z′ → Z be an object of N(A◦)/Z . Then we can choose a
factorization

Z ′ i→ Z′′ ψ→ Z,

where i is a trivial cofibration and ψ is a fibration, corresponding to a fibrant-
cofibrant object of A/Z . The above diagram classifies an equivalence between
φ and ψ in N(A◦)/Z , so that θ is essentially surjective.

Recall that for any simplicial category C containing a pair of objects X
and Y , there is a natural isomorphism of simplicial sets

HomR
N(C)(X,Y ) � SingQ•(MapC(X,Y )),

where Q• is the cosimplicial object of Set∆ introduced in §2.2.2. The same
calculation shows that if φ : X → Z, ψ : Y → Z are two morphisms in C,
then

HomR
N(C)/Z

(φ, ψ) � SingQ•(P ),

where P denotes the path space

MapC(X,Y ) ×MapC(X,Z){0} MapC(X,Z)∆
1 ×MapC(X,Z){1} {φ}.

If C is fibrant, then we may identify M with the homotopy fiber of the map

f : MapC(X,Y )
ψ→ MapC(X,Z)

over the vertex φ. Consequently, we may identify the natural map

HomR
N(C/Z)(φ, ψ) → HomR

N(C)/Z
(φ, ψ)

with SingQ•(θ), where θ denotes the inclusion of the fiber of f into the
homotopy fiber of f . Consequently, to show that SingQ•(θ) is a homotopy
equivalence, it suffices to prove that f is a Kan fibration. In the special case
where C = A◦ and ψ is a fibration, this follows from the definition of a
simplicial model category.

Lemma 6.1.3.14. Let S denote the ∞-category of spaces. Then

(1) Colimits in S are universal.

(2) For every pushout diagram

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in OS, if α and β are Cartesian transformations, then α′ and β′ are
also Cartesian transformations.
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Proof. We first prove (1). Let f : X → Y be a morphism in S. Without loss
of generality, we may suppose that f is a Kan fibration. We wish to show
that the projection

S/f → S/Y

has a right adjoint which preserves colimits. We obtain a commutative dia-
gram of ∞-categories:

N((Set∆)◦/X) F ��

φ

��

N((Set∆)◦/Y )

ψ

��
S/f ��

φ′

��

S/Y

S/X .

Lemma 6.1.3.13 asserts that ψ and φ′ ◦ φ are categorical equivalences, and
φ′ is a trivial fibration. It follows that φ is also a categorical equivalence.
Consequently, it will suffice to show that the functor F has a right adjoint
G which preserves colimits.

We observe that F is obtained by restricting the simplicial nerve of the
functor f! : (Set∆)/X → (Set∆)/Y given by composition with f . The functor
f! is a left Quillen functor: it has a right adjoint f∗ given by the formula
f∗(Y ′) = Y ′×Y X. According to Proposition 5.2.4.6, F admits a right adjoint
G, which is given by restricting the simplicial nerve of the functor f∗. To
prove that G preserves colimits, it will suffice to show that G itself admits
a right adjoint. Using Proposition 5.2.4.6 again, we are reduced to proving
that f∗ is a left Quillen functor. We observe that f∗ admits a right adjoint
f∗ given by the formula f∗(X ′) = MapY (X,X ′). It is clear that f∗ preserves
cofibrations; it also preserves weak equivalences since f is a fibration and
Set∆ is a right proper model category (with its usual model structure).

To prove (2), we first apply Proposition 4.2.4.4 to reduce to the case where
the pushout diagram in question arises from a strictly commutative square

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

of morphisms in the category Kan. We now complete the proof by applying
Lemma 6.1.3.12 and Theorem 4.2.4.1.

Lemma 6.1.3.15. Let X be a presentable ∞-category and let L : X → Y

be an accessible left exact localization. If colimits in X are universal, then
colimits in Y are universal.

Proof. We will use characterization (5) of Lemma 6.1.3.2. Let G be a right
adjoint to L and let α : p → q be a Cartesian transformation of diagrams
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K
 → Y. Suppose that q is a colimit of q = q|K. Choose a colimit q′ of G◦q,
so that there exists a morphism q′ → G ◦ q in XG◦q/ which determines a
natural transformation β : q′ → q in Fun(K
,X). Form a pullback diagram

p′ α′
��

��

q′

β

��
G ◦ p G◦α �� G ◦ q

in XK



. Since G is left exact, G ◦α is a Cartesian transformation. It follows
that α′, being a pullback of G ◦ α, is also a Cartesian transformation. Since
colimits in X are universal, we conclude that p′ is a colimit diagram. Since
L is left exact, we obtain a pullback diagram

L ◦ p′ ��

��

L ◦ q′

L◦β
��

L ◦G ◦ p �� L ◦G ◦ q.
Since L preserves colimits, L◦q′ and L◦p′ are colimit diagrams. The diagram
L ◦G ◦ q is equivalent to q and therefore also a colimit diagram. We deduce
that L◦β is an equivalence. Since the diagram is a pullback, the left vertical
arrow is an equivalence as well, so that L ◦ G ◦ p is a colimit diagram. We
finally conclude that p is a colimit diagram, as desired.

We are now ready to give the proof of Proposition 6.1.3.10.

Proof of Proposition 6.1.3.10. Let us say that a presentable ∞-category X

is good if it satisfies conditions (1) and (2). Lemma 6.1.3.14 asserts that S is
good. Using Proposition 5.1.2.2, it is easy to see that if X is good, then so is
Fun(K,X) for every small simplicial set K. It follows that every ∞-category
P(C) of presheaves is good. To complete the proof, it will suffice to show that
if X is good and L : X → Y is an accessible left exact localization functor, then
Y is good. Lemma 6.1.3.15 shows that colimits in Y are universal. Consider
a diagram σ : Λ2

0 → OY denoted by

g
α← f

β→ h,

where α and β are Cartesian transformations. We wish to show that if σ is
a colimit of σ in OY, then σ carries each edge to a Cartesian transformation.
Without loss of generality, we may suppose that σ = L ◦ σ′ for some σ′ :
Λ2

0 → OX which is equivalent to G ◦ σ. Since G is left exact, G(α) and G(β)
are Cartesian transformations. Because X satisfies (2), there exists a colimit
σ′ of σ′ which carries each edge to a Cartesian transformation. Then L ◦ σ′

is a colimit of σ. Since L is left exact, L ◦σ′ carries each edge to a Cartesian
transformation in OY.

Our final objective in this section is to prove the implication (2) ⇒ (3) of
Theorem 6.1.0.6 (Proposition 6.1.3.19 below).
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Lemma 6.1.3.16. Let X be an ∞-category and U+
• : N(∆+)op → X an

augmented simplicial object of X. Let ∆∞ denote the category whose objects
are finite linearly ordered sets J , where Hom∆∞(J, J ′) is the collection of all
order-preserving maps J ∪ {∞} → J ′ ∪ {∞} which carry ∞ to ∞ (here ∞
is regarded as a maximal element of J ∪ {∞} and J ′ ∪ {∞}). Suppose that
U+
• extends to a functor F : N(∆∞)op → X. Then U+

• is a colimit diagram
in X.

Proof. Let C denote the category whose objects are triples (J, J+), where J
is a finite linearly ordered set and J+ is an upward-closed subset of J . We
define HomC((J, J+), (J ′, J ′

+) to be the set of all order-preserving maps from
J into J ′ that carry J+ into J ′

+. Observe that we have a functor C → ∆∞
given by

(J, J+) �→ J − J+.

Let F ′ denote the composite functor

N(C)op → N(∆∞)op → X .

Let C be the full subcategory of C spanned by those pairs (J, J+) where
J �= ∅. Let C

0
denote the full subcategory spanned by those pairs (J, J+)

where J+ = ∅ and let C0 = C
0 ∩C. We observe that C

0
can be identified with

∆+ and that C0 can be identified with ∆ in such a way that U+
• is identified

with F ′|N(C
0
)op.

Our first claim is that the inclusion N(C0)op ⊆ N(C)op is cofinal. According
to Theorem 4.1.3.1, it will suffice to show that for every object X = (J, J+)
of C, the category C0

/X has a contractible nerve. This is clear since the rel-
evant category has a final object: namely, the map (J, ∅) → (J, J+). As a
consequence, we conclude that U+

• is a colimit diagram if and only if F ′ is a
colimit diagram.

We now define C1 to be the full subcategory of C spanned by those pairs
(J, J+) such that J+ is nonempty. We claim that F ′|N(C)op is a left Kan
extension of F ′|N(C1)op. To prove this, we must show that for every (J, ∅) ∈
C0, the induced map

(N(C1
(J,∅)/)

op)
 → N(C)op → X

is a colimit diagram. Let D denote the full subcategory of C1
(J,∅)/ spanned by

those morphisms (J, ∅) → (J ′, J ′
+) which induce isomorphisms J � J ′ − J ′

+.
We claim that the inclusion N(D)op ⊆ N(C1

(J,∅)/)
op is cofinal. To prove this,

we once again invoke Theorem 4.1.3.1 to reduce to the following assertion:
for every morphism φ : (J, ∅) → (J ′′, J ′′

+), if J ′′
+ �= ∅, then the category D/φ

of all factorizations

(J, ∅) → (J ′, J ′
+) → (J ′′, J ′′

+)

such that J ′
+ �= ∅ and such that J � J ′ − J ′

+ has a weakly contractible
nerve. This is clear since D/φ has a final object (J

∐
J ′′′

+ , J
′′′
+ ), where J ′′′

+ =
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{j ∈ J ′′
+ : (∀i ∈ J)[j ≥ φ(i)]}. Consequently, it will suffice to prove that the

induced functor

N(Dop)
 → X

is a colimit diagram. This diagram can be identified with the constant dia-
gram

N(∆+)op → X

taking the value U•(J) and is a colimit diagram because the category ∆ has
a weakly contractible nerve (Corollary 4.4.4.10).

We now apply Lemma 4.3.2.7, which asserts that F ′ is a colimit dia-
gram if and only if F ′|(N(C1)op)
 is a colimit diagram. Let C2 ⊆ C1 be the
full subcategory spanned by those objects (J, J+) such that J = J+. We
claim that the inclusion N(C2)op ⊆ N(C1)op is cofinal. According to Theo-
rem 4.1.3.1, it will suffice to show that, for every object (J, J+) ∈ C1, the
category C2

/(J,J+) has a weakly contractible nerve. This is clear since the map

(J+, J+) → (J, J+) is a final object of the category C
(2)
/(J,J+). Consequently,

to prove that F ′|(N(C1)op)
 is a colimit diagram, it will suffice to prove
that F ′|(N(C2)op)
 is a colimit diagram. But this diagram can be identified
with the constant map N(∆+)op → X taking the value U•(∆−1), which is
a colimit diagram because the simplicial set N(∆)op is weakly contractible
(Corollary 4.4.4.10).

Lemma 6.1.3.17. Let X be an ∞-category and let U• : N(∆)op → X be
a simplicial object of X. Let U ′

• be the augmented simplicial object given by
composing U• with the functor

∆+ → ∆

J → J
∐

{∞}.
Then

(1) The augmented simplicial object U ′
• is a colimit diagram.

(2) If U• is a groupoid object of X, then the evident natural transformation
of simplicial objects α : U ′

•|N(∆)op → U• is Cartesian.

Proof. Assertion (1) follows immediately from Lemma 6.1.3.16. To prove (2),
let us consider the collection S of all morphisms f : J → J ′ in ∆ such that
α(f) is a pullback square

U ′
•(J

′) ��

��

U•(J ′)

��
U ′
•(J) �� U•(J)

in X. We wish to prove that every morphism of ∆ belongs to S. Using Lemma
4.4.2.1, we deduce that if f ′ ∈ S, then f ∈ S ⇔ (f ◦ f ′ ∈ S). Consequently,
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it will suffice to prove that every inclusion {j} ⊆ J belongs to S. Unwinding
the definition, this amounts the requirement that the diagram

U•(J ∪ {∞})

��

�� U•(J)

��
U•({j,∞}) �� U•({j})

be Cartesian, which follows immediately from criterion (4′′) of Proposition
6.1.2.6.

Remark 6.1.3.18. Assertion (2) of Lemma 6.1.3.17 has a converse: if α is
a Cartesian transformation, then U• is a groupoid object of X. This can be
deduced easily by examining the proof of Proposition 6.1.2.6, but we will
not have need of it.

Proposition 6.1.3.19. Let X be an ∞-category satisfying the equivalent
conditions of Theorem 6.1.3.9. Then X satisfies the ∞-categorical Giraud
axioms:

(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every groupoid object of X is effective.

Proof. Axioms (i) and (ii) are obvious. To prove (iii), let us consider an
arbitrary pair of objects X,Y ∈ X and let ∅ denote an initial object of X.
Let f : ∅ → X be a morphism (unique up to homotopy since ∅ is initial).
We observe that id∅ is an initial object of OX. Form a pushout diagram

id∅
α ��

β

��

idY

β′

��
f

α′
�� g

in OX. It is clear that α is a Cartesian transformation, and Lemma 6.1.3.6
implies that β is Cartesian as well. Invoking condition (2) of Theorem 6.1.3.9,
we deduce that α′ is a Cartesian transformation. But α′ can be identified
with a pushout diagram

∅ ��

��

Y

��
X �� X

∐
Y.

It remains to prove that every groupoid object in X is effective. Let U• be
a groupoid object of X and let U• : N(∆+)op → X be a colimit of U•. Let
U ′
• : N(∆+)op → X be the result of composing U• with the “shift” functor

∆+ → ∆+
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J �→ J
∐

{∞}.
(In other words, U ′

• is the shifted simplicial object given by U ′
n = Un+1.)

Lemma 6.1.3.17 implies that U ′
• is a colimit diagram in X. We have a trans-

formation α : U ′
• → U•. Since U• is a groupoid, α = α|N(∆)op is a Cartesian

transformation (Lemma 6.1.3.17 again). Applying (4), we deduce that α is
a Cartesian transformation. In particular, we conclude that

U ′
0

��

��

U ′
−1

��
U0

�� U−1

is a pullback diagram in X. But this diagram can be identified with
U1

��

��

U0

��
U0

�� U−1,

so that U• is effective by Proposition 6.1.2.11.

Corollary 6.1.3.20. Every groupoid object of S is effective.

6.1.4 Free Groupoids

Let X be an ∞-category which satisfies the ∞-categorical Giraud axioms (i)
through (iv) of Theorem 6.1.0.6. We wish to prove that X is an ∞-topos. It
is clear that any proof will need to make use of the full strength of axioms (i)
through (iv); in particular, we will need to apply (iv) to a class of groupoid
objects of X which are not obviously effective. The purpose of this section is
to describe a construction which will yield nontrivial examples of groupoid
objects and to deduce a consequence (Proposition 6.1.4.2) which we will use
in the proof of Theorem 6.1.0.6.

Definition 6.1.4.1. Let f : X → Y be a functor between ∞-categories
which admit finite limits. Let Z be an object of X. We will say that f is left
exact at Z if, for every pullback square

W ��

��

Y

��
X �� Z

in X, the induced square

f(W ) ��

��

f(Y )

��
f(X) �� f(Z)

is a pullback in Y.
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We can now state the main result of this section:

Proposition 6.1.4.2. Let X and Y be presentable ∞-categories and let
f : X → Y be a functor which preserves small colimits. Suppose that ev-
ery groupoid object in either X or Y is effective. Let

U1
���� U0

s �� U−1

be a coequalizer diagram in X and let

X ��

��

U0

s

��
U0

s �� U−1

be a pullback diagram in X. Suppose that f is left exact at U0. Then the
associated diagram

f(X) ��

��

f(U0)

s

��
f(U0)

s �� f(U−1)

is a pullback square in Y.

Before giving the proof, we must establish some preliminary results.

Lemma 6.1.4.3. Let X and Y be ∞-categories which admit finite limits, let
f : X → Y be a functor, and let U• be a groupoid object of X. Suppose that f
is left exact at U0. Then f ◦ U• is a groupoid object of Y.

Proof. This follows immediately from characterization (4′′) given in Propo-
sition 6.1.2.6.

Let X be a presentable ∞-category. We define a simplicial resolution in
X to be an augmented simplicial object U+

• : N(∆+)op → X which is a
colimit of the underlying simplicial object U• = U+

• |N(∆)op. We let Res(X)
denote the full subcategory of X∆+ spanned by the simplicial resolutions.
Note that since every simplicial object of X has a colimit, the restriction
functor Res(X) → X∆ is a trivial fibration and therefore an equivalence
of ∞-categories. We will say that a simplicial resolution U+

• is a groupoid
resolution if the underlying simplicial object U• is a groupoid object of X.

We will say that a map f : U+
• → V +

• of simplicial resolutions exhibits V +
•

as the groupoid resolution generated by U+
• if V +

• is a groupoid resolution
and the induced map

MapRes(X)(V
+
• ,W

+
• ) → MapRes(X)(U

+
• ,W

+
• )

is a homotopy equivalence for every groupoid resolution W+
• ∈ Res(X).
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Remark 6.1.4.4. Let X be a presentable ∞-category. Then for every sim-
plicial resolution U+

• in X, there is a map f : U+
• → V +

• which exhibits
V +
• as the groupoid resolution generated by U+

• . In view of the equivalence
Res(X) → X∆, this is equivalent to the assertion that Gpd(X) is a local-
ization of X∆. This follows from Proposition 6.1.2.6 together with Lemmas
5.5.4.18 and 5.5.4.19.

Lemma 6.1.4.5. Let X be a presentable ∞-category and let f : U+
• → V +

• be
a map of simplicial resolutions which exhibits V +

• as the groupoid resolution
generated by U+

• . Let W+
• be an augmented simplicial object of X such that

the underlying simplicial object W• ∈ X∆ is a groupoid. Composition with f
induces a homotopy equivalence

MapX∆+
(V +

• ,W
+
• ) → MapX∆+

(U+
• ,W

+
• ).

Proof. Let |W•| be a colimit of W•. Then we have a commutative diagram

MapX∆+
(V +

• , |W•|) ��

��

MapX∆+
(U+

• , |W•|)

��
MapX∆+

(V +
• ,W

+
• ) �� MapX∆+

(U+
• ,W

+
• )

where the vertical maps are homotopy equivalences (since U+
• and V +

• are
resolutions) and the upper horizontal map is a homotopy equivalence (since
|W•| is a groupoid resolution).

Lemma 6.1.4.6. Let X be a presentable ∞-category. Suppose that f : U+
• →

V +
• is a map in Res(X) which exhibits V +

• as the groupoid resolution gener-
ated by U+

• . Then f induces equivalences U−1 → V−1 and U0 → V0.

Proof. Let ∆≤0
+ be the full subcategory of ∆+ spanned by the objects ∆−1

and ∆0. Let j : ∆≤0
+ → ∆+ denote the inclusion functor and let j∗ : X∆+ →

OX be the associated restriction functor. We wish to show that j∗(f) is an
equivalence. Equivalently, we show that for every W ∈ OX, composition with
j∗(f) induces a homotopy equivalence

MapOX
(j∗V +

• ,W ) → MapOX
(j∗U+

• ,W ).
Let j∗ be a right adjoint to j∗ (a right Kan extension functor). It will

suffice to prove that composition with f induces a homotopy equivalence
MapX∆+

(V +
• , j∗W ) → MapX∆+

(U+
• , j∗W ).

The augmented simplicial object j∗W is a Čech nerve, so that the underly-
ing simplicial object of j∗W is a groupoid by Proposition 6.1.2.11. We now
conclude by applying Lemma 6.1.4.5.

Let I denote the subcategory of ∆+ spanned by the objects ∅, [0], and [1],
where the morphisms are given by injective maps of linearly ordered sets.
This category may be depicted as follows:

∅ �� [0] �� �� [1].
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We let I0 denote the full subcategory of I spanned by the objects [0] and
[1]. We will say that a diagram N(I)op → X is a coequalizer diagram if it is
a colimit of its restriction to N(I0)op → X.

Let i denote the inclusion I ⊆ ∆+ and let i∗ denote the restriction functor
X∆+ → Fun(N(I)op,X). If X is a presentable ∞-category, then i∗ has a left
adjoint i! (a left Kan extension).

Lemma 6.1.4.7. Let X be a presentable ∞-category. The left Kan exten-
sion i! : Fun(N(I)op,X) → X∆+ carries coequalizer diagrams to simplicial
resolutions.

Proof. We have a commutative diagram of inclusions of subcategories

I0
j′ ��

i′

��

I

i

��
∆

j �� ∆+

which gives rise to a homotopy commutative diagram of ∞-categories

Fun(N(I0)op,X)
j′! ��

i′!
��

Fun(N(I)op,X)

i!

��
X∆

j! �� X∆+

in which the morphisms are given by left Kan extensions. An object U ∈
Fun(N(I)op X) is a coequalizer diagram if and only if it lies in the essential
image of j′! . In this case, i!U lies in the essential image of i! ◦ j′! � j! ◦ i′!,
which is contained in the essential image of j!: namely, the resolutions.

Lemma 6.1.4.8. Let X be a presentable ∞-category and suppose we are
given a diagram U : N(I)op → C which we may depict as

U1
���� U0

�� U−1.

Let V• = i!U ∈ X∆+ be a left Kan extension of U along i : N(J)op → ∆op
+ .

Then the augmentation maps V0 → V−1 and U0 → U−1 are equivalent in the
∞-category OX.

Proof. This follows from Proposition 4.3.3.8 since

HomI(∆i, •) � Hom∆+(∆i, •)
for i ≤ 0.

Proof of Proposition 6.1.4.2. Let U : N(I)op → C be a coequalizer diagram
in X, which we denote by

U1
���� U0

s �� U−1,
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and form a pullback square

X ��

��

U0

s

��
U0

s �� U−1.

Let V• = i!U ∈ X∆+ be a left Kan extension of U . According to Lemma
6.1.4.7, V• is a simplicial resolution. We may therefore choose a map V• →
W• which exhibits W• as the groupoid resolution generated by V• (Remark
6.1.4.4). Since every groupoid object in X is effective, W• is a Čech nerve. It
follows from the characterization given in Proposition 6.1.2.11 that there is
a pullback diagram

W1
��

��

W0

��
W0

�� W−1

in X. Using Lemma 6.1.4.8 and Lemma 6.1.4.6, we see that this diagram is
equivalent to the pullback diagram

X ��

��

U0

s

��
U0

s �� U−1.

It therefore suffices to prove that the induced diagram

f(W1) ��

��

f(W0)

��
f(W0) �� f(W−1)

is a pullback. We make a slightly stronger claim: the augmented simplicial
object f ◦W• is a Čech nerve. Since every groupoid object in Y is effective,
it will suffice to prove that f ◦W• is a groupoid resolution. Since f preserves
colimits, it is clear that f ◦ W• is a simplicial resolution. It follows from
Lemma 6.1.4.3 that the underlying simplicial object of f ◦W• is a groupoid.

6.1.5 Giraud’s Theorem for ∞-Topoi

In this section, we will complete the proof of Theorem 6.1.0.6 by showing
that every ∞-category X which satisfies the ∞-categorical Giraud axioms (i)
through (iv) arises as a left exact localization of an ∞-category of presheaves.
Our strategy is simple: we choose a small category C equipped with a functor
f : C → X. According to Theorem 5.1.5.6, we obtain a colimit-preserving
functor F : P(C) → X which extends f up to homotopy. We will apply
Proposition 6.1.4.2 to show that (under suitable hypotheses) F is a left
exact localization functor (Proposition 6.1.5.2).
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Lemma 6.1.5.1. Let X be a presentable ∞-category in which colimits are
universal and coproducts are disjoint.

Let {φi : Zi → Z}i∈I be a family of morphisms in X which exhibit Z as a
coproduct of the family of objects {Zi}i∈I . Let

W
α ��

��

Zi

φi

��
Zj

φj �� Z

be a square diagram in X. Then

(1) If i �= j, the diagram is a pullback square if and only if W is an initial
object of X.

(2) If i = j, the diagram is a pullback square if and only if α is an equiv-
alence.

Proof. Let Z∨
i be a coproduct for the objects {Zk}k∈I,k 
=i and let ψ : Z∨

i →
Z be a morphism such that each of the compositions

Zk → Z∨
i

ψ→ Z

is equivalent to Z. Then there is a pushout square

∅ β ��

��

Zi

φi

��
Z∨
i

ψ �� Z,

where ∅ denotes an initial object of X. Since coproducts in X are disjoint,
this pushout square is also a pullback.

Let φ∗i : X/Z → X/Zi denote a pullback functor. The above argument
shows that φ∗

i (ψ) is an initial object of X/Zi . If j �= i, then there is a map
of arrows φj → ψ in X/Z and therefore a map φ∗i (φj) → φ∗i (ψ) in X/Zi .
Consequently, if α � φ∗i (φj), then W admits a map to an initial object of
X and is therefore itself initial by Lemma 6.1.3.6. This proves the “only if”
direction of (1). The converse follows from the uniqueness of initial objects.

Now suppose that i = j. We observe that idZ is a coproduct of φi and ψ
in the ∞-category X/Z . Since φ∗

i preserves coproducts, we deduce that idZi

is a coproduct of φ∗(φj) : X → Zi and β : ∅ → Zi in X/Zi . Since β is an
initial object of X/Zi , we see that φ∗(φj) is an equivalence. The natural map
γ : α → φ∗i (φi) corresponds to a commutative diagram

W
α ��

γ0

��

Zi

idZi

����
X

φ∗
i (φi) �� Zi

in the ∞-category X. Consequently, α is an equivalence if and only if γ0 is an
equivalence, if and only if γ is an equivalence in X/Zi . This proves (2).
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Proposition 6.1.5.2. Let C be a small ∞-category which admits finite limits
and let X be an ∞-category which satisfies the ∞-categorical Giraud axioms
(i) through (iv) of Theorem 6.1.0.6. Let F : P(C) → X be a colimit-preserving
functor. Suppose that the composition F ◦ j : C → X is left exact, where
j : C → P(C) denotes the Yoneda embedding. Then F is left exact.

Proof. According to Corollary 4.4.2.5, to prove that F is left exact, it will
suffice to prove that F preserves pullbacks and final objects. Since all final
objects are equivalent, to prove that F preserves final objects, it suffices to
exhibit a single final object Z of P(C) such that FY ∈ X is final. Let z be
a final object of C (which exists by virtue of our assumption that C admits
finite limits). Then Z = j(z) is a final object of P(C) since j preserves limits
by Proposition 5.1.3.2. Consequently, F (Z) = f(z) is final since f is left
exact.

Let α : Y → Z be a morphism in P(C). We will say that α is good if for
every pullback square

W ��

��

Y

α

��
X �� Z

in P(C), the induced square

F (W ) ��

��

F (Y )

F (α)

��
F (X)

β �� F (Z)

is a pullback in X. Note that Lemma 4.4.2.1 implies that the class of good
morphisms in P(C) is stable under composition.

We rephrase this condition that a morphism α be good in terms of the
pullback functors α∗ : P(C)/Z → P(C)/Y , F (α)∗ : X/F (Z) → P(C)/F (Y ).
Application of the functor F gives a map

t : F ◦ α∗ → F (α)∗ ◦ F
in the ∞-category of functors from P(C)/Z to X/F (Z), and α is good if and
only if t is an equivalence. Note that t is a natural transformation of colimit-
preserving functors. Since the image of the Yoneda embedding j : C → P(C)
generates P(C) under colimits, it will suffice to prove that t is an equivalence
when evaluated on objects of the form β : j(x) → Z, where x is an object of
C.

Let us say that an object Z ∈ P(C) is good if every morphism α : Y → Z
is good. In other words, an object Z ∈ P(C) is good if F is left exact at Z in
the sense of Definition 6.1.4.1. By repeating the above argument, we deduce
that Z is good if and only if every morphism of the form α : j(y) → Z is
good for y ∈ C.
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We next claim that for every object z ∈ C, the Yoneda image j(z) ∈ P(C)
is good. In other words, we must show that for every pullback square

W ��

��

j(y)

α

��
j(x)

β �� j(z)

in P(C), the induced square

F (W ) ��

��

f(x)

��
f(y) �� f(z)

is a pullback in X. Since the Yoneda embedding is fully faithful, we may
suppose that α and β are the Yoneda images of morphisms x → z, y → z.
Since j preserves limits, we may reduce to the case where the first diagram
is the Yoneda image of a pullback diagram in C. The desired result then
follows from the assumption that f is left exact.

To complete the proof that F is left exact, it will suffice to prove that
every object of P(C) is good. Because the Yoneda embedding j : C → P(C)
generates P(C) under colimits, it will suffice to prove that the collection
of good objects of P(C) is stable under colimits. According to Proposition
4.4.3.3, it will suffice to prove that the collection of good objects of P(C) is
stable under coequalizers and small coproducts.

We first consider the case of coproducts. Let {Zi}i∈I be a family of good
objects of P(C) indexed by a (small) set I and let {φi : Zi → Z}i∈I be a
family of morphisms which exhibit Z as a coproduct of the family {Zi}i∈I .
Suppose we are given a pullback diagram

W ��

��

j(y)

α

��
j(x)

β �� Z

in P(C). According to Proposition 5.1.2.2, evaluation at the object y induces
a colimit-preserving functor P(C) → S. Consequently, we have a homotopy
equivalence

MapP(C)(j(y), Z) �
∐
i∈I

MapP(C)(j(y), Zi)

in the homotopy category H. Therefore we may assume that α factors as a
composition

j(y) α′
→ Zi

φi→ Z

for some i ∈ I. By assumption, the morphism α′ is good; it therefore suffices
to prove that φi is good. By a similar argument, we can replace β by a map
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φj : Zj → Z for some j ∈ I. We are now required to show that if

W ′ ��

��

Zi

φi

��
Zj

φj �� Z

is a pullback diagram in P(C), then

F (W ′) ��

��

F (Zi)

φi

��
Zj

φj �� Z

is a pullback diagram in X. Since F preserves initial objects, this follows
immediately from Lemma 6.1.5.1.

We now complete the proof by showing that the collection of good objects
of P(C) is stable under the formation of coequalizers. Let

Z1
���� Z0

s �� Z−1

be a coequalizer diagram in P(C), and suppose that Z0 and Z1 are good. We
must show that any pullback diagram

W ��

��

j(y)

α

��
j(x)

β �� Z−1

remains a pullback diagram after applying the functor F . The functor

P(C) → N(Set)

T �→ HomhP(C)(j(x), T )

can be written as a composition

P(C) → S
π0→ N(Set),

where the first functor is given by evaluation at x. Both of these functors
commute with colimits. Consequently, we have a coequalizer diagram

HomhP(C)(j(x), Z1) ���� HomhP(C)(j(x), Z0) �� HomhP(C)(j(x), Z−1)

in the category of sets. In particular, the map β factors as a composition

j(x)
β′
→ Z0

s→ Z−1.

Since we have already assumed that β′ is good, we can replace β by the map
s : Z0 → Z−1 in the above diagram. By a similar argument, we can replace
α : Y → Z−1 by the map s : Z0 → Z−1. We now obtain the desired result
by applying Proposition 6.1.4.2.
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We are now ready to complete the proof of Theorem 6.1.0.6:

Proposition 6.1.5.3. Let X be an ∞-category. Suppose that X satisfies the
∞-categorical Giraud axioms:

(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every groupoid object of X is effective.

Then there exists a small ∞-category C which admits finite limits and an
accessible left exact localization functor P(C) → X. In particular, X is an
∞-topos.

Proof. Let X be an ∞-topos. According to Proposition 5.4.7.4, there exists
a regular cardinal τ such that X is τ -accessible, and the full subcategory
Xτ spanned by the τ -compact objects of X is stable under finite limits. Let
C be a minimal model for Xτ , so that there is an equivalence Indτ (C) →
X. The proof of Theorem 5.5.1.1 shows that the inclusion Indτ (C) ⊆ P(C)
has a left adjoint L. The composition of L with the Yoneda embedding
C → P(C) can be identified with the Yoneda embedding C → Indτ (C) and
therefore preserves all limits which exist in C (Proposition 5.1.3.2). Applying
Proposition 6.1.5.2, we deduce that L is left exact, so that Indτ (C) is a left
exact localization (automatically accessible) of P(C). Since X is equivalent
to Indτ (C), we conclude that X is also an accessible left exact localization of
P(C).

6.1.6 ∞-Topoi and Classifying Objects

Let X be an ordinary category and let X be an object of X. Let Sub(X) de-
note the partially ordered collection of subobjects of X: an object of Sub(X)
is an equivalence class of monomorphisms Y → X. If C is accessible, then
Sub(X) is actually a set. If X admits finite limits, then Sub(X) is contravari-
antly functorial in X: given a subobject Y → X and any map X′ → X, the
fiber product Y ′ = X ′ ×X Y is a subobject of X ′. A subobject classifier is
an object Ω of X which represents the functor Sub. In other words, Ω has
a universal subobject Ω0 ⊆ Ω such that every monomorphism Y → X fits
into a unique Cartesian diagram

Y ��
� �

��

Ω0� �

��
X �� Ω.

(In this case, Ω0 is automatically a final object of C.)
Every topos has a subobject classifier. In fact, in the theory of elementary

topoi, the existence of a subobject classifier is taken as one of the axioms.
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Thus the existence of a subobject classifier is one of the defining charac-
teristics of a topos. We would like to discuss the appropriate ∞-categorical
generalization of the theory of subobject classifiers. The ideas presented here
are due to Charles Rezk.

Definition 6.1.6.1. Let X be an ∞-category which admits pullbacks and
let S be a collection of morphisms of X which is stable under pullback. We
will say that a morphism f : X → Y classifies S if it is a final object of
O

(S)
X (see Notation 6.1.3.4). In this situation, we will also say that the object

Y ∈ X classifies S. A subobject classifier for X is an object which classifies
the collection of all monomorphisms in X.

Example 6.1.6.2. The ∞-category S of spaces has a subobject classifier:
namely, the discrete space {0, 1} with two elements.

The following result provides a necessary and sufficient condition for the
existence of a classifying object for S:

Proposition 6.1.6.3. Let X be a presentable ∞-category in which colimits
are universal and let S be a class of morphisms in X which is stable under
pullbacks. There exists a classifying object for S if and only if the following
conditions are satisfied:

(1) The class S is local (Definition 6.1.3.8).

(2) For every object X ∈ X, the full subcategory of X/X spanned by the
elements of S is essentially small.

Proof. Let s : Xop → Ŝ be a functor which classifies the right fibration
O

(S)
X → X. Then S has a classifying object if and only if s is a representable

functor. According to the representability criterion of Proposition 5.5.2.2,
this is equivalent to the assertion that s preserves small limits, and the
essential image of s consists of essentially small spaces. According to Lemma
6.1.3.7, s preserves small limits if and only if (1) is satisfied. It now suffices
to observe that for each X ∈ X, the space s(X) is essentially small if and
only if the full subcategory of X/X spanned by S is essentially small.

Using Proposition 6.1.6.3, one can show that every ∞-topos has a sub-
object classifier. However, in the ∞-categorical context, the emphasis on
subobjects misses the point. To see why, let us return to considering an ordi-
nary category X with a subobject classifier Ω. By definition, for every object
X ∈ X, we may identify maps X → Ω with subobjects of X: that is, isomor-
phism classes of maps Y → X which happen to be monomorphisms. Even
better would be an object classifier: that is, an object Ω̃ such that an element
of HomX(X, Ω̃) could be identified with an arbitrary map Y → X. But this
is an unreasonable demand: if Y → X is not a monomorphism, then there
may be automorphisms of Y as an object of X/X . It would be unnatural to
ignore these automorphisms. However, it is also not possible to take them
into account because HomX(X, Ω̃) must be a set rather than a groupoid.
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If we allow X to be an ∞-category, this objection loses its force. Informally
speaking, we can consider the functor which associates to each X ∈ X the
maximal ∞-groupoid contained in X/X (this is contravariantly functorial
in X provided that X has finite limits). We might hope that this functor is
representable by some Ω∞ ∈ X, which we would then call an object classifier.

Unfortunately, a new problem arises: it is generally unreasonable to ask
for the collection of all morphisms in X to be classified by an object of X

since this would require each slice X/X to be essentially small (Proposition
6.1.6.3). This is essentially a technical difficulty, which we will circumvent
by introducing a cardinality bound.

Definition 6.1.6.4. Let X be a presentable ∞-category. We will say that a
morphism f : X → Y is relatively κ-compact if, for every pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y

such that Y ′ is κ-compact, X ′ is also κ-compact.

Lemma 6.1.6.5. Let X be a presentable ∞-category, κ a regular cardinal,
J a κ-filtered ∞-category, and p : J
 → X a colimit diagram. Let f : X → Y
be a morphism in X, where Y is the image under p of the cone point of J
.
For each α in J, let Yα = p(α) and form a pullback diagram

Xα
��

fα

��

X

f

��
Yα

gα �� Y.

Suppose that each fα is relatively κ-compact. Then f is relatively κ-compact.

Proof. Let Z be a κ-compact object of X and g : Z → Y a morphism. Since Z
is κ-compact and J is κ-filtered, there exists a 2-simplex of X corresponding
to a diagram

Yα
gα

��















Z

��							 g �� Y.

We form a Cartesian rectangle ∆2 × ∆1 → X, which we will depict as

Z ′ ��

f ′

��

Xα
��

fα

��

X

f

��
Z �� Yα �� Y.

Since f ′ is a pullback of fα, we conclude that Z ′ is κ-compact. Lemma
4.4.2.1 implies that f ′ is also a pullback of f along g, so that f is relatively
κ-compact, as desired.
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Lemma 6.1.6.6. Let X be a presentable ∞-category in which colimits are
universal. Let τ > κ be regular cardinals such that X is κ-accessible and
the full subcategory Xτ consisting of τ -compact objects of X is stable under
pullbacks in X. Let α : σ → σ′ be a Cartesian transformation between pushout
squares σ, σ′ : ∆1 × ∆1 → X, which we may view as a pushout square

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in Fun(∆1,X). Suppose that f , g, and f ′ are relatively τ -compact. Then g′

is relatively τ -compact.

Proof. Let C denote the full subcategory of Fun(∆1 ×∆1,X) spanned by the
pushout squares and let Cτ = C∩Fun(∆1 × ∆1,Xτ ). Since the class of τ -
compact objects of X is stable under pushouts (Corollary 5.3.4.15), we have
a commutative diagram

Cτ ��

��

Fun(Λ2
0,X

τ )

��
C �� Fun(Λ2

0,X),

where the horizontal arrows are trivial fibrations (Proposition 4.3.2.15). The
proof of Proposition 5.4.4.3 shows that every object of Fun(Λ2

0,X) can be
written as the colimit of a τ -filtered diagram in Fun(Λ2

0,X
τ ). It follows that

σ′ ∈ C can be obtained as the colimit of a τ -filtered diagram in Cτ . Since
colimits in X are universal, we conclude that the natural transformation α
can be obtained as a τ -filtered colimit of natural transformations αi : σi → σ′

i

in Cτ . Lemma 5.5.2.3 implies that the inclusion C ⊆ Fun(∆1 × ∆1,X) is
colimit-preserving. Consequently, we deduce that g′ can be written as a τ -
filtered colimit of morphisms {g′i} determined by restricting {αi}. According
to Lemma 6.1.6.6, it will suffice to prove that each morphism g′i is relatively
τ -compact. In other words, we may replace σ′ by σ′

i and thereby reduce to
the case where σ′ belongs to Cτ . Since f, g, and f ′ are relatively τ -compact,
we conclude that σ|Λ2

0 takes values in Xτ . Since σ is a pushout diagram,
Corollary 5.3.4.15 implies that σ takes values in Xτ . Now we observe that g′

is a morphism between τ -compact objects of X and therefore automatically
relatively τ -compact by virtue of our assumption that Xτ is stable under
pullbacks in X.

Proposition 6.1.6.7. Let X be a presentable ∞-category in which colimits
are universal and let S be a local class of morphisms in X. For each regular
cardinal κ, let Sκ denote the collection of all morphisms f which belong
to S and are relatively κ-compact. If κ is sufficiently large, then Sκ has a
classifying object.
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Proof. Choose κ′ such that X is κ′-accessible. The restriction functor r :
Fun((Λ2

2)
	,X) → Fun(Λ2

2,X) is accessible: in fact, it preserves all colimits
(Proposition 5.1.2.2). Let g be a right adjoint to r (a limit functor); Propo-
sition 5.4.7.7 implies that g is also accessible. Choose a regular cardinal
κ′′ > κ′ such that g is κ′′-continuous and choose κ ≥ κ′′ such that g carries
κ′′-compact objects of Fun(Λ2

2,X) into Fun((Λ2
2)
	,Xκ). It follows that the

class of κ-compact objects of X is stable under pullbacks. We will show that
Sκ has a classifying object.

We will verify the hypotheses of Proposition 6.1.6.3. First, we must show
that Sκ is local. For this, we will verify condition (3) of Lemma 6.1.3.7.
We begin by showing that Sκ is stable under small coproducts. Let {fα :
Xα → Yα}α∈A be a small collection of morphisms belonging to Sκ and let
f : X → Y be a coproduct

∐
α∈A fα in Fun(∆1,X). We wish to show that

f ∈ Sκ. Since S is local, we conclude that f ∈ S (using Lemma 6.1.3.7). It
therefore suffices to show that f is relatively κ-compact. Suppose we are given
a κ-compact object Z ∈ X and a morphism g : Z → Y . Using Proposition
4.2.3.4 and Corollary 4.2.3.10, we conclude that Y can be obtained as a
κ-filtered colimit of objects YA0 =

∐
α∈A0

Yα, where A0 ranges over the κ-
small subsets of A. Since Z is κ-compact, we conclude that there exists a
factorization

Z
g′→ YA0

g′′→ Y

of g. Form a Cartesian rectangle ∆2 × ∆1 → X,

Z ′ ��

��

XA0
��

��

X

��
Z �� YA0

�� Y.

Since S is local, we can identify XA0 with the coproduct
∐
α∈A0

Xα. Since
colimits are universal, we conclude that Z′ is a coproduct of objects Z′

α =
Xα ×Yα

Z, where α ranges over A0. Since each fα is relatively κ-compact,
we conclude that each Z ′

α is κ-compact. Thus Z ′, as a κ-small colimit of
κ-compact objects, is also κ-compact (Corollary 5.3.4.15).

We must now show that for every pushout diagram

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in OX, if α and β are Cartesian transformations and f, f ′, g ∈ Sκ, then α′

and β′ are also Cartesian transformations and g′ ∈ Sκ. The first assertion
follows immediately from Lemma 6.1.3.7 (since S is local), and we deduce
also that g′ ∈ S. It therefore suffices to show that g is relatively κ-compact,
which follows from Lemma 6.1.6.6.

It remains to show that, for each X ∈ X, the full subcategory of X/X
spanned by the elements of S is essentially small. Equivalently, we must
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show that the right fibration p : O
(S)
X → X has essentially small fibers.

Let F : Xop → Ŝ classify p. Since S is local, F preserves limits. The full
subcategory of Ŝ spanned by the essentially small Kan complexes is stable
under small limits, and X is generated by Xκ under small (κ-filtered) colimits.
Consequently, it will suffice to show that F (X) is essentially small when X
is κ-compact. In other words, we must show that there are only a bounded
number of equivalence classes of morphisms f : Y → X such that f ∈ Sκ.
We now observe that if f ∈ Sκ, then f is relatively κ-compact, so that Y
also belongs to Xκ. We now conclude by observing that the ∞-category Xκ

is essentially small.

We now give a characterization of ∞-topoi based on the existence of object
classifiers.

Theorem 6.1.6.8 (Rezk). Let X be a presentable ∞-category. Then X is
an ∞-topos if and only if the following conditions are satisfied:

(1) Colimits in X are universal.

(2) For all sufficiently large regular cardinals κ, there exists a classifying
object for the class of all relatively κ-compact morphisms in X.

Proof. Assume that colimits in X are universal. According to Theorems
6.1.0.6 and 6.1.3.9, X is an ∞-topos if and only if the class S consisting
of all morphisms of X is local. This clearly implies (2) in view of Proposition
6.1.6.7. Conversely, suppose that (2) is satisfied and let Sκ be defined as in
the statement of Proposition 6.1.6.7. Proposition 6.1.6.3 ensures that Sκ is
local for all sufficiently large regular cardinals κ. We note that S =

⋃
Sκ. It

follows from Criterion (3) of Lemma 6.1.3.7 that S is also local, so that X is
an ∞-topos.

6.2 CONSTRUCTIONS OF ∞-TOPOI

According to Definition 6.1.0.4, an ∞-category X is an ∞-topos if and only
if X arises as an (accessible) left exact localization of a presheaf ∞-category
P(C). To complete the analogy with classical topos theory, we would like to
have some concrete description of the collection of left exact localizations of
P(C). In §6.2.1, we will study left exact localization functors in general and
single out a special class which we call topological localizations. In §6.2.2, we
will study topological localizations of P(C) and show that they are in bijec-
tion with Grothendieck topologies on the ∞-category C by exact analogy with
classical topos theory. In particular, given a Grothendieck topology on C, one
can define an ∞-topos Shv(C) ⊆ P(C) of sheaves on C. In §6.2.3, we will char-
acterize Shv(C) by a universal mapping property. Unfortunately, not every
∞-topos X can be obtained as topological localization of an ∞-category of
presheaves. Nevertheless, in §6.2.4 we will construct ∞-categories of sheaves
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which closely approximate X using the formalism of canonical topologies.
These ideas will be applied in §6.4 to obtain a classification theorem for
n-topoi.

6.2.1 Left Exact Localizations

Let X be an ∞-category. Up to equivalence, a localization L : X → Y is
determined by the collection S of all morphisms f : X → Y in X such that
Lf is an equivalence in Y (Proposition 5.5.4.2). Our first result provides a
useful criterion for testing the left exactness of L.

Proposition 6.2.1.1. Let L : X → Y be a localization of ∞-categories.
Suppose that X admits finite limits. The following conditions are equivalent:

(1) The functor L is left exact.

(2) For every pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y

in X such that Lf is an equivalence in Y, Lf ′ is also an equivalence in
Y.

Proof. It is clear that (1) implies (2). Suppose that (2) is satisfied. We wish
to show that L is left exact. Let S be the collection of morphisms f in X

such that Lf is an equivalence. Without loss of generality, we may identify
Y with the full subcategory of X spanned by the S-local objects. Since the
final object 1 ∈ X is obviously S-local, we have L1 � 1. Thus it will suffice to
show that L commutes with pullbacks. We observe that given any diagram
X → Y ← Z, the pullback LX ×LY LZ is a limit of S-local objects of X

and therefore S-local. To complete the proof, it will suffice to show that the
natural map f : X ×Y Z → LX ×LY LZ belongs to S. We can write f as a
composition of maps

X ×Y Z → X ×LY Z → LX ×LY Z → LX ×LY LZ.

The last two maps are obtained from X → LX and Z → LZ by base change.
Assumption (2) implies that they belong to S. Thus it will suffice to show
that f ′ : X ×Y Z → X ×LY Z belongs to S. This map is a pullback of the
diagonal f ′′ : Y → Y ×LY Y , so it will suffice to prove that f ′′ ∈ S. Projection
to the first factor gives a left homotopy inverse g : Y ×LY Y → Y of f ′′,
so it suffices to prove that g ∈ S. But g is a base change of the morphism
Y → LY .

Proposition 6.2.1.2. Let X be a presentable ∞-category in which colimits
are universal. Let S be a class of morphisms in X and let S be the strongly



∞-TOPOI 571

saturated class of morphisms generated by S. Suppose that S has the following
property: for every pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y

in X, if f ∈ S, then f ′ ∈ S. Then S is stable under pullbacks.

Proof. Let S′ be the set of all morphisms f in X with the property that for
any pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y,

the morphism f ′ belongs to S. By assumption, S ⊆ S′. Using the fact that
colimits are universal, we deduce that S′ is strongly saturated. Consequently,
S ⊆ S′, as desired.

Corollary 6.2.1.3. Let X be a presentable ∞-category in which colimits
are universal, let S be a (small) set of morphisms in X, and let S denote
the smallest strongly saturated class of morphisms which contains S and is
stable under pullbacks. Then S is generated (as a strongly saturated class of
morphisms) by a (small) set.

Proof. Choose a (small) set U of objects of X which generates X under
colimits. Enlarging U if necessary, we may suppose that U contains the
codomain of every morphism belonging to S. Let S ′ be the set of all mor-
phisms f ′ which fit into a pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y

where f ∈ S and Y ′ ∈ U , and let S
′

denote the strongly saturated class
of morphisms generated by S′. To complete the proof it will suffice to show
that S

′
= S. The inclusions S ⊆ S′ ⊆ S

′ ⊆ S are obvious. To show that
S ⊆ S

′
, it will suffice to show that S

′
is stable under pullbacks. In view of

Proposition 6.2.1.2, it will suffice to show that for every pullback diagram

X ′′ ��

f ′′

��

X ′

f ′

��
Y ′′ �� Y ′,

such that f ′ ∈ S′, the morphism f ′′ belongs to S
′
. Using our assumption that

colimits in X are universal and that U generates X under colimits, we can
reduce to the case where Y ′′ ∈ U . In this case, f ′′ ∈ S′ by construction.
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Recall that a morphism f : Y → Z in an ∞-category X is a monomorphism
if it is a (−1)-truncated object of the ∞-category X/Z . Equivalently, f is a
monomorphism if for every object X ∈ X, the induced map

MapX(X,Y ) → MapX(X,Z)

exhibits MapX(X,Y ) ∈ H as a summand of MapX(X,Z) in the homotopy
category H. If we fix Z ∈ X, then the collection of equivalence classes of
monomorphisms Y → Z is partially ordered under inclusion. We will denote
this partially ordered collection by Sub(Z).

Proposition 6.2.1.4. Let X be a presentable ∞-category and let X be an
object of X. Then Sub(X) is a (small) partially ordered set.

Proof. By definition, the partially ordered set Sub(X) is characterized by
the existence of an equivalence

τ≤−1 X/X → N(Sub(X)).

Propositions 5.5.3.10 and 5.5.6.18 imply that N(Sub(X)) is presentable.
Consequently, there exists a small subset S ⊆ Sub(X) which generates
N(Sub(X)) under colimits. It follows that every element of Sub(X) can be
written as the supremum of a subset of S, so that Sub(X) is also small.

Definition 6.2.1.5. Let X be a presentable ∞-category and let S be a
strongly saturated class of morphisms of X. We will say that S is topological
if the following conditions are satisfied:

(1) There exists S ⊆ S consisting of monomorphisms such that S generates
S as a strongly saturated class of morphisms.

(2) Given a pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y

in X such that f belongs to S, the morphism f ′ also belongs to S.

We will say that a localization L : X → Y is topological if the collection S of
all morphisms f : X → Y in X such that Lf is an equivalence is topological.

Proposition 6.2.1.6. Let X be a presentable ∞-category in which colimits
are universal and let S be a strongly saturated class of morphisms of X which
is topological. Then there exists a (small) subset S0 ⊆ S which consists of
monomorphisms and generates S as a strongly saturated class of morphisms.

Proof. For every object U ∈ X, let Sub′(U) ⊆ Sub(U) denote the collection
of equivalence classes of monomorphisms U ′ → U which belong to S. Choose
a small collection of objects {Uα}α∈A which generates X under colimits.
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For each α ∈ A and each element α̃ ∈ Sub′(Uα), choose a representative
monomorphism feα : Veα → Uα which belongs to S. Let

S0 = {feα|α ∈ A, α̃ ∈ Sub′(Uα)}.
It follows from Proposition 6.2.1.4 that S0 is a (small) set. Let S0 denote the
strongly saturated class of morphisms generated by S0. We will show that
S0 = S.

Let X0 be the full subcategory of X spanned by objects U with the follow-
ing property: if f : V → U is a monomorphism and f ∈ S, then f ∈ S0. By
construction, for each α ∈ A, Uα ∈ X0. Since colimits in X are universal, it
is easy to see that X0 is stable under colimits in X. It follows that X0 = X,
so that every monomorphism which belongs to S also belongs to S0. Since S
is generated by monomorphisms, we conclude that S = S0, as desired.

Corollary 6.2.1.7. Let X be a presentable ∞-category. Every topological
localization L : X → Y is accessible and left exact.

6.2.2 Grothendieck Topologies and Sheaves in Higher Category
Theory

Every ordinary topos is equivalent to a category of sheaves on some Groth-
endieck site. This can be deduced from the following pair of statements:

(i) Every topos is equivalent to a left exact localization of some presheaf
category SetCop

.

(ii) There is a bijective correspondence between left exact localizations of
SetCop

and Grothendieck topologies on C.

In §6.1, we proved the ∞-categorical analogue of assertion (i). Unfortu-
nately, (ii) is not quite true in the ∞-categorical setting. In this section, we
will establish a slightly weaker statement: for every ∞-category C, there is a
bijective correspondence between Grothendieck topologies on C and topolog-
ical localizations of P(C) (Proposition 6.2.2.9). Our first step is to introduce
the ∞-categorical analogue of a Grothendieck site. The following definition
is taken from [78]:

Definition 6.2.2.1. Let C be an ∞-category. A sieve on C is a full subcat-
egory of C(0) ⊆ C having the property that if f : C → D is a morphism in C

and D belongs to C(0), then C also belongs to C(0).
Observe that if f : C → D is a functor between ∞-categories and D(0) ⊆ D

is a sieve on D, then f−1 D(0) = D(0) ×D C is a sieve on C. Moreover, if f is
an equivalence, then f−1 induces a bijection between sieves on D and sieves
on C.

If C ∈ C is an object, then a sieve on C is a sieve on the ∞-category C/C .
Given a morphism f : D → C and a sieve C

(0)
/C on C, we let f∗ C

(0)
/C denote

the unique sieve on D such that f∗ C
(0)
/C ⊆ C/D and C

(0)
/C determine the same

sieve on C/f .



574 CHAPTER 6

A Grothendieck topology on an ∞-category C consists of a specification,
for each object C of C, of a collection of sieves on C which we will refer to
as covering sieves. The collections of covering sieves are required to possess
the following properties:

(1) If C is an object of C, then the sieve C/C ⊆ C/C on C is a covering
sieve.

(2) If f : C → D is a morphism in C and C
(0)
/C is a covering sieve on D,

then f∗ C
(0)
/C is a covering sieve on C.

(3) Let C be an object of C, C
(0)
/C a covering sieve on C, and C

(1)
/C an

arbitrary sieve on C. Suppose that, for each f : D → C belonging to
the sieve C

(0)
/C , the pullback f∗ C

(1)
/C is a covering sieve on D. Then C

(1)
/C

is a covering sieve on C.

Example 6.2.2.2. Any ∞-category C may be equipped with the trivial
topology in which a sieve C

(0)
/C on an object C of C is covering if and only if

C
(0)
/C = C/C .

Remark 6.2.2.3. In the case where C is (the nerve of) an ordinary category,
the definition given above reduces to the usual notion of a Grothendieck
topology on C. Even in the general case, a Grothendieck topology on C is
just a Grothendieck topology on the homotopy category hC. This is not
completely obvious since for an object C of C, the functor

η : h(C/C ) → (hC)/C

is usually not an equivalence of categories. A morphism on the left hand side
corresponds to a commutative triangle

D ��

���
��

��
��

D′

��		
		
		
		

C

given by a specified 2-simplex σ : ∆2 → C (taken modulo homotopy), while
on the right hand side one requires only that the above diagram commute
up to homotopy: this amounts to requiring the existence of σ, but σ itself is
not taken as part of the data.

Although η need not be an equivalence of categories, η∗ does induce a
bijection from the set of sieves on (hC)/C to the set of sieves on h(C/C ): for
this, it suffices to observe that η induces surjective maps

Homh( C/C )(D,D′) → Hom(hC)/C
(D,D′)

on morphism sets, which is obvious from the description given above.
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The main objective of this section is to prove that for any (small) ∞-
category C, there is a bijective correspondence between Grothendieck topolo-
gies on C and (equivalence classes of) topological localizations of P(C). We be-
gin by establishing a correspondence between sieves on C and (−1)-truncated
objects of P(C). For each object U ∈ P(C), let C(0)(U) ⊆ C be the full sub-
category spanned by those objects C ∈ C such that U(C) �= ∅. It is easy to
see that C(0)(U) is a sieve on C. Conversely, given a sieve C(0) ⊆ C, there is a
unique map C → ∆1 such that C(0) is the preimage of {0}. This construction
determines a bijection between sieves on C and functors f : C → ∆1, and
we may identify ∆1 with the full subcategory of Sop spanned by the objects
∅,∆0 ∈ Kan. Since every (−1)-truncated Kan complex is equivalent to either
∅ or ∆0, we conclude:

Lemma 6.2.2.4. For every small ∞-category C, the construction U �→
C(0)(U) determines a bijection between the set of equivalence classes of (−1)-
truncated objects of P(C) and the set of all sieves on C.

We now introduce a relative version of the above construction. Let C be a
small ∞-category as above and let j : C → P(C) be the Yoneda embedding.
Let C ∈ C be an object and let i : U → j(C) be a monomorphism in
P(C). Let C/C(U) denote the full subcategory of C spanned by those objects
f : D → C of C/C such that there exists a commutative triangle

j(D)
j(f) ��

���
��

��
��

�
j(C)

U.

i
����������

It is easy to see that C/C(U) is a sieve on C. Moreover, it is clear that if
i : U → j(C) and i′ : U ′ → j(C) are equivalent subobjects of j(C), then
C/C(U) = C/C(U ′).

Proposition 6.2.2.5. Let C be a small ∞-category containing an object C
and let j : C → P(C) be the Yoneda embedding. The construction described
above yields a bijection

(i : U → j(C)) �→ C/C(U)

from Sub(j(C)) to the set of all sieves on C.

Proof. Use Corollary 5.1.6.12 to reduce to Lemma 6.2.2.4.

Definition 6.2.2.6. Let C be a (small) ∞-category equipped with a Groth-
endieck topology. Let S be the collection of all monomorphisms U → j(C)
which correspond to covering sieves C

(0)
/C ⊆ C/C . An object F ∈ P(C) is

a sheaf if it is S-local. We let Shv(C) denote the full subcategory of P(C)
spanned by S-local objects.
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Lemma 6.2.2.7. Let C be a (small) ∞-category equipped with a Grothen-
dieck topology. Then Shv(C) is a topological localization of P(C). In particu-
lar, Shv(C) is an ∞-topos.

Proof. By definition, Shv(C) = S−1 P(C), where S is the collection of all
monomorphisms i : U → j(C) which correspond to covering sieves on C ∈ C.
Let S be the strongly saturated class of morphisms generated by S; we wish
to show that S is stable under pullback.

Let S′ denote the collection of all morphisms f : X → Y such that for
any pullback diagram σ : ∆1 × ∆1 → P(C) depicted as follows:

X ′

f ′

��

�� X

f

��
Y ′ g �� Y,

the morphism f ′ belongs to S. Since colimits in P(C) are universal, it is easy
to prove that S′ is strongly saturated. We wish to prove that S ⊆ S′. Since
S is the smallest saturated class containing S, it will suffice to prove that
S ⊆ S′. We may therefore suppose that Y = j(C) in the diagram above and
that f : X → j(C) is the monomorphism corresponding to a covering sieve
C

(0)
/C on C.
Since P(C)/j(C) � P(C/C) is generated under colimits by the Yoneda em-

bedding, there exists a diagram p : K → C/C such that the composite map
j ◦ p : K → P(C)/j(C) has g : Y ′ → j(C) as a colimit. Because colimits in
P(C) are universal, we can extend j ◦ p to a diagram P : K → (P(C)∆

1
)/f

which carries each vertex k ∈ K to a pullback diagram

Xk

fk

��

�� X

��
j(Dk)

j(gk) �� j(C)

such that σ is a colimit of P . Each fk is a monomorphism associated to the
covering sieve g∗k C

(0)
/C and therefore belongs to S ⊆ S. It follows that f ′ is

a colimit in P(C)∆
1

of morphisms belonging to S and thus itself belongs to
S.

The next lemma ensures us that we can recover a Grothendieck topology
on C from its ∞-category of sheaves Shv(C) ⊆ P(C).

Lemma 6.2.2.8. Let C be a (small ) ∞-category equipped with a Grothen-
dieck topology and let L : P(C) → Shv(C) denote a left adjoint to the inclu-
sion. Let j : C → P(C) denote the Yoneda embedding and let i : U → j(C) be
a monomorphism corresponding to a sieve C

(0)
/C on C. Then Li is an equiv-

alence if and only if C
(0)
/C is a covering sieve.
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Proof. It is clear that if C
(0)
/C is a covering sieve, then Li is an equiva-

lence. Conversely, suppose that Li is an equivalence. Then τ≤0(Li) is an
equivalence. In view of Proposition 5.5.6.28, we can identify τ≤0(Li) with
L(τ≤0i). The morphism τ≤0i can be identified with a monomorphism η :
F ⊆ HomhC(•, C) in the ordinary category of presheaves of sets on hC,
where

F(D) = {f ∈ HomhC(D,C) : f ∈ C
(0)
/C}.

If η becomes an equivalence after sheafification, then the identity map idC :
C → C belongs to F(C) locally; in other words, there exists a collection of
morphisms {fα : Cα → C} which generate a covering sieve on C such that
each fα belongs to F(Cα) and therefore to C

(0)
/C . It follows that C

(0)
/C contains

a covering sieve on C and is therefore itself covering.

We may summarize the results of this section as follows:

Proposition 6.2.2.9. Let C be a small ∞-category. There is a bijective cor-
respondence between Grothendieck topologies on C and (equivalence classes
of) topological localizations of P(C).

Proof. According to Lemma 6.2.2.7, every Grothendieck topology on C de-
termines a topological localization Shv(C) ⊆ P(C). Lemma 6.2.2.8 shows
that two Grothendieck topologies which determine the same ∞-categories
of sheaves must coincide. To complete the proof, it will suffice to show that
every topological localization of P(C) arises in this way. Let S be a strongly
saturated collection of morphisms in P(C) and suppose that S is topological.
Let S ⊆ S be the collection of all monomorphisms U → j(C) which belong
to S, where j : C → P(C) denotes the Yoneda embedding. Since the objects
{j(C)}C∈C generate P(C) under colimits, and colimits in P(C) are universal,
we conclude that every monomorphism in S is a colimit of elements of S.
Since S is generated by monomorphisms, we conclude that S is generated
by S.

Let us say that a sieve C
(0)
/C ⊆ C/C on an object C ∈ C is covering if the

corresponding monomorphism U → j(C) belongs to S. We will show that
the collection of covering sieves determines a Grothendieck topology on C.
Granting this, we observe that S

−1
P(C) is the ∞-category Shv(C) ⊆ P(C)

of sheaves with respect to this Grothendieck topology, which will complete
the proof.

We now verify the axioms (1) through (3) of Definition 6.2.2.1:

(1) Every sieve of the form C/C ⊆ C/C is covering since every identity map
idj(C) : j(C) → j(C) belongs to S.

(2) Let f : C → D be a morphism in C and let C
(0)
/D ⊆ C/D be a covering

sieve corresponding to a monomorphism i : U → j(D) which belongs to
S. Then f∗ C

(0)
/C ⊆ C/C corresponds to a monomorphism u : U ′ → j(C)
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which is a pullback of i along j(f) and therefore belongs to S (since S
is stable under pullbacks).

(3) Let C be an object of C, C
(0)
/C a covering sieve on C corresponding to a

monomorphism i : U → j(C) which belongs to S, and C
(1)
/C an arbitrary

sieve on C corresponding to a monomorphism v : U ′ → j(C). Suppose
that, for each f : D → C belonging to the sieve C

(0)
/C , the pullback

f∗ C
(1)
/C is a covering sieve on D. Since j′ : C/C → P(C)/j(C) is a fully

faithful embedding which generates P(C)/j(C) under colimits (see the
proof of Corollary 5.1.6.12), we conclude there is a diagram K → C/C
such that j′ ◦K has colimit i′. Since colimits in P(C) are universal, we
conclude that the map v′ : U ×j(C) U

′ → U is a colimit of morphisms
of the form j(D) ×j(C) U

′ → j(D), which belong to S by assumption.
Since S is stable under colimits, we conclude that i′′ belongs to S. We
now have a pullback diagram

U ×j(C) U
′ v′ ��

u′

��

U

u

��
U ′ v �� j(C).

By assumption, u ∈ S. Thus v◦u′ ∼ u◦v′ ∈ S. Since u′ is a pullback of
u, we conclude that u′ ∈ S, so that v ∈ S. This implies that C

(1)
/C ⊆ C/C

is a covering sieve, as we wished to prove.

For later use, we record the following characterization of initial objects in
∞-categories of sheaves:

Proposition 6.2.2.10. Let C be a small ∞-category equipped with a Groth-
endieck topology and let C′ ⊆ C denote the full subcategory spanned by those
objects C ∈ C such that ∅ ⊆ C/C is a covering sieve on C. An object
F ∈ Shv(C) is initial if and only if it satisfies the following conditions:

(1) If C ∈ C′, then F(C) is contractible.

(2) If C /∈ C′, then F(C) is empty.

Proof. Let L : P(C) → Shv(C) be a left adjoint to the inclusion and let ∅
be an initial object of P(C). Then L∅ is an initial object of Shv(C). Since
L is left exact, it preserves (−1)-truncated objects, as does the inclusion
Shv(C) ⊆ P(C). Thus L∅ is (−1)-truncated and corresponds to some sieve
C(0) ⊆ C (Lemma 6.2.2.4). As we saw in the proof of Lemma 6.2.2.8, a
sieve C(0) classifies an object of Shv(C) if and only if C(0) is saturated in
the following sense: if C ∈ C and the induced sieve C(0) ×C C/C is covering,
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then C ∈ C(0). An initial object of Shv(C) is an initial object of τ≤−1 Shv(C)
and must therefore correspond to the smallest saturated sieve on C. An easy
argument shows that this sieve is C′ and that F ∈ P(C) is a (−1)-truncated
object classified by C′ if and only if conditions (1) and (2) are satisfied.

6.2.3 Effective Epimorphisms

In classical topos theory, the assumption that every equivalence relation is
effective leads to a bijective correspondence between equivalence relations on
an object X and effective epimorphisms X → Y . The purpose of this section
is to generalize the notion of an effective epimorphism to the ∞-categorical
setting.

Our primary interest is studying the class of effective epimorphisms in an
∞-topos X. However, we will later need to employ the same ideas when X is
an n-topos for n < ∞. It is therefore convenient to work in a slightly more
general setting.

Definition 6.2.3.1. An ∞-category X is a semitopos if it satisfies the fol-
lowing conditions:

(1) The ∞-category X is presentable.

(2) Colimits in X are universal.

(3) For every morphism f : U → X, the underlying groupoid of the
Čech nerve Č(f) is effective (see §6.1.2).

Remark 6.2.3.2. Every ∞-topos is a semitopos; this follows immediately
from Theorem 6.1.0.6.

Remark 6.2.3.3. If X is a semitopos, then so is X/X for every objectX ∈ X.

Proposition 6.2.3.4. Let X be a semitopos. Let p : U → X be a morphism
in X, let U• be the underlying simplicial object of the Čech nerve Č(p), and
let V ∈ X be a colimit of U•. The induced diagram

U ��

p

���
��

��
��

V

p′����
��
��
�

X

identifies p′ with a (−1)-truncation of p in X/X .

Proof. We first show that V is (−1)-truncated. It suffices to show that the
diagonal map V → V ×X V is an equivalence. We may identify V with
V ×V V . Since colimits in X are universal, it will suffice to prove that for
each m,n ≥ 0, the natural map

pn.m : Um ×V Un → Um ×X Un

is an equivalence. We next observe that each pn,m is a pullback of

p0,0 : U ×V U → U ×X U.
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Because U• is an effective groupoid, both sides may be identified with U1.
To complete the proof, it suffices to show that the natural map

MapX/X
(p′, q) → MapX/X

(p, q)

is an equivalence whenever q : E → X is a monomorphism. Note that both
sides are either empty or contractible. We must show that if MapX/X

(p, q) is
nonempty, then so is MapX/X

(p′, q). We observe that the map X/q → X/X
is fully faithful, and that its essential image is a sieve on X/X . If that sieve
contains p, then it contains the entire groupoid U• (viewed as a groupoid in
X/X). We conclude that there exists a groupoid object W• : N(∆)op → X/q

lifting U•. Let Ṽ ∈ X/q be a colimit of V•. According to Proposition 1.2.13.8,
the image of Ṽ in X/X can be identified with the map p′ : V → X. The
existence of Ṽ proves that MapX /X(p′, q) is nonempty, as desired.

Corollary 6.2.3.5. Let X be a semitopos and let f : U → X be a morphism
in X. The following conditions are equivalent:

(1) If we regard f as an object of the ∞-category X/X , then τ≤−1(f) is a
final object of X/X .

(2) The Čech nerve Č(f) is a simplicial resolution of X.

We will say that a morphism f : U → X in a semitopos X is an effec-
tive epimorphism if it satisfies the equivalent conditions of Corollary 6.2.3.5.
There is a one-to-one correspondence between effective epimorphisms and
effective groupoids. More precisely, let ResEff(X) denote the full subcate-
gory of the ∞-category X∆+ spanned by those augmented simplicial objects
U• which are both Čech nerves and simplicial resolutions. The restriction
functors

X∆+

!"22
222

222
22

&&%%
%%
%%
%%

X∆ Fun(∆1,X)

induce equivalences of ∞-categories from ResEff(X) to the full subcategory
of X∆ spanned by the effective groupoids, and from ResEff(X) to the full
subcategory of Fun(∆1,X) spanned by the effective epimorphisms.

Remark 6.2.3.6. Let f∗ : X → Y be a geometric morphism of ∞-topoi
and let u : U → Y be an effective epimorphism in Y. Then f∗(u) is an
effective epimorphism in X. To see this, choose a Čech nerve U• of u. Since
u is an effective epimorphism, U• is a colimit diagram. The left exactness of
f∗ implies that f∗ ◦ U• is a Čech nerve of f∗(u). Since f∗ is a left adjoint,
we conclude that f∗ ◦ U• is a colimit diagram, so that f∗(u) is an effective
epimorphism.

The following result summarizes a few basic properties of effective epimor-
phisms:
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Proposition 6.2.3.7. Let X be a semitopos.

(1) Any equivalence X → Y in X is an effective epimorphism.

(2) If f, g : X → Y are homotopic morphisms in X, then f is an effective
epimorphism if and only if g is an effective epimorphism.

(3) If F : Y → X is a left exact presentable functor between semitopoi and
f : U → X is an effective epimorphism in X, then F (f) is an effective
epimorphism in Y.

Proof. Assertions (1) and (2) are obvious. To prove (3), we observe that f is
an effective epimorphism if and only if it can be extended to an augmented
simplicial object U• which is both a simplicial resolution and a Čech nerve.
Since F is left exact, it preserves the property of being a Čech nerve; since F
preserves colimits, it preserves the property of being a simplicial resolution.

Remark 6.2.3.8. Let X be a semitopos and let f : X → T be an effective
epimorphism in X. Applying part (3) of Proposition 6.2.3.7 to the geometric
morphism f : X/S → X/T induced by a morphism S → T in X, we deduce
that any base change X ×T S → X of f is also an effective epimorphism.

In order to verify other basic properties of the class of effective epimor-
phisms, such as stability under composition, we will need to reformulate
the property of surjectivity in terms of subobjects. Let X be a presentable
∞-category. For each X ∈ X, the ∞-category τ≤−1 X/X of subobjects of X
is equivalent to the nerve of a partially ordered set which we will denote
by Sub(X); we may identify Sub(X) with the set of equivalence classes of
monomorphisms U → X. A morphism f : X → Y in X induces a left exact
pullback functor X/X → X/Y . This functor preserves (−1)-truncated objects
by Proposition 5.5.6.16 and therefore induces a map f∗ : Sub(Y ) → Sub(X)
of partially ordered sets.

Remark 6.2.3.9. Let X be a presentable ∞-category in which colimits are
universal. Then any monomorphism u : U → ∐

Xα can be obtained as a
coproduct of maps uα : Uα → Xα, where each uα is a pullback of u and
therefore also a monomorphism. It follows that the natural map

θ : Sub(
∐

Xα) →
∏

Sub(Xα)

is a monomorphism of partially ordered sets. If coproducts in X are disjoint,
then θ is bijective.

Proposition 6.2.3.10. Let X be a semitopos. A morphism f : U → X in X

is an effective epimorphism if and only if f∗ : Sub(X) → Sub(U) is injective.

Proof. Suppose first that f∗ is injective. Let U• be the underlying groupoid
of a Čech nerve of f , let V be a colimit of U•, let u : V → X be the
corresponding monomorphism, and let [V ] denote the corresponding element



582 CHAPTER 6

of Sub(X). Since f factors through u, we conclude that f∗[V ] = f∗[X] =
[U ] ∈ Sub(U). Invoking the injectivity of f∗, we conclude that [V ] = [X], so
that u is an equivalence.

For the converse, let us suppose that f is an effective epimorphism. Let [V ]
and [V ′] be elements of Sub(X), represented by monomorphisms u : V → X
and u′ : V ′ → X, and suppose that f∗[V ] = f∗[V ′]. We wish to prove
that [V ] = [V ′]. Since f∗ is a left exact functor, we have f∗([V ] ∩ [V ′]) =
f∗[V ×XV

′]. It will suffice to prove that [V ′] = [V ×XV
′]; the same argument

will then establish that [V ] = [V ×X V ′], and the proof will be complete. In
other words, we may assume without loss of generality that [V ] ⊆ [V ′], so
that there is a commutative diagram

V0

u

���
��

��
��

�
g �� V ′

u′
����
��
��
��

X.

We wish to show that g is an equivalence. The map g induces a natural
transformation of augmented simplicial objects

α• : u∗ ◦ Č(f) → u′∗ ◦ Č(f).

We observe that g can be identified with α−1. Since f is an effective epi-
morphism, Č(f) is a colimit diagram. Since colimits in X are universal, we
conclude that α−1 is a colimit of α|N(∆)op. Consequently, to prove that
α−1 is an equivalence, it will suffice to prove that αn is an equivalence for
n ≥ 0. Since each αn is a pullback of α0, it will suffice to prove that α0

is an equivalence. But this is simply a reformulation of the condition that
f∗[V ] = f∗[V ′].

From this we immediately deduce some corollaries.

Corollary 6.2.3.11. Let X be a semitopos and let {fα : Xα → Yα} be a
(small) collection of effective epimorphisms in X. Then the induced map

f :
∐
α

Xα →
∐
α

Yα

is an effective epimorphism.

Proof. Combine Proposition 6.2.3.10 with Remark 6.2.3.9.

Corollary 6.2.3.12. Let X be a semitopos containing a diagram

Y
g

��












X

f
��������� h �� Z.

(1) If f and g are effective epimorphisms, then so is h.

(2) If h is an effective epimorphism, then so is g.
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Proof. This follows immediately from Proposition 6.2.3.10 and the observa-
tion that we have an equality f∗ ◦ g∗ = h∗ of functions Sub(Z) → Sub(X).

The theory of effective epimorphisms is a mechanism for proving theorems
by descent.

Lemma 6.2.3.13. Let X be a semitopos, let p : K
 → X be a colimit diagram
and let ∞ denote the cone point of K
. Then the associated map∐

x∈K0

p(x) → p(∞)

(which is well-defined up to homotopy) is an effective epimorphism.

Proof. For each vertex x of K
, let Zx = p(x). If x belongs to K, we will
denote the corresponding map Zx → Z∞ by fx. Let E′′ ⊆ E′ ∈ Sub(Z∞)
be such that f∗xE

′′ = f∗xE
′ for each vertex x of K; we wish to show that

E′′ = E′. We can represent E′′ and E′ by a 2-simplex σ∞ : ∆2 → X, which
we depict as

Z ′
∞

���
��

��
��

�

Z′′
∞

��%%%%%%%%
�� Z∞.

Lift the above diagram to a 2-simplex σ : ∆2 → Fun(K
,X)

p′

g′′

**5
55

55
55

5

p′′

g′
��������� g �� p

where g, g′, and g′′ are Cartesian transformations. Our assumption guaran-
tees that the restriction of g′ induces an equivalence p′′|K → p′|K. Since
colimits in X are universal, g′ is itself an equivalence, so that E′′ = E′, as
desired.

Proposition 6.2.3.14. Let X be an ∞-topos and let S be a collection of
morphisms of X which is stable under pullbacks and coproducts. The following
conditions are equivalent:

(1) The class S is local (Definition 6.1.3.8).

(2) Given a pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ g �� Y,

where g is an effective epimorphism and f ′ ∈ S, we have f ∈ S.
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Proof. We first show that (1) ⇒ (2). Let Y• : N(∆+)op → X be a Čech nerve
of the map g and choose a Cartesian transformation f• : X• → Y• of aug-
mented simplicial objects which extends f . Then we can identify f ′ with
f0 : X0 → Y0. Each fn is a pullback of f0, and therefore belongs to S.
Applying Lemma 6.1.3.5, we deduce that f belongs to S as well.

Conversely, suppose that (2) is satisfied. We will show that S satisfies
criterion (3) of Lemma 6.1.3.7. Let

u
α ��

β

��

v

β′

��
u′

α′
�� v′

be a pushout diagram in OX, where α and β are Cartesian and u, v, u′ ∈ S.
Since X is an ∞-topos, we conclude that α′ and β′ are also Cartesian. To
complete the proof, it will suffice to show that v′ ∈ S. For this, we observe
that there is a pullback diagram

X
∐
X ′

v
‘
u′

��

�� X ′′

v′

��
Y

∐
Y ′ g �� Y ′′,

where g is an effective epimorphism (Lemma 6.2.3.13), and apply hypothesis
(2).

Proposition 6.2.3.15. Let X be a semitopos, and suppose we are given a
pullback square

X ′ g′ ��

f ′

��

X

f

��
S′ g �� S

in X. If f is an effective epimorphism, then so is f ′. The converse holds if
g is an effective epimorphism.

Proof. Let g∗ : X/S → X/S
′
be a pullback functor. Without loss of generality,

we may suppose that f ′ = g∗f . Let U• : N(∆+)op → X be a Čech nerve of
f . Since g∗ is left exact (being a right adjoint), we conclude that g∗ ◦ U•
is a Čech nerve of f ′. If f is an effective epimorphism, then U• is a colimit
diagram. Because colimits in X are universal, g∗◦U• is also a colimit diagram,
so that f ′ is an effective epimorphism.

Conversely, suppose that f ′ and g are effective epimorphisms. Corollary
6.2.3.12 implies that g ◦ f ′ is an effective epimorphism. The commutativity
of the diagram implies that f ◦ g′ is an effective epimorphism, so that f is
an effective epimorphism (Corollary 6.2.3.12 again).
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Lemma 6.2.3.16. Let X be a semitopos and suppose we are given a pullback
square

X ′ g′ ��

f ′

��

X

f

��
S′ g �� S

in X. Suppose that f ′ is an equivalence and that g is an effective epimor-
phism. Then f is an equivalence.

Proof. Let U• be a Čech nerve of g′ and let V• be a Čech nerve of g. The
above diagram induces a transformation α• : U• → V•. The map α0 can be
identified with f ′ and is therefore an equivalence. For n ≥ 0, αn : Un → Vn is
a pullback of α0 and is therefore also an equivalence. Since g is an effective
epimorphism, V• is a colimit diagram. Applying Proposition 6.2.3.15, we
conclude that g′ is also an effective epimorphism, so that U• is a colimit
diagram. It follows that f = α−1 is a colimit of equivalences and is therefore
an equivalence.

Proposition 6.2.3.17. Let X be a semitopos and suppose we are given a
pullback square

X ′ ��

f ′

��

X

f

��
S′ g �� S

in X. If f is n-truncated, then so is f ′. The converse holds if g is an effective
epimorphism.

Proof. Let g∗ : X/S → X/S
′

be a pullback functor. The first part of (1)
asserts that g∗ carries n-truncated objects to n-truncated objects. This fol-
lows immediately from Proposition 5.5.6.16 since g∗ is a right adjoint and
therefore left exact. We will prove the converse in a slightly stronger form: if
i : U → V is a morphism in X/S such that g∗(i) is an n-truncated morphism
in X/S

′
, then i is n-truncated. The proof is by induction on n. If n ≥ −1,

we can use Lemma 5.5.6.15 to reduce to the problem of showing that the
diagonal map δ : U → U ×V U is (n − 1)-truncated. Since g∗ is left exact,
we can identify g∗(δ) with the diagonal map g∗U → g∗U ×g∗V g

∗U , which is
(n− 1)-truncated according to Lemma 5.5.6.15; the desired result then fol-
lows from the inductive hypothesis. In the case n = −2, we have a pullback
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diagram

g∗U ��

g∗i
��

U

i

��
g∗V

g′ ��

��

V

��
S′ g �� S.

Proposition 6.2.3.15 implies that g′ is an effective epimorphism, and g∗i is
an equivalence, so that i is also an equivalence by Lemma 6.2.3.16.

Let C be a small ∞-category equipped with a Grothendieck topology. Our
final goal in this section is to use the language of effective epimorphisms to
characterize the ∞-topos Shv(C) by a universal property.

Lemma 6.2.3.18. Let C be a (small) ∞-category containing an object C,
let {fα : Cα → C}α∈A be a collection of morphisms indexed by a set A and
let C

(0)
/C ⊆ C/C be the sieve on C that they generate. Let j : C → P(C) denote

the Yoneda embedding and i : U → j(C) a monomorphism corresponding to
the sieve C

(0)
/C . Then i can be identified with a (−1)-truncation of the induced

map
∐
α∈A j(Cα) → j(C) in the ∞-topos P(C)/C .

Proof. Using Proposition 6.2.2.5, we can identify the equivalence classes of
(−1)-truncated object U ∈ P(C)/j(C) with sieves C

(0)
/C ⊆ C/C . It is not dif-

ficult to see that j(fα) factors through U if and only if fα ∈ C
(0)
/C . Con-

sequently, the (−1)-truncation of
∐
α∈A j(Cα) → j(C) is associated to the

smallest sieve on C which contains each fα.

Lemma 6.2.3.19. Let X be an ∞-topos, C a small ∞-category equipped
with a Grothendieck topology, and f∗ : X → P(C) a functor with a left exact
left adjoint f∗ : P(C) → X.

The following conditions are equivalent:

(1) The functor f∗ factors through Shv(C) ⊆ P(C).

(2) For every collection of morphisms {vα : Cα → C} which generate a
covering sieve in C, the induced map∐

f∗(j(Cα)) → f∗(j(C))

is an effective epimorphism in X, where j : C → P(C) denotes the
Yoneda embedding.

Proof. Suppose first that (1) is satisfied and let {vα : Cα → C} be a col-
lection of morphisms as in the statement of (2). Let L : P(C) → Shv(C)
be a left adjoint to the inclusion. Then we have an equivalence of functors
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f∗ � (f∗| Shv(C)) ◦ L. Applying Remark 6.2.3.6, we are reduced to showing
that if

u :
∐

j(Cα) → j(C)

is the natural map, then Lu is an effective epimorphism in P(C). We factor
u as a composition ∐

j(Cα) u′→ U
u′′→ j(C),

where u′ is an effective epimorphism and u′′ is a monomorphism. We wish
to show that Lu′′ is an equivalence. Lemma 6.2.3.18 allows us to identify
u′′ with the monomorphism associated to the sieve C

(0)
/C on C generated by

the maps vα. By assumption, this is a covering sieve, so that Lu′′ is an
equivalence in Shv(C) by construction.

Conversely, suppose that (2) is satisfied. Let C ∈ C and let C
(0)
/C ⊆ C/C be

a covering sieve on C associated to a monomorphism u′′ : U → j(C). We
wish to show that f∗u′′ is an equivalence. According to Lemma 6.2.3.18, we
have a factorization ∐

α

j(Cα) u′
→ U

u′′
→ j(C),

where the maps vα : Cα → C are chosen to generate the sieve C
(0)
/C and

u′ is an effective epimorphism. Let u be a composition of u′ and u′′. Then
f∗u′ is an effective epimorphism (Remark 6.2.3.6), and f∗u is an effective
epimorphism by assumption (2). Corollary 6.2.3.12 now shows that f∗u′′ is
an effective epimorphism. Since f∗u′′ is also a monomorphism, we conclude
that f∗u′′ is an equivalence, as desired.

Proposition 6.2.3.20. Let X be an ∞-topos and let C be a small ∞-category
equipped with a Grothendieck topology. Let L : P(C) → Shv(C) denote a
left adjoint to the inclusion and j : C → P(C) the Yoneda embedding. Let
Fun∗(Shv(C),X) denote the ∞-category of left exact colimit-preserving func-
tors from Shv(C) to X (Definition 6.3.1.10). The composition

J : Fun∗(Shv(C),X) L→ Fun∗(P(C),X)
j→ Fun(C,X)

is fully faithful. Suppose furthermore that C admits finite limits. Then a
functor f : C → X belongs to the essential image of J if and only if the
following conditions are satisfied:

(1) The functor f is left exact.

(2) For every collection of morphisms {Cα → C}α∈A which generates a
covering sieve on C, the associated morphism∐

α∈A
f(Cα) → f(C)

is an effective epimorphism in X.
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Proof. If the topology on C is trivial, then Theorem 5.1.5.6 implies that J
is fully faithful, and the description of the essential image of J follows from
Proposition 6.1.5.2. In the general case, Proposition 5.5.4.20 implies that
composition with L induces a fully faithful embedding

J ′ : Fun∗(Shv(C),X) → Fun∗(P(C),X),

so that J is a composition of J ′ with a fully faithful functor

J ′′ : Fun∗(P(C),X) → Fun(C,X).

Suppose that C admits finite limits and that f satisfies (1), so that f is
equivalent to J ′′(u∗) for some left exact colimit-preserving u∗ : P(C) → X.
The functor u∗ is unique up to equivalence, and Lemma 6.2.3.19 ensures
that u∗ belongs to the essential image of J ′ if and only if condition (2) is
satisfied.

Remark 6.2.3.21. It is possible to formulate a generalization of Proposition
6.2.3.20 which describes the essential image of J even when C does not admit
finite limits. The present version will be sufficient for the applications in this
book.

6.2.4 Canonical Topologies

Let X be an ∞-topos. Suppose that we wish to identify X with an ∞-category
of sheaves. The first step is to choose a pair of adjoint functors

P(C)
F �� X
G

��

where F is left exact. According to Theorem 5.1.5.6, F is determined up to
equivalence by the composition

f : C
j→ P(C) F→ X .

We might then try to choose a topology on C such that G factors as a
composition

X
G′
→ Shv(C) ⊆ P(C).

Though it is not always possible to guarantee that G′ is an equivalence, we
will show that for an appropriately chosen topology (Definition 6.2.4.1), the
∞-topos Shv(C) is a close approximation to X (Proposition 6.2.4.6).

Definition 6.2.4.1. Let X be a semitopos, C a small ∞-category which
admits finite limits, and f : C → X a left exact functor. We will say that a
sieve C

(0)
/C ⊆ C/C on an object C ∈ C is a canonical covering relative to f if

there exists a collection of morphisms {uα : Cα → C} belonging to C
(0)
/C such

that the induced map
∐
f(Cα) → f(C) is an effective epimorphism in X.

Our first goal is to verify that the canonical topology is actually a Groth-
endieck topology on C.
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Proposition 6.2.4.2. Let f : C → X be as in Definition 6.2.4.1. The collec-
tion of canonical coverings relative to f determines a Grothendieck topology
on C.

Proof. Since any identity map idf(C) : f(C) → f(C) is an effective epimor-
phism, it is clear that the sieve C/C is a canonical covering of C for every
C ∈ C. Suppose that C

(0)
/C ⊆ C/C is a canonical covering of C and that

g : D → C is a morphism in C. We wish to prove that the induced sieve
g∗ C

(0)
/C is a canonical covering. Choose a collection of objects uα : Cα → C

of C
(0)
/C such that the induced map

∐
α f(Cα) → f(C) is an effective epimor-

phism and form pullback diagrams

Dα
vα ��

��

D

g

��
Cα

uα �� C

in C. Using the fact that f is left exact and that colimits in X are universal,
we conclude that the diagram∐

f(Dα) ��

��

f(D)

��∐
f(Cα) �� f(C)

is a pullback, so that the upper horizontal map is an effective epimorphism by
Proposition 6.2.3.15. Since each vα belongs to g∗ C

(0)
/C , it follows that g∗ C

(0)
/C

is a canonical covering.
Now suppose that C

(0)
/C and C

(1)
/C are sieves on C ∈ C, where C

(0)
/C is a

canonical covering, and for each g : D → C in C
(0)
/C , the covering g∗ C

(1)
/C is

a canonical covering of D. Choose a collection of morphisms gα : Dα → C

belonging to C
(0)
/C with the property that

∐
f(Dα) → f(C) is an effective

epimorphism. For each Dα, choose a collection of morphisms hα,β : Eα,β →
Dα belonging to g∗α C

(1)
/C such that the map

∐
β f(Eα,β) → f(Dα) is an

effective epimorphism. Using Corollary 6.2.3.11, we conclude that the map∐
α,β

f(Eα,β) →
∐
α

f(Dα)

is an effective epimorphism. Since effective epimorphisms are stable under
composition (Corollary 6.2.3.12), we have an effective epimorphism∐

α,β

f(Eα,β) → f(C)

induced by the collection of compositions gα◦hα,β : Eα,β → C. Each of these
compositions belongs to C

(1)
/C , so that C

(1)
/C is a canonical covering of C.
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For later use, we record a few features of the canonical topology:

Lemma 6.2.4.3. Let f : C → X be as in Definition 6.2.4.1 and regard C as
endowed with the canonical topology relative to f . Let j : C → P(C) denote
the Yoneda embedding and let L : P(C) → Shv(C) be a left adjoint to the
inclusion. Suppose that C ∈ C is such that f(C) is an initial object of X.
Then Lj(C) is an initial object of Shv(C).

Proof. If f(C) is an initial object of X, then the empty sieve ∅ ⊆ C/C is a
covering sieve with respect to the canonical topology. By construction, the
associated monomorphism ∅ → j(C) becomes an equivalence after applying
L, so that Lj(C) is initial in Shv(C).

Lemma 6.2.4.4. Let f : C → X be as in Definition 6.2.4.1. Suppose that f is
fully faithful and that coproducts in X are disjoint and let {uα : Cα → C} be
a small collection of morphisms in C such that the morphisms f(uα) exhibit
f(C) as a coproduct of the family {f(Cα)}. Let F : Cop → S be a sheaf on C

(with respect to the canonical topology induced by f). Then the morphisms
{F(uα)} exhibit F(C) as a product of {F(Cα)} in S.

Proof. We wish to show that the natural map F(C) → ∏
F(Cα) is an iso-

morphism in the homotopy category H. We may identify the left hand side
with MapP(C)(j(C),F) and the right hand side with MapP(C)(

∐
j(Cα),F).

Consequently, it will suffice to show that the natural map

v :
∐

j(Cα) → j(C)

becomes an equivalence after applying the localization functor L : P(C) →
Shv(C). Choose a factorization of v as a composite∐

j(Cα) v′→ U
v′′→ j(C),

where v′ is an effective epimorphism and v′′ is a monomorphism. We observe
that v′′ is the monomorphism associated to the sieve C

(0)
/C → C generated

by the morphisms uα. This is clearly a covering sieve with respect to the
canonical topology, so that Lv′′ is an equivalence in Shv(C). It follows that
Lv is equivalent to Lv′ and is therefore an effective epimorphism (Remark
6.2.3.6). Form a pullback diagram

V
v ��

��

∐
j(Cβ)

v

��∐
j(Cα) v �� j(C).

We wish to prove that Lv is an equivalence. According to Lemma 6.2.3.16,
it will suffice to show that Lv is an equivalence. Since colimits in P(C) are
universal, we may identify v with a coproduct of morphisms

vβ : Vβ → j(Cβ),
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where Vβ can be written as a coproduct
∐
α j(Cα ×C Cβ). Using Lemma

6.1.5.1, we can identify the summand j(Cβ×CCβ) of Vβ with j(Cβ), and the
restriction of vβ to this summand is an equivalence. To complete the proof,
it will suffice to show that for every other summand Dα,β = j(Cα ×C Cβ),
the localization LD is an initial object of Shv(C). To prove this, we observe
that Lemma 6.1.5.1 implies that f(Cα ×C Cβ) is an initial object of X and
apply Lemma 6.2.4.3.

Lemma 6.2.4.5. Let C be a small ∞-category equipped with a Grothendieck
topology and let u : F′ → F be a morphism in Shv(C). Suppose that, for each
C ∈ C and each η ∈ π0 F(C), there exists a collection of morphisms {Cα →
C} which generates a covering sieve on C and a collection of ηα ∈ π0 F′(Cα)
such that η and ηα have the same image in π0 F(Cα). Then u is an effective
epimorphism.

Proof. Replacing F by its image in F′ if necessary, we may suppose that u is
a monomorphism. Let L : P(C) → Shv(C) be a left adjoint to the inclusion
and let D be the full subcategory of P(C) spanned by those objects G such
that, for every pullback diagram

G′ u′
��

��

G

��
F′ u �� F

in P(C), Lu′ is an equivalence in Shv(C). To prove that u is an equivalence,
it will suffice to show that the equivalent morphism Lu is an equivalence.
For this, it will suffice to prove that F ∈ D. We will in fact prove that
D = P(C). We first observe that since colimits in P(C) are universal and
L commutes with colimits, D is stable under colimits in P(C). Since P(C)
is generated under colimits by the image of the Yoneda embedding, it will
suffice to prove that j(C) ∈ D for each C ∈ C. Choose a map j(C) → F,
classified up to homotopy by η ∈ π0 F(C), and form a pullback diagram

U
u′

��

��

j(C)

��
F′ u �� F

as above. Then u′ is a monomorphism; according to Proposition 6.2.2.5, it is
classified by a sieve C

(0)
/C on C. Our hypothesis guarantees that C

(0)
/C contains

a collection of morphisms {Cα → C} which generate a covering sieve, so
that C

(0)
/C is itself covering. It follows immediately from the construction of

Shv(C) that Lu′ is an equivalence.

We close with the following result, which implies that any ∞-topos is
closely approximated by an ∞-category of sheaves.
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Proposition 6.2.4.6. Let X be a semitopos, C a small ∞-category which
admits finite limits, and

P(C)
F �� X
G

��

a pair of adjoint functors. Suppose that the composition

f : C
j→ P(C) F→ X

is left exact and regard C as endowed with the canonical topology relative to
f . Then:

(1) The functor G factors through Shv(C).

(2) Suppose that f is fully faithful and generates X under colimits. Then
G carries effective epimorphisms in X to effective epimorphisms in
Shv(C).

Proof. In view of the definition of the canonical topology, (1) is equivalent
to the following assertion: given a collection of morphisms {uα : Cα → C} in
C such that the induced map u :

∐
α Cα → C is an effective epimorphism in

X, if i : U → j(C) is the monomorphism in P(C) corresponding to the sieve
C

(0)
/C ⊆ C/C generated by the collection {uα}, then F (i) is an equivalence in

X. Let u′ :
∐
α j(Cα) → j(C) be the coproduct of the family {j(uα)} and

let V• : ∆op
+ → P(C) be a Čech nerve of u′. Then i can be identified with

the induced map from the colimit of V•|N(∆)op to V−1. Since F preserves
colimits, to show that F (i) is an equivalence, it will suffice to show that
F ◦ V• is a colimit diagram. Since u is an effective epimorphism, it suffices
to observe that F ◦ V• is equivalent to the Čech nerve of u.

We now prove (2). Suppose that u : Y → Z is an effective epimorphism
in X. We wish to prove that Gu is an effective epimorphism in Shv(C). We
will show that the criterion of Lemma 6.2.4.5 is satisfied. Choose an object
C ∈ C and a point η ∈ π0 MapP(C)(j(C), GZ) � π0 MapX(f(C), Z). Form a
pullback diagram

Y ′ u′
��

s

��

f(C)

��
Y

u �� Z

so that u′ is an effective epimorphism. Since f(C) generates X under colimits,
there exists an effective epimorphism u′′ :

∐
α f(Cα) → Y . The composition

u′ ◦ u′′ is an effective epimorphism and corresponds to a family of maps
wα : f(Cα) → f(C) in X. Since f is fully faithful, we may suppose that each
wα = fvα for some map vα : Cα → C in C. It follows that the collection
of maps {vα} generates a covering sieve on C with respect to the canonical
topology. Moreover, each of the compositions

f(Cα) →
∐
α

f(Cα) → Y
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gives rise to a point ηα ∈ π0 MapX(f(Cα), Y ) � π0 MapP(C)(j(Cα), G(Y ))
with the desired properties.

6.3 THE ∞-CATEGORY OF ∞-TOPOI

In this section, we will show that the collection of all ∞-topoi can be or-
ganized into an ∞-category RTop. The objects of RTop are ∞-topoi, and
the morphisms are called geometric morphisms; we will give a definition in
§6.3.1. In §6.3.2, we will show that RTop admits (small) colimits. In §6.3.3,
we will show that RTop admits (small) filtered limits; we will treat the case
of general limits in §6.3.4.

Let X be an ∞-topos containing an object U . In §6.3.5, we will show that
the ∞-category X/U is an ∞-topos. Moreover, this ∞-topos is equipped with
a canonical geometric morphism X/U → X. Geometric morphisms which
arise via this construction are said to be étale. In §6.3.6, we will define a
more general notion of algebraic morphism between ∞-topoi. We will also
prove a structure theorem which implies that every ∞-topos X satisfying
some mild hypotheses admits an algebraic morphism to an ∞-category of
sheaves on a 2-category.

6.3.1 Geometric Morphisms

In classical topos theory, the correct notion of morphism between two topoi
is that of an adjunction

X
f∗

�� Y,
f∗

��

where the functor f∗ is left exact. We will introduce the same ideas in the
∞-categorical setting.

Definition 6.3.1.1. Let X and Y be ∞-topoi. A geometric morphism from
X to Y is a functor f∗ : X → Y which admits a left exact left adjoint (which
we will typically denote by f∗).

Remark 6.3.1.2. Let f∗ : X → Y be a geometric morphism from an ∞-
topos X to another ∞-topos Y, so that f∗ admits a left adjoint f∗. Either of
the functors f∗ and f∗ determines the other up to equivalence (in fact, up to
contractible ambiguity). We will often abuse terminology by referring to f∗ as
a geometric morphism from X to Y. We will always indicate in our notation
whether the left or the right adjoint is being considered: a superscripted
asterisk indicates a left adjoint (pullback functor), and a subscripted asterisk
indicates a right adjoint (pushforward functor).

Remark 6.3.1.3. Any equivalence of ∞-topoi is a geometric morphism. If
f∗, g∗ : X → Y are homotopic, then f∗ is a geometric morphism if and only if
g∗ is a geometric morphism (because we can identify left adjoints of f∗ with
left adjoints of g∗).
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Remark 6.3.1.4. Let f∗ : X → Y and g∗ : Y → Z be geometric morphisms.
Then f∗ and g∗ admit left exact left adjoints, which we will denote by f∗

and g∗, respectively. The composite functor f∗ ◦ g∗ is left exact and is a
left adjoint to g∗ ◦ f∗ by Proposition 5.2.2.6. We conclude that g∗ ◦ f∗ is a
geometric morphism, so the class of geometric morphisms is stable under
composition.

Definition 6.3.1.5. Let Ĉat∞ denote the ∞-category of (not necessarily
small) ∞-categories. We define subcategories LTop,RTop ⊆ Ĉat∞ as follows:

(1) The objects of LTop and RTop are the ∞-topoi.

(2) A functor f∗ : X → Y between ∞-topoi belongs to LTop if and only if
f∗ preserves small colimits and finite limits.

(3) A functor f∗ : X → Y between ∞-topoi belongs to RTop if and only if
f∗ has a left adjoint which is left exact.

The ∞-categories LTop and RTop are canonically antiequivalent. To prove
this, we will use the argument of Corollary 5.5.3.4. First, we need a definition.

Definition 6.3.1.6. A map p : X → S of simplicial sets is a topos fibration
if the following conditions are satisfied:

(1) The map p is both a Cartesian fibration and a coCartesian fibration.

(2) For every vertex s of S, the corresponding fiber Xs = X ×S {s} is an
∞-topos.

(3) For every edge e : s → s′ in S, the associated functor Xs → Xs′ is left
exact.

The following analogue of Proposition 5.5.3.3 follows immediately from
the definitions:

Proposition 6.3.1.7. (1) Let p : X → S be a Cartesian fibration of sim-
plicial sets classified by a map χ : Sop → Ĉat∞. Then p is a topos
fibration if and only if χ factors through RTop ⊆ Ĉat∞.

(2) Let p : X → S be a coCartesian fibration of simplicial sets classified
by a map χ : S → Ĉat∞. Then p is a topos fibration if and only if χ
factors through LTop ⊆ Ĉat∞.

Corollary 6.3.1.8. For every simplicial set S, there is a canonical bijection

[S,LTop] � [Sop,RTop],

where [K,C] denotes the collection of equivalence classes of objects of the
∞-category Fun(K,C). In particular, LTop and RTopop are canonically iso-
morphic in the homotopy category of ∞-categories.
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Proof. According to Proposition 6.3.1.7, both [S,LTop] and [Sop,RTop] can
be identified with the collection of equivalence classes of topos fibrations
X → S.

The following proposition is a simple reformulation of some of the results
of §5.5.6.

Proposition 6.3.1.9. Let f∗ : X → Y be a geometric morphism between ∞-
topoi having a left adjoint f∗. Then f∗ and f∗ carry k-truncated objects to
k-truncated objects and k-truncated morphisms to k-truncated morphisms,
for any integer k ≥ −2. Moreover, there is a (canonical) equivalence of
functors f∗τY

≤k � τX
≤kf

∗.

Proof. The first assertion follows immediately from Lemma 5.5.6.15 since f∗
and f∗ are both left exact. The second follows from Proposition 5.5.6.28.

Definition 6.3.1.10. Let X and Y be ∞-topoi. We let Fun∗(X,Y) denote
the full subcategory of Fun(X,Y) spanned by geometric morphisms f∗ : X →
Y, and Fun∗(Y,X) the full subcategory of Fun(Y,X) spanned by their left
adjoints.

Remark 6.3.1.11. It follows from Proposition 5.2.6.2 that the ∞-categories
Fun∗(X,Y) and Fun∗(Y,X) are canonically antiequivalent to one another.

Warning 6.3.1.12. If X and Y are ∞-topoi, then the ∞-category Fun∗(X,Y)
of geometric morphisms from X to Y is not necessarily small or even equiv-
alent to a small ∞-category. This phenomenon is familiar in classical topos
theory. For example, there is a classifying topos A for abelian groups having
the property that for any topos X, the category C of geometric morphisms
X → A is equivalent to the category of abelian group objects of X. This
category is almost never small (for example, when X is the topos of sets, C

is equivalent to the category of abelian groups).

In spite of Warning 6.3.1.12, the ∞-category of geometric morphisms be-
tween two ∞-topoi can be reasonably controlled:

Proposition 6.3.1.13. Let X and Y be ∞-topoi. Then the ∞-category
Fun∗(Y,X) of geometric morphisms from X to Y is accessible.

Proof. For each regular cardinal κ, let Yκ denote the full subcategory of Y

spanned by κ-compact objects. Choose a regular cardinal κ such that Y is κ-
accessible and Yκ is stable under finite limits in Y. We may therefore identify
Y with Indκ(C), where C is a minimal model for Yκ. According to Proposition
5.3.5.10, composition with the Yoneda embedding j : C → Y induces an
equivalence from the ∞-category of κ-continuous functors Funκ(Y,X) to the
∞-category Fun(C,X). We now make the following observations:

(1) A functor F : Y → X preserves all small colimits if and only if F ◦ j :
C → X preserves κ-small colimits (Proposition 5.5.1.9).
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(2) A colimit-preserving functor F : Y → X is left exact if and only if the
composition F ◦ j : C → X is left exact (Proposition 6.1.5.2).

Invoking Proposition 5.2.6.2, we deduce that the ∞-category Fun∗(Y,X)
is equivalent to the full subcategory M ⊆ XC consisting of functors which
preserve κ-small colimits and finite limits. Proposition 5.4.4.3 implies that
Fun(C,X) is accessible. For every κ-small (finite) diagram p : K → C, the full
subcategory of Fun(C,X) spanned by those functors which preserve colimits
(limits) of p is an accessible subcategory of Fun(C,X) (Example 5.4.7.9).
Up to isomorphism, there are only a bounded number of κ-small (finite)
diagrams in C. Consequently, M is an intersection of a bounded number of
accessible subcategories of Fun(C,X) and therefore accessible (Proposition
5.4.7.10).

6.3.2 Colimits of ∞-Topoi

Our goal in this section is to construct colimits in the ∞-category RTop of
∞-topoi. According to Corollary 6.3.1.8, it will suffice to construct limits in
the ∞-category LTop.

Proposition 6.3.2.1. Let {Xα}α∈A be a collection of ∞-topoi parametrized
by a (small) set A. Then the product X =

∏
α∈A Xα is an ∞-topos. Moreover,

each projection π∗
α : X → Xα is left exact and colimit-preserving. The corre-

sponding geometric morphisms exhibit X as a product of the family {Xα}α∈A
in the ∞-category LTop.

Proof. Proposition 5.5.3.5 implies that X is presentable. It is clear that a
diagram p : K
 → X is a colimit if and only if each composition π∗

α ◦ p :
K
 → Xα is a colimit diagram in Xα. Similarly, a diagram q : K	 → X is a
limit if and only if each composition π∗

α ◦ q : K	 → Xα is a limit diagram in
Xα. Using criterion (2) of Theorem 6.1.0.6, we deduce that X is an ∞-topos,
and that each π∗

α preserves all limits and colimits that exist in X. Choose a
right adjoint πα∗ : Xα → X to each π∗α.

According to Theorem 4.2.4.1, the ∞-category X is a product of the family
{Xα}α∈A in the ∞-category Ĉat∞. Since LTop is a subcategory of Ĉat∞, it
will suffice to prove the following assertion:

• For every ∞-topos Y and every functor f∗ : Y → X such that each of
the composite functors Y → Xα is left exact and colimit-preserving, f∗

is itself left exact and colimit-preserving.

This follows immediately from the fact that limits and colimits are com-
puted pointwise.
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Proposition 6.3.2.2. Let

X′ q′∗ ��

p′∗

��

X

p∗

��
Y′ q∗ �� Y

be a diagram of ∞-categories which is homotopy Cartesian (with respect to
the Joyal model structure). Suppose further that X, Y, and Y′ are ∞-topoi
and that p∗ and q∗ are left exact and colimit-preserving. Then X′ is an ∞-
topos. Moreover, for any ∞-topos Z and any functor f∗ : Z → X, f∗ is
left exact and colimit-preserving if and only if the compositions p′∗ ◦ f∗ and
q′∗ ◦f∗ are left exact and colimit-preserving. In particular (taking f∗ = idX),
the functors p′∗ and q′∗ are left exact and colimit-preserving.

Proof. The second claim follows immediately from Lemma 5.4.5.5 and the
dual result concerning limits. To prove the first, we observe that X′ is present-
able by Proposition 5.5.3.12. To show that X is an ∞-topos, it will suffice
to show that it satisfies criterion (2) of Theorem 6.1.0.6. This follows imme-
diately from Lemma 5.4.5.5 since X and Y′ satisfy criterion (2) of Theorem
6.1.0.6.

Proposition 6.3.2.3. The ∞-category LTop admits small limits, and the
inclusion functor LTop ⊆ Ĉat∞ preserves small limits.

Proof. According to Proposition 4.4.2.6, it suffices to prove this result for
pullbacks and small products. In the case of products, we apply Proposition
6.3.2.1. For pullbacks, we use Proposition 6.3.2.2 and Theorem 4.2.4.1.

6.3.3 Filtered Limits of ∞-Topoi

We now consider the problem of computing limits in the ∞-category RTop
of ∞-topoi. This is quite a bit more difficult than the analogous problem for
colimits because the inclusion functor i : RTop ⊆ Ĉat∞ does not commute
with limits in general. However, the inclusion i does commute with filtered
limits:

Theorem 6.3.3.1. The ∞-category RTop admits small filtered limits (that
is, limits indexed by diagrams Cop → RTop where C is a small filtered ∞-
category). Moreover, the inclusion RTop ⊆ Ĉat∞ preserves small filtered
limits.

The remainder of this section is devoted to the proof of Theorem 6.3.3.1.
Our basic strategy is to mimic the proof of Theorem 5.5.3.18. Our first step
is to show that the limit (in Ĉat∞) of a filtered diagram of ∞-topoi is itself
an ∞-topos. This is equivalent to a more concrete assertion: if p : X → S is
a topos fibration and Sop is a small filtered ∞-category, then the ∞-category
C of Cartesian sections of p is an ∞-topos. We saw in Proposition 5.5.3.17
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that C is an accessible localization of the ∞-category MapS(S,X) spanned
by all sections of p. Our first step will be to show that MapS(S,X) is an
∞-topos. For this, the hypothesis that Sop is filtered is irrelevant.

Lemma 6.3.3.2. Let p : X → S be a topos fibration, where S is a small
simplicial set. The ∞-category MapS(S,X) of sections of p is an ∞-topos.

Proof. This is a special case of Proposition 5.4.7.11.

Proposition 6.3.3.3. Let A be a (small) filtered partially ordered set and
let p : X → N(A) be a topos fibration. Let C = MapN(A)(N(A), X) be the ∞-
category of sections of p and let C′ ⊆ C be the full subcategory of C spanned
by the Cartesian sections of p. Then C′ is a topological localization of C.

Proof. Let us say that a subset A′ ⊆ A is dense if there exists α ∈ A such
that

{β ∈ A : β ≥ α} ⊆ A′.

For each morphism f in C, let A(f) ⊆ A be the collection of all α ∈ A such
that the image of f in Xα is an equivalence. Let S be the collection of all
monomorphisms f in C such that A(f) is dense. It is clear that S is stable
under pullbacks, so that S−1 C is a topological localization of C. To complete
the proof, it will suffice to show that C′ = S−1 C.

We first claim that each object of C′ is S-local. Let f : C → C ′ belong to
S and let D ∈ C′. Choose α0 such that A(f) contains A′ = {β ∈ A : β ≥ α0}
and let R∗ denote a right adjoint to the restriction functor

R : MapN(A)(N(A), X) → MapN(A)(N(A′), X).

According to Proposition 4.3.2.17, the essential image of R∗ consists of those
functors E : N(A) → X which are p-right Kan extensions of E|N(A′). We
claim that D satisfies this condition. In other words, we claim that for each
α ∈ A, the map

q : N(A′′)	 → N(A) D→ X

is a p-limit, where A′′ = {β ∈ A : β ≥ α, β ≥ α0}. Since q carries each
edge of N(A′′)	 to a p-Cartesian edge of X, it suffices to verify that the sim-
plicial set N(A′′) is weakly contractible (Proposition 4.3.1.12). This follows
immediately from the observation that A′′ is a filtered partially ordered set.

We may therefore suppose that D = R∗D, where D = D|N(A′) is a
Cartesian section of the induced map p′ : X ×N(A) N(A′) → N(A′). We wish
to prove that composition with f induces a homotopy equivalence

MapC(C ′, R∗D) → MapC(C,R∗D).

This follows immediately from the fact that R and R∗ are adjoint since R(f)
is an equivalence.
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We now show that every S-local object of C belongs to C′. Let C ∈ C be
a section of p which is S-local. Choose α ≤ β in A and let

Xα
F ��Xβ
G

��

denote the (adjoint) functors associated to the (co)Cartesian fibration p :
X → N(A). The section C gives rise to a pair of objects Cα ∈ Xα, Cβ ∈ Xβ ,
and a morphism φ : Cα → Cβ in the ∞-category X. The map φ induces a
morphism u : Cα → GCβ in Xα, which is well-defined up to equivalence.
We wish to show that φ is p-Cartesian, which is equivalent to the assertion
that u is an equivalence in Xα. Equivalently, we wish to show that for each
object P ∈ Xα, composition with u induces a homotopy equivalence

MapXα
(P,Cα) → MapXα

(P,GCβ).

We may identify P with a diagram

{α} P ��
� �

��

X

��
N(A)

D

���
�

�
�

�
N(A).

Using Corollary 4.3.2.14, choose an extension D as indicated in the diagram
above, so that D is a left Kan extension of D|{α} over N(A). Similarly, we
have a diagram

{β} F (P ) ��
� �

��

X

��
N(A)

D′
���

�
�

�
�

N(A),

and we can choose D′ to be a p-left Kan extension of D′|{β}.
Proposition 4.3.2.17 implies that for every object E ∈ C, the restriction

maps

MapC(D,E) → MapXα
(P,E(α))

MapC(D′, E) → MapXβ
(F (P ), E(β))

are equivalences. In particular, the equivalence between D(β) and F (P )
induces a morphism θ : D′ → D.

We have a commutative diagram in the homotopy category H:

MapC(D,C) ◦θ ��

��

MapC(D′, C)

��
MapXα

(P,Cα) ◦u �� MapXα
(P,G(Cβ)) MapXβ

(F (P ), Cβ).��

The vertical maps are homotopy equivalences, and the the horizontal map
on the lower right is a homotopy equivalence because F and G are adjoint.
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To complete the proof, it will suffice to show that the upper horizontal map
is an equivalence. Since C is S-local, it will suffice to show that θ ∈ S.

Let β ≤ β′ and consider the diagram

D′(β) w′
��

θ(β)

��

D′(β′)

θ(β′)
��

D(α) v �� D(β) w �� D(β′)

in the ∞-category X. Since D′ is a p-left Kan extension of D′|{β}, we con-
clude that w′ is p-coCartesian. Similarly, since D is a p-left Kan extension
of D|{α}, we conclude that v and w ◦ v are p-coCartesian. It follows that w
is p-coCartesian as well (Proposition 2.4.1.7). Since θ(β) is an equivalence
by construction, we conclude that θ(β′) is an equivalence. Thus A(θ) ⊆ A is
dense.

It remains only to show that θ is a monomorphism. For this it suffices to
show that θ(γ) is a monomorphism in Xγ for each γ ∈ A. If γ ≥ β, this
follows from the above argument. Suppose γ � β. Since D′ is a p-left Kan
extension of D′|{β} over N(A), we conclude that D′(γ) is a p-colimit of the
empty diagram and therefore an initial object of Xγ . It follows that any map
D′(γ) → D(γ) is a monomorphism.

Proposition 6.3.3.4. Let A be a (small) filtered partially ordered set, let
p : X → N(A)op, and let Y ⊆ MapN(A)(N(A), X) be the full subcategory
spanned by the Cartesian sections of p. For each α ∈ A, the evaluation map
π∗ : Y → Xα is a geometric morphism of ∞-topoi.

Proof. Let A′ = {β ∈ A : α ≤ β}. Using Theorem 4.1.3.1, we conclude
that the inclusion N(A′) ⊆ N(A) is cofinal. Corollary 3.3.3.2 implies that the
restriction map

MapN(A)(N(A), X) → MapN(A)(N(A′), X)

induces an equivalence on the full subcategories spanned by Cartesian sec-
tions. Consequently, we are free to replace A by A′ and thereby assume that
α is a least element of A.

The functor π∗ factors as a composition

Y
φ∗→ MapN(A)(N(A), X)

ψ∗→ Xα,

where φ∗ denotes the inclusion functor and ψ∗ the evaluation functor. Propo-
sition 6.3.3.3 implies that φ∗ is a geometric morphism; it therefore suffices
to show that ψ∗ is a geometric morphism as well.

Let ψ∗ be a left adjoint to ψ∗ (the existence of ψ∗ follows from Proposition
4.3.2.17 as indicated below). We wish to show that ψ∗ is left exact. According
to Proposition 5.1.2.2, it will suffice to show that the composition

θ : Xα
ψ∗
→ MapN(A)(N(A), X)

eβ→ Xβ

is left exact, where eβ denotes the functor given by evaluation at β.
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Let f : ∆1 → N(A) be the edge joining α to β, let C be the ∞-category
of coCartesian sections of p, and let C′ be the ∞-category of coCartesian
sections of the induced map p′ : X ×N(A) ∆1 → ∆1. We observe that C

consists precisely of those sections s : N(A) → X of p which are p-left Kan
extensions of s|{α}. Applying Proposition 4.3.2.15, we conclude that the
evaluation map eα : C → Xα is a trivial fibration and that (by Proposition
4.3.2.17) we may identify ψ∗ with the composition

Xα
q→ C ⊆ MapN(A)(N(A), X),

where q is a section of eα|C. Let q′ : Xα → C′ be the composition of q with
the restriction map C → C′. Then θ can be identified with the composition

Xα
q′→ C′ eβ→ Xβ ,

which is the functor Xα → Xβ associated to f : α → β by the coCartesian
fibration p. Since p is a topos fibration, θ is left exact, as desired.

Let G be a profinite group and let X be a set with a continuous action
of G. Then we can recover X as the direct limit of the fixed-point sets XU ,
where U ranges over the collection of open subgroups of G. Our next result
is an ∞-categorical analogue of this observation.

Lemma 6.3.3.5. Let p : X → S
 be a Cartesian fibration of simplicial sets,
which is classified by a colimit diagram S
 → Catop∞, and let s : S
 → X be
a Cartesian section of p. Then s is a p-colimit diagram.

Proof. By virtue of Corollary 3.3.1.2, we may suppose that S is an ∞-
category. Unwinding the definitions, we must show that the map Xs/ → Xs/

induces an equivalence of ∞-categories when restricted to the inverse image
of the cone point of S
. Fix an object x ∈ X lying over the cone point of
S
. Let f : S
 → X be the constant map with value x and let f = f |S. To
complete the proof, it will suffice to show that the restriction map

θ : MapFun(S
,X)(s, f) → MapFun(S,X)(s, f)
is a homotopy equivalence. To prove this, we choose a p-Cartesian trans-
formation α : g → f , where g : S
 → X is a section of p (automatically
Cartesian). Let g = g|S and let α : g → f be the associated transformation.
Let C be the full subcategory of MapS
(S
, X) spanned by the Cartesian
sections of p and let C ⊆ MapS
(S,X) be defined similarly. We have a com-
mutative diagram in the homotopy category H

MapC(s, g) θ′ ��

α

��

MapC(s, g)

α

��
MapFun(S
,X)(s, f) θ �� MapFun(S,X)(s, f).

Proposition 2.4.4.2 implies that the vertical maps are homotopy equivalences,
and Proposition 3.3.3.1 implies that θ′ is a homotopy equivalence (since the
restriction map C → C is an equivalence of ∞-categories). It follows that θ
is a homotopy equivalence as well.
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Lemma 6.3.3.6. Let p : X → S be a presentable fibration and let C be the
full subcategory of MapS(S,X) spanned by the Cartesian sections of p. For
each vertex s of S, let ψ(s)∗ : C → Xs be the functor given by evaluation at
s and let ψ(s)∗ be a left adjoint to ψ(s)∗. There exists a diagram θ : S →
Fun(C,C) with the following properties:

(1) For each vertex s of S, θ(s) is equivalent to the composition ψ(s)∗ ◦
ψ(s)∗.

(2) The identity functor idC is a colimit of θ in the ∞-category of functors
Fun(C,C).

Proof. Without loss of generality, we may suppose that p extends to a
presentable fibration p : X → S
, which is classified by colimit diagram
S
 → PrL (and therefore by a colimit diagram S
 → Catop∞ by virtue of
Theorem 5.5.3.18). Let C be the ∞-category of Cartesian sections of p, so
that we have trivial fibrations

C ← C → X∞,

where X∞ = X ×S
 {∞} and ∞ denotes the cone point of S
. For each
vertex s of S
, we let ψ(s)∗ : C → Xs be the functor given by evaluation at
s and ψ(s)∗ a left adjoint to ψ(s)∗. To complete the proof, it will suffice to
construct a map θ′ : S → Fun(C, X∞) with the following properties:

(1′) For each vertex s of S, θ′(s) is equivalent to the composition ψ(∞)∗ ◦
ψ(s)∗ ◦ ψ(s)∗.

(2′) The functor ψ(∞)∗ is a colimit of θ′.

Let e : C×S
 → X be the evaluation map. Choose a p-coCartesian natural
transformation e → e′, where e′ is a map from C×S
 to X∞. Lemma 6.3.3.5
implies that for each object X ∈ C, the restriction e|{X}× S
 is a p-colimit
diagram in X. Applying Proposition 4.3.1.9, we deduce that e′|{X} × S
 is
a colimit diagram in X∞. According to Proposition 5.1.2.2, e′ determines a
colimit diagram S
 → Fun(C, X∞). Let θ′ be the restriction of this diagram
to S. Then the colimit of θ′ can be identified with e′|C × {∞}, which is
equivalent to e|C×{∞} = ψ(∞)∗. This proves (2′). To verify (1′), we observe
that e′|C × {s} can be identified with the composition of ψ(s)∗ = e|C × {s}
with the functor Xs → X∞ associated to the coCartesian fibration p, which
can in turn be identified with ψ(∞)∗ ◦ ψ(s)∗ (both are left adjoints to the
pullback functor X∞ → Xs associated to p).

Proposition 6.3.3.7. Let A be a (small) filtered partially ordered set, let p :
X → N(A), and let Y ⊆ MapN(A)(N(A), X) be the full subcategory spanned
by the Cartesian sections of p. Let Z be an ∞-topos and let π∗ : Z → Y be
an arbitrary functor. Suppose that, for each α ∈ A, the composition

Z
π∗→ Y → Xα

is a geometric morphism of ∞-topoi. Then π∗ is a geometric morphism of
∞-topoi.
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Proof. Let π∗ denote a left adjoint to π∗. Since π∗ commutes with colimits,
Lemma 6.3.3.6 implies that π∗ can be written as the colimit of a diagram
q : N(A) → ZY having the property that for each α ∈ A, q(α) is equivalent to
π∗ψ(α)∗ψ(α)∗, where ψ(α)∗ denotes the evaluation functor at α and ψ(α)∗

is its left adjoint. Each composition π∗ψ(α)∗ is left adjoint to the geometric
morphism ψ(α)∗π∗ and therefore left exact. It follows that q(α) is left exact.
Since filtered colimits in Z are left exact (Example 7.3.4.7), we conclude that
the functor π∗ is left exact, as desired.

Proof of Theorem 6.3.3.1. Let C be a small filtered ∞-category and let q :
Cop → RTop be an arbitrary diagram. Choose a limit q : (C
)op → Ĉat∞ of
q in the ∞-category Ĉat∞. We must show that q factors through RTop and
is a limit diagram in RTop.

Using Proposition 5.3.1.16, we may assume without loss of generality that
C is the nerve of a filtered partially ordered set A. Let p : X → N(A)op be the
topos fibration classified by q (Proposition 6.3.1.7). Then the image of the
cone point of (C
)op under q is equivalent to the ∞-category X of Cartesian
sections of p (Corollary 3.3.3.2). It follows from Proposition 6.3.3.3 that X

is an ∞-topos. Moreover, Proposition 6.3.3.4 ensures that for each α ∈ A,
the evaluation map X → Xα is a geometric morphism. This proves that q
factors through RTop. To complete the proof, we must show that q is a limit
diagram in RTop. Since RTop is a subcategory of Ĉat∞ and q is a limit
diagram in Ĉat∞, this reduces immediately to the statement of Proposition
6.3.3.7.

6.3.4 General Limits of ∞-Topoi

Our goal in this section is to construct general limits in the ∞-category RTop.
Our strategy is necessarily rather different from that of §6.3.3 because the
inclusion i : RTop → Ĉat does not preserve limits in general. In fact, i does
not even preserve the final object:

Proposition 6.3.4.1. Let X be an ∞-topos. Then Fun∗(S,X) is a con-
tractible Kan complex. In particular, S is a final object in the ∞-category
RTop of ∞-topoi.

Proof. We observe that S � Shv(∆0), where the ∞-category ∆0 is endowed
with the “discrete” topology (so that the empty sieve does not constitute
a cover of the unique object). According to Proposition 6.2.3.20, the ∞-
category Fun∗(S,X) is equivalent to the full subcategory of X � Fun(∆0,X)
spanned by those objects X ∈ X which correspond to left exact functors
∆0 → X. It is clear that these are precisely the final objects of X and
therefore form a contractible Kan complex (Proposition 1.2.12.9).

To construct limits in general, we first develop some tools for describing
∞-topoi via “generators and relations.” This will allow us to reduce the
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construction of limits in RTop to the problem of constructing colimits in
Cat∞.

Lemma 6.3.4.2. Let C be a small ∞-category, let κ be a regular cardinal,
and suppose we are given a (small) collection of κ-small diagrams {fα :
K

α → C}α∈A. Then there exists a functor F : C → D with the following

properties:

(1) The ∞-category D is small and admits κ-small colimits.

(2) For each α ∈ A, the induced map F ◦fα : K

α → C is a colimit diagram.

(3) Let E be an arbitrary ∞-category which admits κ-small colimits. Let
Fun′(D,E) denote the full subcategory of Fun(D,E) spanned by those
functors which preserve κ-small colimits. Then composition with F
induces a fully faithful embedding

θ : Fun′(D,E) → Fun(C,E).

The essential image of θ consists of those functors F ′ : C → E such
that each F ′ ◦ fα is a colimit diagram in E.

Proof. Let j : C → P(C) denote the Yoneda embedding. For each α ∈ A,
let fα = fα|Kα and let Cα ∈ C denote the image of the cone point under
fα. Let Dα ∈ P(C) denote a colimit of the induced diagram j ◦ fα, so that
j ◦ fα induces a map sα = Dα → j(Cα). Let S = {sα}α∈A, let X denote
the localization S−1 P(C), and let L : P(C) → X denote a left adjoint to
the inclusion. Let D′ be the smallest full subcategory of X that contains the
essential image of the functor L ◦ j and is stable under κ-small colimits, let
D be a minimal model for D′, and let F : C → D denote the composition
of L ◦ j with a retraction of D′ onto D. It follows immediately from the
construction that D satisfies conditions (1) and (2).

We observe that for each α ∈ A, the domain and codomain of sα are both
κ-compact objects of P(C). It follows that X is stable under κ-filtered colimits
in P(C). Corollary 5.5.7.3 implies that L carries κ-compact objects of P(C)
to κ-compact objects of X. Since the collection of κ-compact objects of X

is stable under κ-small colimits, we conclude that D′ consists of κ-compact
objects of X. Invoking Proposition 5.3.5.11, we deduce that the inclusion
D ⊆ X determines an equivalence Indκ(D) � X.

We now prove (3). We observe that there exists a fully faithful embedding
i : E → E′ which preserves κ-small colimits, where E′ admits arbitrary small
colimits (for example, we can take E′ = Fun(E, Ŝ)op and i to be the Yoneda
embedding). Replacing E by E′ if necessary, we may assume that E itself
admits arbitrary small colimits. We have a homotopy commutative diagram

FunL(X,E)
θ′ ��

��

FunL(P(C),E)

��
Fun′(D,E) θ �� Fun(C,E),
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where FunL(Y,E) denotes the full subcategory of Fun(Y,E) spanned by those
functors which preserve small colimits. Propositions 5.3.5.10 and 5.5.1.9 im-
ply that the left vertical arrow is an equivalence, while Theorem 5.1.5.6
implies that the right vertical arrow is an equivalence. It will therefore suf-
fice to show that θ′ is fully faithful and that the essential image of θ′ consists
of those colimit-preserving functors F ′ from P(C) to E such that F ′ ◦j ◦fα is
a colimit diagram for each α ∈ A. This follows immediately from Proposition
5.5.4.20.

Definition 6.3.4.3. Let Catlex∞ denote the subcategory of Cat∞ defined as
follows:

(1) A small ∞-category C belongs to Catlex∞ if and only if C admits finite
limits.

(2) Let f : C → D be a functor between small ∞-categories which admit
finite limits. Then f is a morphism in Catlex∞ if and only if f preserves
finite limits.

Lemma 6.3.4.4. The ∞-category Catlex∞ admits small colimits.

Proof. Let p : J → Catlex∞ be a small diagram which carries each vertex j ∈ J

to an ∞-category Cj . Let C be a colimit of the diagram p in Cat∞, and for
each j ∈ J let φj : Cj → C be the associated functor. Consider the collection
of all isomorphism classes of diagrams {f : K	 → C}, where K is a finite
simplicial set and the map f admits a factorization

K	 f0→ Cj
φj→ C,

where f0 is a limit diagram in Cj . Invoking the dual of Lemma 6.3.4.2, we
deduce the existence of a functor F : C → D with the following properties:

(1) The ∞-category D is small and admits finite limits.

(2) Each of the compositions F ◦ φj is left exact.

(3) For every ∞-category E which admits finite limits, composition with F
induces an equivalence from the full subcategory of Fun(D,E) spanned
by the left exact functors to the full subcategory of Fun(C,E) spanned
by those functors F ′ : C → E such that each F ′ ◦ φj is left exact.

It follows that that D can be identified with a colimit of the diagram p in
the ∞-category Catlex∞ .

Lemma 6.3.4.5. Let C be a small ∞-category which admits finite limits and
let f∗ : X → P(C) be a geometric morphism of ∞-topoi. Then there exists
a small ∞-category D which admits finite limits and a left exact functor
f ′′ : C → D such that f∗ is equivalent to the composition

X
f ′
∗→ P(D)

f ′′
∗→ P(C),

where f ′∗ is a fully faithful geometric morphism and f ′′
∗ is given by composi-

tion with f ′′.
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Proof. Without loss of generality, we may assume that X is minimal. Let f∗

be a left adjoint to f∗. Choose a regular cardinal κ large enough that the
composition

C
jC→ P(C)

f∗
→ X

carries each object C ∈ C to a κ-compact object of X. Enlarging κ if nec-
essary, we may assume that X is κ-accessible and that the collection of
κ-compact objects is stable under finite limits (Proposition 5.4.7.4). Let D

be the collection of κ-compact objects of X. The proof of Proposition 6.1.5.3
shows that the inclusion D ⊆ X can be extended to a left exact localization
functor f ′∗ : P(D) → X.

Using Theorem 5.1.5.6, we conclude that the composition jD◦f∗◦jC : C →
P(D) can be extended to a colimit-preserving functor f ′′∗ : P(C) → P(D)
and that f ′∗ ◦ f ′′∗ is homotopic to f∗. Proposition 6.1.5.2 implies that f ′′∗

is left exact. It follows that f ′∗ and f ′′∗ admit right adjoints f ′∗ and f ′′∗ with
the desired properties.

Proposition 6.3.4.6. The ∞-category RTop of ∞-topoi admits pullbacks.

Proof. Suppose first that we are given a pullback square

W
f ′
∗ ��

g′∗
��

X

g∗
��

Y
f∗ �� Z

in the ∞-category of RTop. We make the following observations:

(a) Suppose that Z is a left exact localization of another ∞-topos Z′. Then
the induced diagram

W ��

��

X

��
Y �� Z

is also a pullback square.

(b) Let S−1 X and T−1 Y be left exact localizations of X and Y, respectively.
Let U be the smallest strongly saturated collection of morphisms in W

which contains f ′∗S and g′∗T and is closed under pullbacks. Using
Corollary 6.2.1.3, we deduce that U is generated by a (small) set of
morphisms in W. It follows that the diagram

U−1 W ��

��

S−1 X

��
T−1 Y �� Z

is again a pullback in RTop.
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Now suppose we are given an arbitrary diagram

X
g∗→ Z

f∗← Y

in RTop. We wish to prove that there exists a fiber product X×Z Y in RTop.
The proof of Proposition 6.1.5.3 implies that there exists a small ∞-category
C which admits finite limits, such that Z is a left exact localization of P(C).
Using (a), we can reduce to the case where Z = P(C). Using (b) and Lemma
6.3.4.5, we can reduce to the case where X = P(D) for some small ∞-category
D which admits finite limits, and g∗ is induced by composition with a left
exact functor g : C → D. Similarly, we can assume that f∗ is determined
by a left exact functor f : C → D′. Using Lemma 6.3.4.4, we can form a
pushout diagram

E D��

D′

$$

C

g

$$

f
��

in the ∞-category Catlex∞ . Using Proposition 6.1.5.2 and Theorem 5.1.5.6, it
is not difficult to see that the induced diagram

P(E) ��

��

P(D)

g∗
��

P(D′)
f∗ �� P(C)

is the desired pullback square in RTop.

Corollary 6.3.4.7. The ∞-category RTop admits small limits.

Proof. Using Corollaries 4.2.3.11 and 4.4.2.4, it suffices to show that RTop
admits filtered limits, a final object, and pullbacks. The existence of filtered
limits follows from Theorem 6.3.3.1, the existence of a final object follows
from Proposition 6.3.4.1, and the existence of pullbacks follows from Propo-
sition 6.3.4.6.

Remark 6.3.4.8. Our construction of fiber products in RTop is somewhat
inexplicit. We will later give a more concrete construction in the case of
ordinary products; see §7.3.3.

We conclude this section by proving a companion result to Corollary
6.3.4.7. First, a few general remarks. The ∞-category RTop is most nat-
urally viewed as an ∞-bicategory since we can also consider noninvertible
natural transformations between geometric morphisms. Correspondingly, we
can consider a more general theory of ∞-bicategorical limits in RTop. While
we do not want to give any precise definitions, we would like to point out that
Corollary 6.3.4.7 can be generalized to show that RTop admits all (small)
∞-bicategorical limits. In more concrete terms, this just means that RTop
is cotensored over Cat∞ in the following sense:
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Proposition 6.3.4.9. Let X be an ∞-topos and let D be a small ∞-category.
Then there exists an ∞-topos Mor(C,X) and a functor

e : C → Fun∗(Mor(C,X),X)

with the following universal property:

(∗) For every ∞-topos Y, composition with e induces an equivalence of
∞-categories

Fun∗(Y,Mor(C,X)) → Fun(C,Fun∗(Y,X)).

Proof. We first treat the case where X = P(D), where D is a small ∞-
category which admits finite limits. Using Lemma 6.3.4.2, we conclude that
there exists a functor e0 : Cop×D → D′ with the following properties:

(1) The ∞-category D′ is small and admits finite limits.

(2) For each object C ∈ C, the induced functor

D � {C} × D ⊆ Cop×D
e0→ D′

is left exact.

(3) Let E be an arbitrary ∞-category which admits finite limits. Then
composition with e0 induces an equivalence from the full subcategory
of Fun(D′,E) spanned by the left exact functors to the full subcategory
of Fun(Cop×D,E) spanned by those functors which restrict to left
exact functors {C} × D → E for each C ∈ C.

In this case, we can define Mor(C,X) to be P(D′) and

e : C → Fun∗(P(D′),P(D))

to be given by composition with e0; the universal property (∗) follows im-
mediately from Theorem 5.1.5.6 and Proposition 6.1.5.2.

In the general case, we invoke Proposition 6.1.5.3 to reduce to the case
where X = S−1 X′ is an accessible left exact localizaton of an ∞-topos X′,
where X′ � P(D) is as above so that we can construct an ∞-topos Mor(C,X′)
and a map e′ : C → Fun∗(Mor(C,X′),X′) satisfying the condition (∗). For
each C ∈ C, let e′(C)∗ denote the corresponding geometric morphism from
Mor(C,X′) to X′, let e′(C)∗ denote a left adjoint to e′(C)∗, and let S(C) =
e′(C)∗S be the image of S in the collection of morphisms of Mor(C,X′). Since
each e′(C)∗ is a colimit-preserving functor, each of the sets S(C) is generated
under colimits by a small collection of morphisms in Mor(C,X′). Let T be the
smallest collection of morphisms in Mor(C,X′) which is strongly saturated,
is stable under pullbacks, and contains each of the sets SC . Using Corollary
6.2.1.3, we conclude that T is generated (as a strongly saturated class of
morphisms) by a small collection of morphisms in Mor(C,X′). It follows
that Mor(C,X) = T−1 Mor(C,X′) is an ∞-topos. By construction, the map
e′ restricts to give a functor e : C → Fun∗(Mor(C,X),X). Unwinding the
definitions, we see that e has the desired properties.
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Remark 6.3.4.10. Let X be an ∞-topos and let RTop∆ denote the simpli-

cial subcategory of Ĉat
∆

∞ corresponding to the subcategory RTop ⊆ Ĉat∞,
so that RTop � N(RTop∆). The construction Y �→ Fun∗(X,Y) determines a

simplicial functor from RTop∆ to Ĉat
∆

∞, which in turn induces a functor

θX : RTop → Ĉat∞.

We claim that θX preserves small limits (this translates into the condition
that limits in RTop really give ∞-bicategorical limits in the ∞-bicategory of
∞-topoi).

To prove this, fix an arbitrary ∞-category C and let eC : Ĉat∞ → Ŝ be
the functor corepresented by C. It will suffice to show that eC ◦ θX preserves
small limits. The collection of all ∞-categories C which satisfy this condition
is stable under all colimits, so we may assume without loss of generality that
C is small. It now suffices to observe that eC ◦ θX is equivalent to the functor
corepresented by the ∞-topos Fun(C,X).

6.3.5 Étale Morphisms of ∞-Topoi

Let f : X → Y be a continuous map of topological spaces. We say that f is
étale (or a local homeomorphism) if, for every point x ∈ X, there exist open
sets U ⊆ X containing x and V ⊆ Y containing f(x) such that f induces
a homeomorphism U → V . Let F denote the sheaf of sections of f : that is,
F is a sheaf of sets on Y such that for every open set V ⊆ Y , F(V ) is the
set of all continuous maps s : V → X such that f ◦ s = id : V → Y . The
construction (f : X → Y ) �→ F determines an equivalence of categories, from
the category of topological spaces which are étale over Y to the category of
sheaves (of sets) on Y . In particular, we can recover the topological space
X (up to homeomorphism) from the sheaf of sets F on Y . For example, we
can reconstruct the category ShvSet(X) of sheaves on X as the overcategory
ShvSet(Y )/F.

Our goal in this section is to develop an analogous theory of étale mor-
phisms in the setting of ∞-topoi. Suppose we are given a geometric morphism
f∗ : X → Y. Under what circumstances should we say that f∗ is étale? By
analogy with the case of topological spaces, we should expect that an étale
morphism determines a “sheaf” on Y: that is, an object U of the ∞-category
Y. Moreover, we should then be able to recover the ∞-category X as an
overcategory Y/U . The following result guarantees that this expectation is
somewhat reasonable:

Proposition 6.3.5.1. Let X be an ∞-topos and let U be an object of X.

(1) The ∞-category X/U is an ∞-topos.

(2) The projection π! : X/U → X has a right adjoint π∗ which commutes
with colimits. Consequently, π∗ itself has a right adjoint π∗ : X/U → X

which is a geometric morphism of ∞-topoi.
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Proof. The existence of a right adjoint π∗ to the projection π! : X/U →
X follows from the assumption that X admits finite limits. Moreover, the
assertion that π∗ preserves colimits is a special case of the assumption that
colimits in X are universal. This proves (2).

To prove (1), we will show that X/U satisfies criterion (2) of Theorem
6.1.0.6. We first observe that X/U is presentable (Proposition 5.5.3.10). Let
K be a small simplicial set and let α : p → q be a natural transformation
of diagrams p, q : K
 → X/U . Suppose that q is a colimit diagram and
that α = α|K is a Cartesian transformation. The projection π! preserves all
colimits (since it is a left adjoint), so that π! ◦ q is a colimit diagram in X.
Since π! preserves pullback squares (Proposition 4.4.2.9), π!◦α is a Cartesian
transformation. By assumption, X is an ∞-topos, so that Theorem 6.1.0.6
implies that π! ◦ p is a colimit diagram if and only if π! ◦ α is a Cartesian
transformation. Using Propositions 4.4.2.9 and 1.2.13.8, we conclude that
p is a colimit diagram if and only if α is a Cartesian transformation, as
desired.

A geometric morphism f∗ : X → Y of ∞-topoi is said to be étale if it arises
via the construction of Proposition 6.3.5.1; that is, if f admits a factorization

X
f ′
∗→ Y/U

f ′′
∗→ Y,

where U is an object of Y, f ′∗ is a categorical equivalence, and f ′′∗ is a right
adjoint to the pullback functor f ′′∗ : Y → Y/U . We note that in this case, f∗

has a left adjoint f! = f ′′! ◦ f ′∗. Consequently, f∗ preserves all limits, not just
finite limits.

Remark 6.3.5.2. Given an étale geometric morphism f : X/U → X of
∞-topoi, the description of the pushforward functor f∗ is slightly more com-
plicated than that of f! (which is merely the forgetful functor) or f∗ (which
is given by taking products with U). Given an object p : X → U of X/U , the
pushforward f∗X is an object of X which represents the functor “sections of
p.”

The collection of étale geometric morphisms contains all equivalences and
is stable under composition. Consequently, we can consider the subcategory
RTopét ⊆ RTop containing all objects of RTop whose morphisms are pre-
cisely the étale geometric morphisms. Our goal in this section is to study the
∞-category RTopét. Our main results are the following:

(a) If X is an ∞-topos containing an object U , then the associated étale
geometric morphism π∗ : X/U → X can be described by a universal
property. Namely, X/U is universal among ∞-topoi Y with a geometric
morphism φ∗ : Y → X such that φ∗U admits a global section (Propo-
sition 6.3.5.5).

(b) There is a simple criterion for testing whether a geometric morphism
π∗ : X → Y is étale. Namely, π∗ is étale if and only if the functor π∗
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admits a left adjoint π!, the functor π! is conservative, and an appro-
priate push-pull formula holds in the the ∞-category Y (Proposition
6.3.5.11).

(c) Given a pair of topological spacesX0 andX1 and a homeomorphism φ :
U0 � U1 between open subsets U0 ⊆ X0 and U1 ⊆ X1, we can “glue”
X0 to X1 along φ to obtain a new topological space X = X0

∐
U0
X1.

Moreover, the topological space X contains open subsets homeomor-
phic to X0 and X1. In the setting of ∞-topoi, it is possible to make
much more general “gluing” constructions of the same type. We can
formulate this idea more precisely as follows: given any diagram {Xα}
in the ∞-category RTopét having a colimit X in RTop, each of the
associated geometric morphisms Xα → X is étale (Theorem 6.3.5.13).
Using this fact, we will show that the ∞-category RTopét admits small
colimits.

Remark 6.3.5.3. We will say that a geometric morphism of ∞-topoi f∗ :
Y → X is étale if and only if its right adjoint f∗ : X → Y is étale. We
let LTopét denote the subcategory of LTop spanned by the étale geometric
morphisms, so that there is a canonical equivalence RTopét � LTopopét .

Our first step is to obtain a more precise formulation of the universal
property described in (a):

Definition 6.3.5.4. Let f∗ : X → Y be a geometric morphism of ∞-topoi.
Let U be an object of X and α : 1Y → f∗U a morphism in Y, where 1Y

denotes a final object of Y. We will say that α exhibits Y as a classifying
∞-topos for sections of U if, for every ∞-topos Z, the diagram

Fun∗(Y,Z)
◦f∗

��

φ

��

Fun∗(X,Z)

φ0

��
Z∗ �� Z

is a homotopy pullback square of ∞-categories. Here Z∗ denotes the ∞-
category of pointed objects of Z (that is, the full subcategory of Fun(∆1,Z)
spanned by morphisms f : Z → Z ′, where Z is a final object of Z), and the
morphisms φ and φ0 are given by evaluation on α and U , respectively.

Let X be an ∞-topos containing an object U . It follows immediately from
the definition that a classifying ∞-topos for sections of U is uniquely deter-
mined up to equivalence provided that it exists. For the existence, we have
the following result:

Proposition 6.3.5.5. Let X be an ∞-topos containing an object U , let
π! : X/U → X be the projection map and let π∗ : X → X/U be a right adjoint
to π!. Let 1U denote the identity map from U to itself, regarded as a (final)
object of X/U , and let α : 1U → π∗U be adjoint to the identity map π!1U � U .
Then α exhibits X/U as a classifying ∞-topos for sections of U .
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Before giving the proof of Proposition 6.3.5.5, we summarize some of the
pleasant consequences.

Corollary 6.3.5.6. Let X be an ∞-topos containing an object U , and let
π∗ : X → X/U be the corresponding étale geometric morphism. For every
∞-topos Z, composition with π∗ induces a left fibration

Fun∗(X/U ,Z) → Fun∗(X,Z).

Moreover, the fiber over a geometric morphism φ∗ : X → Z is homotopy
equivalent to the mapping space MapZ(1Z, φ

∗U).

Remark 6.3.5.7. Corollary 6.3.5.6 implies, in particular, the existence of
homotopy fiber sequences

MapZ(1Z, φ
∗U) → MapLTop(X/U ,Z) → MapLTop(X,Z)

(where the fiber is taken over a geometric morphism φ∗ ∈ MapLTop(X,Z)).
Suppose that Z = X/V and that φ∗ is a right adjoint to the projection

X/V → Z. We then deduce the existence of a canonical homotopy equivalence

MapX(V,U) � MapZ(1Z, φ
∗U) � MapLTopX /

(X/U ,X/V ).

Remark 6.3.5.8. It follows from Remark 6.3.5.7 that if f∗ : X → Y is a
geometric morphism of ∞-topoi and U ∈ X is an object, then the induced
diagram

X ��

��

Y

��
X/U �� Y/f∗U

is a pushout square in LTop.

Corollary 6.3.5.9. Suppose we are given a commutative diagram

Y
g∗

���
��

��
��

X

f∗
��������� h∗ �� Z

in LTopop, where g∗ is étale. Then f∗ is étale if and only if h∗ is étale.

Proof. The “only if” direction is obvious. To prove the converse, let us sup-
pose that g∗ and h∗ are both étale, so that we have equivalences X � Z/U
and U � Z/V for some pair of objects U, V ∈ Z. Using Remark 6.3.5.7, we
deduce that the morphism f∗ is determined by a map U → V in Z, which
we can identify with an object V ∈ Y such that X � Y/V .

Remark 6.3.5.10. Let X be an ∞-topos. The projection map

p : Fun(∆1,X) → Fun({1},X) � X
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is a Cartesian fibration. Moreover, for every morphism α : U → V in X,
the associated functor α∗ : X/V → X/U is an étale geometric morphism of
∞-topoi, so that p is classified by a functor χ0 : Xop → LTopét. The functor
χ0 carries the final object of X to an ∞-topos equivalent to X and therefore
factors as a composition

Xop
χ→ (LTopét)X / → LTopét .

The argument of Remark 6.3.5.7 shows that χ is fully faithful, and it follows
immediately from the definitions that χ is essentially surjective. Corollary
6.3.5.9 allows us to identify (LTopét)X / with the full subcategory of LTopX /

spanned by the étale geometric morphisms f∗ : X → Y. Consequently, we can
regard χ as a fully faithful embedding of X into the ∞-category (LTopop)/X

of ∞-topoi over X, whose essential image consists of those ∞-topoi which
are étale over X.

Proof of Proposition 6.3.5.5. Let p : M → ∆1 be a correspondence from
X/U � M×∆1{0} to X � M×∆1{1} associated to the adjoint functors

X/U
π! �� X .
π∗

��

Let α0 be a morphism from 1U ∈ X/U to 1X ∈ X in M (so that α0 is
determined uniquely up to homotopy). We observe that there is a retraction
r : M → X/U which restricts to π∗ on X ⊆ M, and we can identify α with
r(α0).

Let Z be an arbitrary ∞-topos. Let C be the full subcategory of Fun(M,Z)
spanned by those functors F : M → Z with the following properties:

(a) The restriction F |X/U : X/U → Z preserves small colimits and finite
limits.

(b) The functor F is a left Kan extension of F |X/U . In other words, F
carries p-Cartesian morphisms in M to equivalences in Z.

Proposition 4.3.2.15 implies that the restriction map C → Fun∗(X/U ,Z) is a
trivial Kan fibration. Moreover, this trivial Kan fibration has a section given
by composition with r. It will therefore suffice to show that the diagram

C ��

��

Fun∗(X,Z)

��
Z∗ �� Z

is a homotopy pullback square. In other words, we wish to show that re-
striction along α0 and the inclusion X ⊆ M induce a categorical equivalence
C → Z∗ ×Z Fun∗(X,Z).

We define simplicial subsets M′′ ⊆ M′ ⊆ M as follows:

(i) Let M′′ � X
∐

{1} ∆1 be the union of X with the 1-simplex of M

corresponding to the morphism α0.



614 CHAPTER 6

(ii) Let M′ be the full subcategory of M spanned by X together with the
object 1U .

We can identify Z∗ ×Z Fun∗(X,Z) with the full subcategory
C′′ ⊆ Fun(M′′,Z)

spanned by those functors F satisfying the following conditions:

(a′) The restriction F |X preserves small colimits and finite limits.

(b′) The object F (1U ) is final in Z.

Let C′ be the full subcategory of Fun(M′,Z) spanned by those functors which
satisfy (a′) and (b′). To complete the proof, it will suffice to show that the
restriction maps

C
u→ C′ v→ C′′

are trivial Kan fibrations.
We first show that u is a trivial Kan fibration. In view of Proposition

4.3.2.15, it will suffice to prove the following:

(∗) A functor F : M → Z satisfies (a) and (b) if and only if it satisfies (a′)
and (b′) and F is a right Kan extension of F |M′.

To prove the “only if” direction, let us suppose that F satisfies (a) and (b).
Without loss of generality, we may suppose F = F0 ◦ r, where F0 = F |X/U .
Then F |X = F0 ◦ π∗. Since F0 and π∗ both preserve small colimits and
finite limits, we deduce (a′). Condition (b′) is an immediate consequence of
(a). We must show that F is a right Kan extension of F |X. Unwinding the
definitions (and applying Corollary 4.1.3.1), we are reduced to showing that
for every object V ∈ X/U corresponding to a morphism V → U in X, the
diagram

F (V ) ��

��

F (V )

��
F (1U ) �� F (U)

is a pullback square in Z. Since F = F0 ◦ r and F0 preserves finite limits, it
suffices to show that the square

V ��

��

π∗V

��
1U �� π∗U

is a pullback square in X/U . In view of Proposition 1.2.13.8, it suffices to
observe that the square

V ��

��

V × U

��
U �� U × U
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is a pullback in X.
Now let us suppose that F is a right Kan extension of F1 = F |M′ and

that F1 satisfies conditions (a′) and (b′). We first claim that F satisfies (b).
In other words, we claim that for every object V ∈ X, the canonical map
F (π∗V ) → F (V ) is an equivalence. Consider the diagram

F (π∗V ) ��

��

F (V × U)

��

�� F (V )

��
F (1U ) �� F (U) �� F (1X).

Since F is a right Kan extension of F1, the left square is a pullback. Since F1

satisfies (a), the right square is a pullback. Therefore the outer square is a
pullback. Condition (b′) implies that the lower horizontal composition is an
equivalence, so the upper horizontal composition is an equivalence as well.

We now prove that F satisfies (a). Condition (b′) implies that the functor
F0 = F |X/U preserves final objects. It will therefore suffice to show that
F0 preserves small colimits and pullback squares. Since F is a right Kan
extension of F1, the functor F0 can be described by the formula

V �→ F (π!V ) ×F (U) F (1U ).

It therefore suffices to show that the functors π!, F |X, and • ×F (U) F (1U )
preserve small colimits and pullback squares. For π!, this follows from Propo-
sitions 1.2.13.8 and 4.4.2.9. For F |X, we invoke assumption (a′). For the
functor • ×F (U) F (1U ), we invoke our assumption that Z is an ∞-topos (so
that colimits in Z are universal). This completes the verification that u is a
trivial Kan fibration.

To complete the proof, we must show that the functor v is a trivial Kan
fibration. We note that v fits into a pullback diagram

C′ v ��

��

C′′

��
Fun(M′,Z) v′ �� Fun(M′′,Z).

It will therefore suffice to show that v′ is a trivial Kan fibration. Since Z is an
∞-category, we need only show that the inclusion M′′ ⊆ M′ is a categorical
equivalence of simplicial sets. This is a special case of Proposition 3.2.2.7.

We next establish the recognition principle promised in (b):

Proposition 6.3.5.11. Let f∗ : X → Y be a geometric morphism of ∞-
topoi. Then f∗ is étale if and only if the following conditions are satisfied:

(1) The functor f∗ admits a left adjoint f! (in view of Corollary 5.5.2.9,
this is equivalent to the assumption that f∗ preserves small limits).

(2) The functor f! is conservative. That is, if α is a morphism in Y such
that f!α is an equivalence in X, then α is an equivalence in Y.
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(3) For every morphism X → Y in X, every object Z ∈ Y, and every
morphism f!Z → Y , the induced diagram

f!(f∗X ×f∗Y Z) ��

��

f!Z

��
X �� Y

is a pullback square in X.

Remark 6.3.5.12. Condition (3) of Proposition 6.3.5.11 can be regarded
as a push-pull formula: it provides a canonical equivalence

f!(f∗X ×f∗Y Z) � X ×Y f!Z.

In particular, when Y is final in X, we have an equivalence f!(f∗X × Z) �
X× f!Z: in other words, the functor f! is “linear” with respect to the action
of X on Y.

Proof of Proposition 6.3.5.11. Suppose first that f∗ is an étale geometric
morphism. Without loss of generality, we may suppose that Y = X/U and
that f∗ is right adjoint to the forgetful functor f! : X/U → X. Assertions (1)
and (2) are obvious, and assertion (3) follows from the observation that, for
every diagram

X → Y ← Z → U,

the induced map (X × U) ×Y×U Z → X ×Y Z is an equivalence in X.
For the converse, let us suppose that (1), (2), and (3) are satisfied. We

wish to show that f∗ is étale. Let U = f!1Y. Let F denote the composition
Y � Y/1Y

f!→ X/U . To complete the proof, it will suffice to show that F is
an equivalence of ∞-categories. Proposition 5.2.5.1 implies that F admits a
right adjoint G given by the formula

(X → U) �→ f∗X ×f∗U 1Y.

Assumption (3) guarantees that the counit map v : FG → idX/U
is an

equivalence. To complete the proof, it suffices to show that for each Y ∈ Y,
the unit map uY : Y → GFY is an equivalence. The map FuY : FY →
FGFY has a left homotopy inverse (given by vFY ) which is an equivalence,
so that FuY is an equivalence. It follows that f!uY is an equivalence, so that
uY is an equivalence by virtue of assumption (2). Thus G is a homotopy
inverse to F , so that F is an equivalence of ∞-categories, as desired.

Our final goal in this section is to prove the following result:

Theorem 6.3.5.13. The ∞-category RTopét admits small colimits, and the
inclusion RTopét ⊆ RTop preserves small colimits.

The proof of Theorem 6.3.5.13 is rather technical and will occupy our
attention for the remainder of this section. However, the analogous result is
elementary if we work with ∞-topoi which are assumed to be étale over a
fixed base X. In this case, Theorem 6.3.5.13 can be reduced (with the aid of
Remark 6.3.5.10) to the following assertion:
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Proposition 6.3.5.14. Let X be an ∞-topos and let χ : X → LTopop/X be
the functor of Remark 6.3.5.10. Then χ preserves small colimits.

Proof. Combine Propositions 1.2.13.8 and 6.3.2.3 with Theorem 6.1.3.9.

Proof of Theorem 6.3.5.13. As a first step, we establish the following:

(∗) Suppose we are given a small diagram p : K → LTopop and a geometric
morphism of ∞-topoi φ∗ : lim−→(p) → Y. Suppose further that for each
vertex v in K, the induced geometric morphism φ(v)∗ : p(v) → Y is
étale. Then φ∗ is étale.

To prove (∗), we note that φ∗ determines a functor p : K → LTopop/Y lifting
p. Since each φ(v)∗ is étale, Remark 6.3.5.10 implies that p factors as a
composition

K
q→ Y

χ→ LTopop/Y .

Let U ∈ Y be a colimit of the diagram q. Then Corollary 6.3.5.9 implies that
lim−→(p) � Y/U , so that φ∗ is étale, as desired.

We now return to the proof of Theorem 6.3.5.13. Using Proposition 4.4.3.2
and its proof, we can reduce the proof to the following special cases:

(a) The ∞-category LTopopét admits small coproducts, and the inclusion
LTopopét ⊆ LTopop preserves small coproducts.

(b) The ∞-category LTopopét admits coequalizers, and the inclusion

LTopopét ⊆ LTopop

preserves coequalizer diagrams.

We first prove (a). In view of (∗), it will suffice to prove the following:

(a′) Let {Xα} be a small collection of ∞-topoi and let X be their co-
product in LTopop (so that we have an equivalence of ∞-categories
X � ∏

αXα). Then each of the associated geometric morphisms φ∗
α :

X → Xα is étale.

To prove (a′), we may assume without loss of generality that X =
∏
αXα

and that φ∗α is given by projection onto the corresponding factor. The de-
sired result then follows from the criterion of Proposition 6.3.5.11 (more
concretely: let let U ∈ X be an object whose image in Xα is a final object
Uα ∈ Xα and whose image in Xβ is an initial object Uβ ∈ Xβ for β �= α;
then X/U � ∏

β(Xβ)/Uβ
� Xα.)

To prove (b), we can again invoke (∗) to reduce to the following assertion:

(b′) Suppose we are given a diagram

Y
���� X0

in LTopopét having colimit X in LTopop. Then the induced geometric
morphism φ∗ : X0 → X is étale.
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To prove (b′), we identify the diagram in question with a functor p :
I → LTopop and I with the subcategory of N(∆)op spanned by the objects
{[0], [1]} and injective maps of linearly ordered sets. Let X• be the simplicial
object of LTopop given by left Kan extension along the inclusion I ⊆ N(∆)op,
so that each Xn is equivalent to a coproduct (in LTopop) of X0 with n copies
of Y. Using (∗) and Corollary 6.3.5.9, we deduce that X• is a simplicial
object in LTopopét . Consequently, assertion (b′) is an immediate consequence
of Lemma 4.3.2.7 and the following:

(b′′) Let X• be a simplicial object of LTopopét and let X be its geometric real-
ization in LTopop. Then the induced geometric morphism φ∗ : X0 → X

is étale.

The proof of (b′′) is based on the following lemma whose proof we defer
until the end of this section:

Lemma 6.3.5.15. Suppose we are given a simplicial object X• in LTopopét .
Then there exists a morphism of simplicial objects X• → X′

• of LTopopét with
the following properties:

(1) The induced map X0 → X′
0 is an equivalence of ∞-topoi.

(2) The simplicial object X′
• is a groupoid object in LTopop.

(3) The induced map of geometric realizations (in LTopop) is an equiva-
lence |X• | → |X′

• |.
Using Lemma 6.3.5.15, we can reduce the proof of (b′′) to the special case

where X• is a groupoid object of LTopop. The diagram

N(∆)op X•→ LTopopét ⊆ Ĉat
op

∞

is classified by a Cartesian fibration q : Z → N(∆)op. Here we can identify
Xn with the fiber Z[n] = Z×N(∆)op{[n]}, and every map of linearly ordered
sets α : [m] → [n] induces a geometric morphism α∗ : Z[m] → Z[n]. Since the
geometric morphism α∗ is étale, it admits a left adjoint α!, so that q is also
a coCartesian fibration (Corollary 5.2.2.4).

It follows from Propositions 6.3.2.3 and 3.3.3.1 that we can identify X

with the full subcategory of FunN(∆)op(N(∆)op,Z) spanned by the Cartesian
sections of q; under this identification, the pullback functor φ∗ corresponds
to the functor X → Z[0] � X0 given by evaluation at [0].

Let 1X denote a final object of X, which we regard as a section of q. Let
T : N(∆)op → N(∆)op denote the shift functor [n] �→ [n][0] and let β0 : T →
idN(∆)op denote the evident natural transformation. Let β : (1X◦T ) → U• be
a natural transformation in Fun(N(∆)op,Z) lifting β which is q-coCartesian.
Since X• is a groupoid object of LTopopét , we deduce that U• is a Cartesian
section of q, which we can identify with an object of X.

Let S = N(∆)op × ∆1, so that β0 defines a map S → N(∆)op. Let Z′ =
Z×N(∆)opS and let βS = β, regarded as a section of the projection q′ :
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Z′ → S. Let Z′′ = Z′/βS (see §4.2.2 for an explanation of this notation). Let
q′′ : Z′′ → S. The fibers of q′′ can be described as follows:

• The fiber of q′′ over ([n], 0) can be identified with Z
/1Z[n+1]

[n+1] � Z[n+1].

• The fiber of q′′ over ([n], 1) can be identified with Z
/Un

[n] � Z[n+1].

Proposition 4.2.2.4 implies that the projection q′′ : Z′′ → S is a coCarte-
sian fibration classified by a map χ : S → Ĉat∞. The above description
shows that χ can be regarded as an equivalence from χ0 = χ|N(∆)op × {0}
to χ1 = χ|N(∆)op × {1} in the ∞-category of simplicial objects of Ĉat∞.
Moreover, the functor χ0 classifies the pullback of the coCartesian fibration
q by the translation map T : N(∆)op → N(∆op), so that χ0 and χ1 factor
through LTopopét . Lemma 6.1.3.17 implies that the colimit of χ0 (hence also
of χ1) in LTopop is canonically equivalent to X0. On the other hand, Propo-
sitions 3.3.3.1 and 6.3.2.3 allow us to identify lim−→(χ1) with the ∞-category
of Cartesian sections of the projection Z′′ ×S(N(∆)op × {1}) → N(∆)op,
which is isomorphic to X/U• as a simplicial set. We now complete the proof
by observing that the resulting identification X0 � X/U• is compatible with
the projection φ∗ : X0 → X.

The remainder of this section is devoted to the proof of Lemma 6.3.5.15.
We first need to introduce a bit of notation. We begin with a few remarks
about the behavior of ∞-topoi under change of universe.

Notation 6.3.5.16. Let X be an ∞-topos and C an arbitrary ∞-category.
We let ShvC(X) denote the full subcategory of Fun(Xop,C) spanned by those
functors which preserve small limits. We will refer to ShvC(X) as the ∞-
category of C-valued sheaves on X.

Remark 6.3.5.17. Let X be an ∞-topos. Proposition 5.5.2.2 implies that
the Yoneda embedding X → ShvS(X) is an equivalence; in other words, we
can identify X with the ∞-category of sheaves of (small) spaces on itself. Let
Ŝ denote the ∞-category of spaces which belong to some larger universe U.
We claim the following:

(a) The ∞-category ShvbS(X) can be regarded as an ∞-topos in U.

(b) The inclusion ShvS(X) ⊆ ShvbS(X) preserves small colimits.

To prove (a), let us suppose that X = S−1 P(C), where C is a small ∞-
category and S is a strongly saturated class of morphisms in P(C) which is
stable under pullbacks and of small generation. Theorem 5.1.5.6 and Proposi-
tion 5.5.4.20 allow us to identify ShvbS(X) with S−1P̂(C), where P̂(C) denotes
the presheaf ∞-category Fun(Cop, Ŝ). Let Ŝ denote the strongly saturated
class of morphisms of P̂(C) generated by S. Then Ŝ is of small generation
(and therefore of U-small generation); to complete the proof of (a) it will
suffice to show that Ŝ is stable under pullbacks.
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Let P̂(C)0 denote the full subcategory of P̂(C) spanned by those objects
X with the following property:

(∗) Let

Y

f

��

�� Y ′

f ′

��
X �� X ′

be a pullback diagram in P̂(C). If f ′ ∈ S then f ∈ Ŝ′.

Since colimits in P̂(C) are universal, the subcategory P̂(C)0 is stable under
U-small colimits in P̂(C). Moreover, since S is stable under pullbacks in
P(C) (and since the inclusion P(C) ⊆ P̂(C) is fully faithful), the ∞-category
P̂(C)0 contains P(C). Since P̂(C) is generated (under U-small colimits) by
the essential image of the Yoneda embedding C → P(C), we conclude that
P̂(C)0 = P̂(C).

We now let S′ denote the collection of all morphisms in P̂(C) such that,
for every pullback diagram

Y

f

��

�� Y ′

f ′

��
X �� X ′

in P(C), if f ′ ∈ S′ then f ∈ Ŝ. The above argument shows that S ⊆ S′.
Since S′ is strongly saturated, we conclude that Ŝ ⊆ S′, so that Ŝ is stable
under pullbacks, as desired. This completes the proof of (a).

To prove (b), it will suffice to show that the composite map

P(C) → S−1 P(C) → Ŝ−1P̂(C)

preserves small colimits. We can rewrite this as the composition of a pair of
functors

P(C) i→ P̂(C) L→ Ŝ−1P̂(C).

The functor L is left adjoint to the inclusion of Ŝ−1P̂(C) into P̂(C) and
therefore preserves all U-small colimits. It therefore suffices to show that the
inclusion i : Fun(Cop, S) → Fun(Cop, Ŝ) preserves small colimits. In view of
Proposition 5.1.2.2, it will suffice to prove the inclusion i0 : S → Ŝ preserves
small colimits. We note that i0 is an equivalence from S to the full sub-
category Ŝ

0 ⊆ Ŝ spanned by the essentially small spaces. It now suffices to
observe that the collection of essentially small spaces is stable under small
colimits (this follows from Corollaries 5.4.1.5 and 5.3.4.15).

Remark 6.3.5.18. Let U be a universe as in Example 6.3.5.17, let f∗ : X →
Y be a geometric morphism of ∞-topoi, and let f̂∗ : ShvbS(X) → ShvbS(Y) be
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given by composition with f∗. Then f̂∗ can be identified with a geometric
morphism in the universe U. To prove this, let κ denote the regular cardinal
in the universe U such that small sets (in our original universe) can be
identified with κ-small sets in U. It follows from Corollary 5.3.5.4 that we
can identify ShvbS(X) and ShvbS(X) with Îndκ(X) and Îndκ(Y), respectively.
Proposition 5.2.6.3 implies that f̂∗ admits a left adjoint f̂∗ which fits into a
commutative diagram

X
f∗

����

��

Y

��
ShvbS(X)

bf∗
�� ShvbS(Y).

To complete the proof, it will suffice to show that f̂∗ is left exact. Since f∗

preserves final objects, the functor f̂∗ preserves final objects as well. It there-
fore suffices to show that f̂∗ preserves pullback diagrams. Using Proposition
5.3.5.15 and Example 7.3.4.7, we conclude that every pullback diagram in
ShvbS(X) can be obtained as a U-small κ-filtered colimit of pullback diagrams
in X. The desired result now follows from the assumption that f∗ is left exact
and the observation that the class of pullback diagrams in ShvbS(Y) is stable
under U-small filtered colimits (Example 7.3.4.7).

For the remainder of this section, we fix a larger universe U. Let Ŝ denote
the ∞-category of U-small spaces.

Notation 6.3.5.19. Let F : LTop → Ŝ be a functor. For every ∞-topos X,
we let FX : Xop → Ŝ denote the composition

Xop � LTopX /
ét → LTop F→ Ŝ.

We will say that FX is a sheaf if, for every ∞-topos X, the functor FX

preserves small limits. We let Ŝhv(LTopop) denote the full subcategory of
Fun(LTop, Ŝ) spanned by the sheaves.

Example 6.3.5.20. Let X be an ∞-topos and let eX : LTop → Ŝ be the
functor represented by X. Proposition 6.3.5.14 implies that eX belongs to
Ŝhv(LTopop). We will say that a sheaf F ∈ Ŝhv(LTopop) is representable if
F � eX for some ∞-topos X.

Lemma 6.3.5.21. The ∞-category Ŝhv(LTopop) is an ∞-topos in the uni-
verse U. Moreover, for every ∞-topos X, the restriction functor F �→ FX

determines a functor Ŝhv(LTopop) → ShvbS(X) which preserves U-small co-
limits and finite limits.

Proof. Let Funét(∆1,LTop) be the full subcategory Fun(∆1,LTop) spanned
by the étale morphisms and let e : Funét(∆1,LTop) → LTop be given by
evaluation at the vertex {0} ∈ ∆1. Since the collection of étale morphisms in
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LTop is stable under pushouts (Remark 6.3.5.8), the map e is a coCartesian
fibration.

We define a simplicial set K equipped with a projection p : K → LTop so
that the following universal property is satisfied: for every simplicial set K,
we have a natural bijection

HomInd(Gop)(K,K) = HomSet∆(K ×LTop Funét(∆1,LTop), Ŝ).

Then K is an ∞-category whose objects can be identified with pairs (X, FX),
where X is an ∞-topos and FX : LTopX /

ét → Ŝ is a functor. It follows from
Corollary 3.2.2.13 that the projection p is a Cartesian fibration and that a
morphism (X, FX) → (Y, FY) is p-Cartesian if and only if, for every object
U ∈ X, the canonical map FX(X/U ) → FY(Y/f∗U ) is a homotopy equivalence,
where f∗ denotes the underlying geometric morphism from X to Y.

Let K0 denote the full subcategory of K spanned by pairs (X, FX), where
the functor FX preserves small limits. It follows from the above that the
Cartesian fibration p restricts to a Cartesian fibration p0 : K0 → LTop (with
the same class of Cartesian morphisms). The fiber of K0 over an object X ∈
LTop can be identified with ShvbS(X), which is an ∞-topos in the universe
U (Remark 6.3.5.17). Moreover, to every geometric morphism f∗ : X → Y

in LTop, the Cartesian fibration p0 associates the pushforward functor f̂∗ :
ShvbS(Y) → ShvbS(X) given by composition with f∗. It follows from Remark
6.3.5.18 that f̂∗ admits a left adjoint f̂∗ and that f̂∗ is left exact. We may
summarize the situation by saying that p0 is a topos fibration (see Definition
6.3.1.6); in particular, p0 is a coCartesian fibration.

Let Y = FunLTop(LTop,K0) denote the ∞-category of sections of p0.
Unwinding the definitions, we obtain an identification

Y � Fun(Funét(∆1,LTop), Ŝ).

Let LTop′ denote the essential image of the (fully faithful) diagonal embed-
ding LTop → Fun(∆1,LTop). Consider the following conditions on a section
s : LTop → K0 of p0:

(a) The functor s carries étale morphisms in LTop to p-coCartesian mor-
phisms in X.

(b) Let S : Funét(∆1,LTop) → Ŝ be the functor corresponding to s. Then,
for every commutative diagram

Y

���
��

��
��

X

���������
�� Z

of étale morphisms in LTop, the induced map S(X → Z) → S(Y → Z)
is an equivalence in Ŝ.

(c) For every étale morphism f∗ : X → Y in LTop, the canonical map
S(idX) → S(f∗) is an equivalence in Ŝ.
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(d) The functor S is a left Kan extension of S|LTop′.

Unwinding the definitions, we see that (a) ⇔ (b) ⇒ (c) ⇔ (d). Moreover,
the implication (c) ⇒ (b) follows by a two-out-of-three argument. Let Y′

denote the full subcategory of Y spanned by those sections which satisfy the
equivalent conditions (a) through (d); it follows from Proposition 4.3.2.15
that composition with the diagonal embedding LTop → Funét(∆1,LTop)
induces an equivalence θ : Y′ → Ŝhv(LTopop). The desired result now follows
from Proposition 5.4.7.11.

To prove Lemma 6.3.5.15, we need a criterion which will allow us to de-
tect étale geometric morphisms of ∞-topoi in terms of the functors that
they represent. To formulate this criterion, we introduce a bit of temporary
terminology.

Definition 6.3.5.22. Let α : F → G be a morphism in Ŝhv(LTopop). We
will say that α is universal if, for every geometric morphism of ∞-topoi
f∗ : X → Y, the induced diagram

f̂∗FX
��

��

f̂∗GX

��
FY

�� GY

is a pullback square in ShvbS(Y) (here f̂∗ denotes the geometric morphism
described in Remark 6.3.5.18).

Remark 6.3.5.23. The collection of universal morphisms in Ŝhv(LTopop)
is stable under pullbacks and composition and contains every equivalence in
Ŝhv(LTopop).

Remark 6.3.5.24. Let p : K → Ŝhv(LTopop) be a small diagram having
a colimit F . Assume that for every edge v → v′ of K, the induced map
p(v) → p(v′) is universal. Then each of the induced maps p(v) → F is
universal. This follows immediately from Theorem 6.1.3.9.

Lemma 6.3.5.25. Let α : F → G be a morphism in Ŝhv(LTopop) and
assume that G is representable by an ∞-topos X. Then F is representable by
an ∞-topos étale over X if the following conditions are satisfied:

(1) The morphism α is universal (in the sense of Definition 6.3.5.22).

(2) For every ∞-topos Y, the homotopy fibers of the induced map F (Y) →
G(Y) are essentially small.

Remark 6.3.5.26. In fact, the converse to Lemma 6.3.5.25 is true as well,
but we will not need this fact.
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Proof. Choose a point η ∈ G(X) which induces an equivalence eX → G.
The map η induces a global section η of GX in the ∞-topos ShvbS(X). Let
F0 denote the fiber product FX ×GX

1ShvbS(X). Assumption (2) implies that

the functor F0 : Xop → Ŝ takes values which are essentially small. It follows
from Proposition 5.5.2.2 that F0 is representable by an object U ∈ X. In
particular, we have a tautological point η′ ∈ F0(U), which determines a
commutative diagram

eX/U
��

��

F

α

��
eX �� G

in Ŝhv(LTopop). To complete the proof, it will suffice to show that the upper
horizontal map is an equivalence.

Fix an ∞-topos Y and let R : Ŝhv(LTopop) → ShvbS(Y) be the restriction
map; we will show that the induced map R(eX/U

) → R(F ) is an equiv-
alence in ShvbS(Y). It will suffice to show that for every V ∈ Y, the map
R(eX/U

(V ) → R(F )(V ) induces a homotopy equivalence after passing to
the homotopy fibers over any point η′ ∈ R(G)(V ). Replacing Y by Y/V , we
may assume that η′ is induced by a geometric morphism f∗ : X → Y which
determines a map 1 → R(G), where 1 denotes the final object of ShvbS(Y).
Let F ′ = R(eX/U

)×R(G) 1 and F ′′ = R(F )×R(G) 1; to complete the proof it
will suffice to show that the induced map F ′ → F ′′ is an equivalence.

We have a commutative diagram

F ′′ ��

��

f̂∗FX
��

��

R(F )

��
1

bf∗η �� f̂∗GX
�� R(G)

in the ∞-category ShvbS(Y). Here the right square is a pullback since α is
universal, and the outer square is a pullback by construction. It follows that
the left square is also a pullback, so that

F ′′ � f̂∗(1X ×GX
FX) � f̂∗F0.

We note that f̂∗F0 can be identified with the functor represented by the
object f∗U ∈ Y, which (by virtue of Remark 6.3.5.7) is equivalent to F ′, as
desired.

Lemma 6.3.5.27. Let κ be an uncountable regular cardinal and let X• be a
simplicial object of S with the following properties:

(a) For each n ≥ 0, the connected components of X• are essentially κ-
small.

(b) For every morphism [m] → [n] in ∆, the induced map Xn → Xm has
essentially κ-small homotopy fibers.
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Let X be the geometric realization of X•. Then the induced map X0 → X
has essentially κ-small homotopy fibers.

Proof. Replacing X by one of its connected components X ′ (and each Xn
by the inverse image X ′ ×X Xn), we may suppose that X is connected.

Let R ⊆ π0X0 × π0X0 denote the image of π0X1 and let ∼ denote the
equivalence relation on π0X0 generated by R. It follows from assumption (b)
that for every κ-small subset A ⊆ π0X0, the intersections R ∩ (A × π0X0)
and R ∩ (π0X0 × A) are again κ-small. Since κ is uncountable, it follows
that the every ∼-equivalence class is κ-small. Since (π0X0)/ ∼ is isomorphic
to π0X � ∗, we conclude that π0X is itself κ-small. Combining this with
(a), we conclude that X0 is essentially κ-small. Invoking (b), we deduce
that each Xn is essentially κ-small, so that X is essentially κ-small. The
desired conclusion now follows from the long exact sequences associated to
the fibration sequences X0 ×X {∗} → X0 → X.

Lemma 6.3.5.28. Let X be an ∞-topos. Then

(1) The inclusion ShvbS(X) ⊆ Fun(Xop, Ŝ) admits a left exact left adjoint
L.

(2) Let F ∈ Fun(Xop, Ŝ) be a functor such that each of the spaces F (X) is
essentially small. Then each of the spaces LF (X) is essentially small.

(3) Let α : F → G be a morphism in Fun(Xop, Ŝ) such that, for each
X ∈ X, the homotopy fibers of the induced map F (X) → G(X) are
essentially small. Then for each X ∈ X, the homotopy fibers of the
map LF (X) → LG(X) are also essentially small.

Proof. The existence of the left adjoint L follows from Lemma 5.5.4.19. Since
ShvbS(X) contains the essential image of the Yoneda embedding j : X →
Fun(Xop, Ŝ), we can identify L ◦ j with j. Since j is left exact, Proposition
6.1.5.2 implies that L is also left exact. This proves (1).

We now prove (2). Choose a (small) regular cardinal κ such that X is
κ-accessible and let Xκ denote the full subcategory of X spanned by the
κ-compact objects. Let T denote the composition

Fun(Xop, Ŝ) T
′→ Fun((Xκ)op, Ŝ) T

′′→ Fun(Xop, Ŝ),

where T ′ is the restriction functor and T ′′ is given by the right Kan extension.
We have an evident natural transformation id → T which exhibits T as a
localization functor on Fun(Xop, Ŝ). Proposition 6.1.3.6 implies that every
Ŝ-valued sheaf on X is T -local. It follows that the canonical map L → LT
is an equivalence of functors. In particular, to prove that LF (X) is locally
small, we may assume without loss of generality that F is T -local.

Let Fun′(Xop, Ŝ) denote the full subcategory of Fun(Xop, Ŝ) spanned by
the T -local functors (in other words, those functors which are right Kan
extensions of their restriction to (Xκ)op; by Proposition 4.3.2.15 this ∞-
category is equivalent to Fun((Xκ)op, Ŝ)). We can identify Fun′(Xop, Ŝ) with



626 CHAPTER 6

the ∞-category of Ŝ-valued sheaves ShvbS(P(Xκ)) on the ∞-topos P(Xκ).
Let F ′ be the image of F under this identification; we observe that the
functor F ′ : P(Xκ)op → Ŝ takes essentially small values. In Remark 6.3.5.17,
we saw that this ∞-category contains ShvbS(X) as a left exact localization
and that the localization functor L′ : ShvbS(P(Xκ)) → ShvbS(X) is equivalent
to L when restricted to ShvS(P(Xκ)) � P(Xκ). Since F ′ belongs to the
essential image of the inclusion ShvS(P(Xκ)) ⊆ ShvbS(P(Xκ)), the argument
given there proves that L′F ′ belongs to the essential image of the inclusion
ShvS(X) ⊆ ShvbS(X), so that LF (X) is essentially small, as desired.

To prove (3), let us fix a point η ∈ LG(X). We wish to prove the following
stronger version of (3):

(3′) For every map U → X in X, the homotopy fiber of the induced map
LF → LG is essentially small (here the homotopy fiber is taken over
the point determined by η).

Let X0
/X denote the full subcategory of X/X spanned by those morphisms

U → X for which condition (2′) is satisfied. Since LF and LG belong to
ShvbS(X) (and since the collection of essentially small spaces is stable under
small limits), we conclude that X0

/X is stable under small colimits in X/X .
Let X1

/X be the largest sieve contained in X0
/X (in other words, a morphism

U → X belongs to X1
/X if and only if, for every morphism V → U in X, the

composite map V → X belongs to X0
/X). Since colimits in X are universal,

we conclude that X1
/X is stable under small colimits in X/X . It follows that

X1
/X � X/X0 for some monomorphism i : X0 → X in X. We wish to show

that i is an equivalence.
Since L is left exact, we have L(G×LG j(X)) � Lj(X) � j(X). In partic-

ular, the map G×LG j(X) → j(X0) cannot factor through j(X0) unless i is
an equivalence. It will therefore suffice to show that G×j(X) j(X0) � G. In
other words, it will suffice to show that if U ∈ X/X and η′ ∈ G(U) is a point
such that the images of η and η′ lie in the same connected component of
LG(U), then U ∈ X1

/X . Since the existence of η′ is stable under the process
of replacing U by some further refinement V → U , it will suffice to show
that U ∈ X0

/X . Replacing X by U , we obtain the following reformulation of
(3′):

(3′′) Let η′ ∈ G(X). Then the homotopy fiber Z of the induced map
LF (X) → LG(X) (over the point determined by η) is essentially small.

Since L is left exact, we can identify Z with LF0(X), where F0 = F ×G

j(X). Since the homotopy fibers of the maps F (Y ) → G(Y ) are essentially
small, we may assume without loss of generality that F0 ∈ Fun(Xop, S).
Invoking (2), we deduce that the values of LF0 are essentially small, as
desired.

Proof of Lemma 6.3.5.15. Let X• be a simplicial object of LTopopét and let
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F• be its image under the Yoneda embedding j : LTopop → Ŝhv(LTopop).
Let F be a geometric realization of |F•|. We will prove the following:

(∗) The map β : F0 → F satisfies conditions (1) and (2) of Lemma 6.3.5.25.

Assuming (∗) for the moment, we will complete the proof of Lemma 6.3.5.15.
Let F ′

• be a Čech nerve of the induced map F0 → F (so that F ′
n � F0×F F0×

· · ·×F F0; in particular F ′
0 � F0). We first claim that each F ′

n is representable
by an ∞-topos X′

n and that each inclusion [0] ↪→ [n] induces an étale map
of ∞-topos X′

n → X′
0 � X0. Since F ′

• is a groupoid object of Ŝhv(LTopop)
(and F ′

0 � F0 is representable by the ∞-topos X0), it will suffice to prove
this result when n = 1. Consider the pullback diagram

F ′
1

β′
��

��

F ′
0

��
F0

β �� F.

It follows from condition (∗) that β′ satisfies conditions (1) and (2) of Lemma
6.3.5.25, so that F ′

1 is representable by an ∞-topos étale over X0, as desired.
Since the Yoneda embedding j is fully faithful, we may assume without loss

of generality that F ′
• is the image under j of a groupoid object X′

• of LTopop.
Using Corollary 6.3.5.9, we deduce that X′

• defines a simplicial object of the
subcategory LTopopét . The evident natural transformation F• → F ′

• induces
a map of simplicial objects α : X• → X′

•; we claim that α has the desired
properties. The only nontrivial point is to verify that the induced map of
geometric realizations |X• | → |X′

• | is an equivalence of ∞-topoi. For this,
it suffices to show that for every ∞-topos Y, the upper horizontal map in
the diagram

MapLTopop(|X′
• |,Y) ��

��

MapLTopop(|X• |,Y)

��
lim←−MapLTopop(X′

n,Y) �� lim←−MapLTopop(Xn,Y)

is a homotopy equivalence. Since the vertical maps are homotopy equiv-
alences, it suffices to show that the lower horizontal map is a homotopy
equivalence. Since j is fully faithful, it suffices to show that the lower hori-
zontal map in the analogous diagram

MapdShv(LTopop)
(|F ′

•|, eY) ��

��

MapdShv(LTopop)
(|F•|, eY)

��
lim←−MapdShv(LTopop)

(F ′
n, eY) �� lim←−MapdShv(LTopop)

(Fn, eY)

is a homotopy equivalence. Again, the vertical maps are homotopy equiv-
alences, so we are reduced to showing that the upper horizontal map is a
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homotopy equivalence. This follows from the fact that we have an equiva-
lence |F•| � F � |F ′

•| in Ŝhv(LTopop) since groupoid objects in Ŝhv(LTopop)
are effective (Lemma 6.3.5.21).

It remains to prove (∗). Remark 6.3.5.24 implies that β : F0 → F is
universal. To complete the proof, we must show that for every ∞-topos Y,
the homotopy fibers of the induced map F0(Y) → F (Y) are essentially small.
Let R : Ŝhv(LTopop) → ShvbS(Y) denote the restriction map, let G• denote
the image of F• under R, and let G = |G•| � R(F ). Let G′ denote the
geometric realization of G• in the larger ∞-category Fun(Yop, Ŝ) and let
L : Fun(Yop, Ŝ) → ShvbS(Y) be a left adjoint to the inclusion (see Lemma
6.3.5.28). Then we can identify the map G0 → G with the image under L of
the map u : G0 → G′. In view of Lemma 6.3.5.28, it will suffice to show that
for every object U ∈ Y, the induced map G0(U) → G′(U) has essentially
small homotopy fibers.

For each n ≥ 0 and each object U ∈ Y, we can identify Gn(U) with the
maximal Kan complex contained in Fun∗(Xn,Y/U ). Since the ∞-category
Fun∗(Xn,Y/U ) is locally small (Proposition 6.3.1.13), we conclude that each
connected component of Gn(U) is essentially small. Moreover, for every mor-
phism [m] → [n] in ∆, the induced map β : Gn(U) → Gm(U) is induced by
composition with an étale geometric morphism g∗ : Xm → Xn, so that the
homotopy fibers of β are essentially small by Remark 6.3.5.7. The desired
result now follows from Lemma 6.3.5.27.

6.3.6 Structure Theory for ∞-Topoi

In this section we will analyze the following question: given a geometric
morphism f : X → Y of ∞-topoi, when is f an equivalence? Clearly, this is
true if and only if the pullback functor f∗ is both fully faithful and essentially
surjective. It is useful to isolate and study these conditions individually.

Definition 6.3.6.1. Let f : X → Y be a geometric morphism of ∞-topoi.
The image of f is defined to be the smallest full subcategory of X which
contains f∗ Y and is stable under small colimits and finite limits. We will say
that f is algebraic if the image of f coincides with X.

Our first goal is to prove that the image of a geometric morphism is itself
an ∞-topos.

Proposition 6.3.6.2. Let f : X → Z be a geometric morphism of ∞-topoi
and let Y be the image of f . Then Y is an ∞-topos. Moreover, the inclusion
Y ⊆ X is left exact and colimit-preserving, so we obtain a factorization of f
as a composition of geometric morphisms

X
g→ Y

h→ Z,

where h is algebraic and g∗ is fully faithful.

Proof. We will show that Y satisfies the ∞-categorical versions of Giraud’s
axioms (see Theorem 6.1.0.6). Axioms (ii), (iii), and (iv) are concerned
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with the interaction between colimits and finite limits. Since X satisfies these
axioms and Y ⊆ X is stable under the relevant constructions, Y automatically
satisfies these axioms as well. The only nontrivial point is to verify (i), which
asserts that Y is presentable.

Choose a small collection of objects {Zα} which generate Z under colimits.
Now choose an uncountable regular cardinal τ with the following properties:

(1) Each f∗(Zα) is a τ -compact object of X.

(2) The final object 1X is τ -compact.

(3) The limits functor Fun(Λ2
2,X) → X (a right adjoint to the diagonal

functor) is τ -continuous and preserves τ -compact objects.

Let Y′ be the collection of all objects of Y which are τ -compact when
considered as objects of X. Clearly, each object of Y′ is also τ -compact when
regarded as an object of Y. Moreover, because X is accessible, Y′ is essentially
small. It will therefore suffice to prove that Y′ generates Y under colimits.

Choose a minimal model Y′
0 for Y. Since X is accessible, the full subcate-

gory Xκ spanned by the κ-compact objects is essentially small, so that Y′
0 is

small. According to Proposition 5.3.5.10, there exists a τ -continuous functor
F : Indτ (Y′

0) → X whose composition with the Yoneda embedding is equiv-
alent to the inclusion Y′

0 ⊆ X. Since Y′
0 admits τ -small colimits, Indτ (Y

′
0) is

presentable. Proposition 5.3.5.11 implies that F is fully faithful; let Y′′ be its
essential image. To complete the proof, it will suffice to show that Y′′ = Y.

Since Y is stable under colimits in X, we have Y′′ ⊆ Y. According to
Proposition 5.5.1.9, F preserves small colimits, so that Y′′ is stable under
small colimits in X. By construction, Y′′ contains each f∗(Zα). Since f∗

preserves colimits, we conclude that Y′′ contains f∗ Z. By definition Y is the
smallest full subcategory of X which contains f∗ Z and is stable under small
colimits and finite limits. It remains only to show that Y′′ is stable under
finite limits. Assumption (2) guarantees that Y′′ contains the final object
of X, so we need only show that Y′′ is stable under pullbacks. Consider a
diagram p : Λ2

2 → Y′′. The proof of Proposition 5.4.4.3 (applied with K = Λ2
2

and κ = ω) shows that p can be written as a τ -filtered colimit of diagrams
pα : Λ2

2 → Y′′. Since filtered colimits in X are left exact (Example 7.3.4.7),
we conclude that the limit of p can be obtained as a τ -filtered colimit of
limits of the diagrams pβ . In view of assumption (3), each of these limits lies
in Y′, so that the limit of p lies in Y′′, as desired.

Remark 6.3.6.3. The factorization of Proposition 6.3.6.2 is unique up to
(canonical) equivalence.

The terminology of Definition 6.3.6.1 is partially justified by the following
observations:

Proposition 6.3.6.4. (1) Every étale geometric morphism between ∞-
topoi is algebraic.
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(2) The collection of algebraic geometric morphisms of ∞-topoi is stable
under filtered limits (in RTop).

Proof. We first prove (1). Let X be an ∞-topos, let U be an object of X, let
π! : X/U → X be the projection functor and let π∗ be a left adjoint to π!. Let
f : X → U be an object of X/U , and let F : f → idU be a morphism in X/U

(uniquely determined up to equivalence; for example, we can take F to be
the composition of f with a retraction ∆1 × ∆1 → ∆1). Let g : F → π∗π!F
be the unit map for the adjunction between π∗ and π!. We claim that g is
a pullback square in X/U . According to Proposition 4.4.2.9, it will suffice to
verify that the image of g under π! is a pullback square in X. But this square
can be identified with

X ��

��

X × U

��
U

δ �� U × U,

which is easily shown to be Cartesian. It follows that, in X/U , f can be
obtained as a fiber product of the final object with objects that lie in the
essential image of π∗. It follows that π∗ X generates X/U under finite limits,
so that π is algebraic.

To prove (2), we consider a geometric morphism f : X → Y which is a
filtered limit of algebraic geometric morphisms {fα : Xα → Yα} in the ∞-
category Fun(∆1,RTop). Let X′ ⊆ X be a full subcategory which is stable
under finite limits, stable under small colimits, and contains f∗ Y. We wish
to prove that X′ = X. For each α, we have a diagram of ∞-topoi

X
f ��

ψ(α)

��

Y

��
Xα

fα �� Yα .

Let X′
α be the preimage of X′ under ψ(α)∗. Then X′

α ⊆ Xα is stable under
finite limits, stable under small colimits, and contains the essential image
of f∗α. Since fα is algebraic, we conclude that X′

α = Xα. In other words,
X′ contains the essential image of each ψ(α)∗. Lemma 6.3.3.6 implies that
every object of X can be realized as a filtered colimit of objects, each of
which belongs to the essential image of f∗α for α appropriately chosen. Since
X′ is stable under small colimits, we conclude that X′ = X. It follows that f
is algebraic, as desired.

Remark 6.3.6.5. It is possible to formulate a converse to Proposition
6.3.6.4. Namely, one can characterize the class of algebraic morphisms as the
smallest class of geometric morphisms which contains all étale morphisms
and is stable under certain kinds of filtered limits. However, it is necessary
to allow limits parametrized not only by filtered ∞-categories but also by
filtered stacks over ∞-topoi. The precise statement requires ideas which lie
outside the scope of this book.
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Having achieved a rudimentary understanding of the class of algebraic
geometric morphisms, we now turn our attention to the opposite extreme:
namely, geometric morphisms f : X → Y, where f∗ is fully faithful.

Proposition 6.3.6.6. Let f : X → Y be a geometric morphism of ∞-topoi.
Suppose that f∗ is fully faithful and essentially surjective on 1-truncated
objects. Then f∗ is essentially surjective on n-truncated objects for all n.

The proof uses ideas which will be introduced in §6.5.1 and §7.2.2.

Proof. Without loss of generality, we may identify Y with the essential image
of f∗. We use induction on n. The result is obvious for n = 1. Assume that
n > 1 and let X be an n-truncated object of X. By the inductive hypothesis,
U = τ≤n−1X belongs to Y. Replacing X and Y by X/U and Y/U , we may
suppose that X is n-connective.

We observe that πnX is an abelian group object of the ordinary topos
Disc(X/X). Since X is 2-connective, Proposition 7.2.1.13 implies that the
pullback functor Disc(X) → Disc(X/X) is an equivalence of categories. We
may therefore identify πnX with an abelian group object A ∈ Disc(X). Since
A is discrete, it belongs to Y. It follows that the Eilenberg-MacLane object
K(A,n + 1) belongs to Y. Since X is an n-gerb banded by A, Theorem
7.2.2.26 implies the existence of a pullback diagram

X ��

��

1X

��
1X

�� K(A,n+ 1).

Since Y is stable under pullbacks in X, we conclude that X ∈ Y, as desired.

Corollary 6.3.6.7. Let f : X → Y be a geometric morphism of ∞-topoi.
Suppose that f∗ is fully faithful and essentially surjective on 1-truncated
objects and that X is n-localic (see §6.4.5). Then f is an equivalence of ∞-
topoi.

Remark 6.3.6.8. In the situation of Corollary 6.3.6.7, one can eliminate the
hypothesis that X is n-localic in the presence of suitable finite-dimensionality
assumptions on X and Y; see §7.2.1.

Remark 6.3.6.9. Let X be an n-localic ∞-topos and let Y be the 2-localic
∞-topos associated to the 2-topos τ≤1 X, so that we have a geometric mor-
phism f : X → Y. It follows from Corollary 6.3.6.7 that f is algebraic.
Roughly speaking, this tells us that there is only a very superficial inter-
action between the theory of k-categories and “topology,” for k > 2. On
the other hand, this statement fails dramatically if k = 1: the relation-
ship between an ordinary topos and its underlying locale is typically very
complicated and not algebraic in any reasonable sense. It is natural to ask
what happens when k = 2. In other words, does Proposition 6.3.6.6 remain
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valid if f∗ is only assumed to be essentially surjective on discrete objects?
An affirmative answer would indicate that our theory of ∞-topoi is a rel-
atively modest extension of classical topos theory. A counterexample could
be equally interesting if it were to illustrate a nontrivial interaction between
higher category theory and geometry.

6.4 N-TOPOI

Roughly speaking, an ordinary topos is a category which resembles the cat-
egory of sheaves of sets on a topological space X. In §6.1, we introduced
the definition of an ∞-topos. In the same rough terms, we can think of an
∞-topos as an ∞-category which resembles the ∞-category of sheaves of
∞-groupoids on a topological space X. Phrased in this way, it is natural to
guess that these two notions have a common generalization. In §6.4.1, we will
introduce the notion of an n-topos for every 0 ≤ n ≤ ∞. The idea is that an
n-topos should be an n-category which resembles the n-category of sheaves
of (n − 1)-groupoids on a topological space X. Of course, there are many
approaches to making this idea precise. Our main result, Theorem 6.4.1.5,
asserts that several candidate definitions are equivalent to one another. The
proof of Theorem 6.4.1.5 will occupy our attention for most of this section.
In §6.4.3, we study an axiomatization of the class of n-topoi in the spirit of
Giraud’s theorem, and in §6.4.4 we will give a characterization of n-topoi
based on their descent properties. The case of n = 0 is somewhat excep-
tional and merits special treatement. In §6.4.2, we will show that a 0-topos
is essentially the same thing as a locale (a mild generalization of the notion
of a topological space).

Our main motivation for introducing the definition of an n-topos is that
it allows us to study ∞-topoi and topological spaces (or more generally, 0-
topoi) in the same setting. In §6.4.5, we will introduce constructions which
allow us to pass back and forth between m-topoi and n-topoi for any 0 ≤
m ≤ n ≤ ∞. We introduce an ∞-category TopR

n of n-topoi for each n ≤ 0
and show that each TopR

n can be regarded as a localization of the ∞-category
RTop. In other words, the study of n-topoi for n < ∞ can be regarded as a
special case of the theory of ∞-topoi.

6.4.1 Characterizations of n-Topoi

In this section, we will introduce the definition of n-topos for 0 ≤ n < ∞.
In view of Theorem 6.1.0.6, there are several reasonable approaches to the
subject. We will begin with an extrinsic approach.

Definition 6.4.1.1. Let 0 ≤ n < ∞. An ∞-category X is an n-topos if there
exists a small ∞-category C and an (accessible) left exact localization

L : P≤n−1(C) → X,
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where P≤n−1(C) denotes the full subcategory of P(C) spanned by the (n−1)-
truncated objects.

Remark 6.4.1.2. The accessibility condition on the localization functor
L : P≤n−1(C) → X of Definition 6.4.1.1 is superfluous: we will show that such
a left exact localization of P≤n−1(C) is automatically accessible (combine
Proposition 6.4.3.9 with Corollary 6.2.1.7).

Remark 6.4.1.3. An ∞-category X is a 1-topos if and only if it is equivalent
to the nerve of an ordinary (Grothendieck) topos; this follows immediately
from characterization (B) of Proposition 6.1.0.1.

Remark 6.4.1.4. Definition 6.4.1.1 also makes sense in the case n = −1 but
is not very interesting. Up to equivalence, there is precisely one (−1)-topos:
the final ∞-category ∗.

Our main goal is to prove the following result:

Theorem 6.4.1.5. Let X be a presentable ∞-category and let 0 ≤ n < ∞.
The following conditions are equivalent:

(1) There exists a small n-category C which admits finite limits, a Grothen-
dieck topology on C, and an equivalence of X with the full subcategory of
Shv≤n−1(C) ⊆ Shv(C) consisting of (n−1)-truncated objects of Shv(C).

(2) There exists an ∞-topos Y and an equivalence X → τ≤n−1 Y.

(3) The ∞-category X is an n-topos.

(4) Colimits in X are universal, X is equivalent to an n-category, and the
class of (n− 2)-truncated morphisms in X is local (see §6.1.3).

(5) Colimits in X are universal, X is equivalent to an n-category, and for
all sufficiently large regular cardinals κ, there exists an object of X

which classifies (n − 2)-truncated relatively κ-compact morphisms in
X.

(6) The ∞-category X satisfies the following n-categorical versions of Gi-
raud’s axioms:

(i) The ∞-category X is equivalent to a presentable n-category.

(ii) Colimits in X are universal.

(iii) If n > 0, then coproducts in X are disjoint.

(iv) Every n-efficient (see §6.4.3) groupoid object of X is effective.

Proof. The case n = 0 will be analyzed very explicitly in §6.4.2; let us
therefore restrict our attention to the case n > 0. The implication (1) ⇒ (2)
is obvious (take Y = Shv(C)). Suppose that (2) is satisfied. Without loss of
generality, we may suppose that Y is an (accessible) left exact localization
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of P(C) for some small ∞-category C. Then X is a left exact localization of
P≤n−1(C), which proves (3).

We next prove the converse (3) ⇒ (2). We first observe that P≤n−1(C) =
Fun(Cop, τ≤n−1 S). Let hn C be the underlying n-category of C, as in Proposi-
tion 2.3.4.12. Since τ≤n−1 S is equivalent to an n-category, we conclude that
composition with the projection C → hnC induces an equivalence

P≤n−1(hnC) → P≤n−1(C).

Consequently, we may assume without loss of generality (replacing C by hnC

if necessary) that there is an accessible left exact localization L : P≤n−1(C) →
X, where C is an n-category. Let S be the collection of all morphisms u in
P≤n−1(C) such that Lu is an equivalence, so that S is of small generation. Let
S be the strongly saturated class of morphisms in P(C) generated by S. We
observe that τ−1

≤n−1(S) is a strongly saturated class of morphisms containing
S, so that S ⊆ τ−1

≤n−1(S). It follows that S−1 P≤n−1(C) is contained in Y =

S
−1

P(C) and may therefore be identified with the collection of (n − 1)-
truncated objects of Y. To complete the proof, it will suffice to show that
Y is an ∞-topos. For this, it will suffice to show that S is stable under
pullbacks. Let T be the collection of all morphisms f : X → Y in P(C) such
that for every pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y,

the morphism f ′ belongs to S. It is easy to see that T is strongly saturated;
we wish to show that T ⊆ S. It will therefore suffice to prove that S ⊆ T . Let
us therefore fix f : X → Y belonging to S and let D be the full subcategory
of P(C) spanned by those objects Y ′ such that for any pullback diagram

X ′ ��

f ′

��

X

f

��
Y ′ �� Y,

f ′ belongs to S. Since colimits in P(C) are universal and S is stable under
colimits, we conclude that D is stable under colimits in P(C). Since P(C) is
generated under colimits by the essential image of the Yoneda embedding
j : C → P(C), it will suffice to show that j(C) ∈ D for each C ∈ C. We now
observe that P≤n−1(C) ⊆ D (since S is stable under pullbacks in P≤n−1(C))
and that j(C) ∈ P≤n−1(C) by virtue of our assumption that C is an n-
category.

The implication (2) ⇒ (4) will be established in §6.4.4 (Propositions
6.4.4.6 and 6.4.4.7). The proof of Theorem 6.1.6.8 adapts without change
to show that (4) ⇔ (5). The implication (4) ⇒ (6) will be proven in §6.4.4
(Proposition 6.4.4.9). Finally, the “difficult” implication (6) ⇒ (1) will be
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proven in §6.4.3 (Proposition 6.4.3.6) using an inductive argument quite
similar to the proof of Giraud’s original result.

Remark 6.4.1.6. Theorem 6.4.1.5 is slightly stronger than its ∞-categorical
analogue, Theorem 6.1.0.6: it asserts that every n-topos arises as an n-
category of sheaves on some n-category C equipped with a Grothendieck
topology.

Remark 6.4.1.7. Let X be a presentable ∞-category in which colimits are
universal. Then there exists a regular cardinal κ such that every monomor-
phism is relatively κ-compact. In this case, characterization (5) of Theorem
6.4.1.5 recovers a classical description of ordinary topos theory: a category
X is a topos if and only if it is presentable, colimits in X are universal, and
X has a subobject classifier.

6.4.2 0-Topoi and Locales

Our goal in this section is to prove Theorem 6.4.1.5 in the special case n = 0.
A byproduct of our proof is a classification result (Corollary 6.4.2.6) which
identifies the theory of 0-topoi with the classical theory of locales (Definition
6.4.2.3).

We begin by observing that when n = 0, a morphism in an ∞-category
X is (n − 2)-truncated if and only if it is an equivalence. Consequently,
any final object of X is an (n − 2)-truncated morphism classifier, and the
class of (n − 2)-truncated morphisms is automatically local (in the sense
of Definition 6.1.3.8). Moreover, if X is a 0-category, then every groupoid
object in X is equivalent to a constant groupoid and therefore automatically
effective. Consequently, characterizations (4) through (6) in Theorem 6.4.1.5
all reduce to the same condition on X and we may restate the desired result
as follows:

Theorem 6.4.2.1. Let X be a presentable 0-category. The following condi-
tions are equivalent:

(1) There exists a small 0-category C which admits finite limits, a Groth-
endieck topology on C, and an equivalence X → Shv≤−1(C).

(2) There exists an ∞-topos Y and an equivalence X → τ≤−1 Y.

(3) The ∞-category X is a 0-topos.

(4) Colimits in X are universal.

Before giving a proof of Theorem 6.4.2.1, it is convenient to reformulate
condition (4). Recall that any 0-category X is equivalent to N(U), where U

is a partially ordered set which is well-defined up to canonical isomorphism
(see Example 2.3.4.3). The presentability of X is equivalent to the assertion
that U is a complete lattice: that is, every subset of U has a least upper
bound in U (this condition formally implies the existence of greater lower
bounds as well).
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Remark 6.4.2.2. If n = 0, then every presentable n-category is essentially
small. This is typically not true for n > 0.

We note that the condition that colimits in X be universal can also be
formulated in terms of the partially ordered set U: it is equivalent to the
assertion that meets in U commute with infinite joins in the following sense:

Definition 6.4.2.3. Let U be a partially ordered set. We will say that U is
a locale if the following conditions are satisfied:

(1) Every subset {Uα} of elements of U has a least upper bound
⋃
α Uα in

U.

(2) The formation of least upper bounds commutes with meets in the sense
that ⋃

(Uα ∩ V ) = (
⋃
Uα) ∩ V.

(Here (U ∩ V ) denotes the greatest lower bound of U and V , which
exists by virtue of assumption (1).)

Example 6.4.2.4. For every topological space X, the collection U(X) of
open subsets of X forms a locale. Conversely, if U is a locale, then there is
a natural topology on the collection of prime filters of U which allows us to
extract a topological space from U. These two constructions are adjoint to
one another, and in good cases they are actually inverse equivalences. More
precisely, the adjunction gives rise to an equivalence between the category
of spatial locales and the category of sober topological spaces. In general, a
locale can be regarded as a sort of generalized topological space in which one
may speak of open sets but one does not generally have a sufficient supply
of points. We refer the reader to [42] for details.

We can summarize the above discussion as follows:

Proposition 6.4.2.5. Let X be a presentable 0-category. Then colimits in
X are universal if and only if X is equivalent to N(U), where U is a locale.

We are now ready to give the proof of Theorem 6.4.2.1.

Proof. The implications (1) ⇒ (2) ⇒ (3) are easy. Suppose that (3) is sat-
isfied, so that X is a left exact localization of P≤−1(C) for some small ∞-
category C. Up to equivalence, there are precisely two (−1)-truncated spaces:
∅ and ∗. Consequently, τ≤−1 S is equivalent to the two-object ∞-category ∆1.
It follows that P≤−1(C) is equivalent to Fun(Cop,∆1).

Let X̃ denote the collection of sieves on C ordered by inclusion. Then,
identifying a functor f : C → ∆1 with the sieve f−1{0} ⊆ C, we deduce that
Fun(C,∆1) is isomorphic to the nerve N(X̃).

Without loss of generality, we may identify X with the essential image of
a localization functor L : N(X̃) → N(X̃). The map L may be identified with
a map of partially ordered sets from X̃ to itself. Unwinding the definitions,
we find that the condition that L be a left exact localization is equivalent to
the following three properties:
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(A) The map L : X̃ → X̃ is idempotent.

(B) For each U ∈ X̃, U ⊆ L(U).

(C) The map L : X̃ → X̃ preserves finite intersections (since X is a left
exact localization of N(X̃).)

Let U = {U ∈ X̃ : LU = U}. Then it is easy to see that X is equivalent
to the nerve N(U) and that the partially ordered set X satisfies conditions
(1) and (2) of Definition 6.4.2.3. Therefore U is a locale, so that colimits in
N(U) are universal by Proposition 6.4.2.5. This proves that (3) ⇒ (4).

Now suppose that (4) is satisfied. Using Proposition 6.4.2.5, we may sup-
pose without loss of generality that X = N(U), where U is a locale. We
observe that X is itself small. Let us say that a sieve {Uα → U} on an object
U ∈ X is covering if

U =
⋃
α

Uα

in U. Using the assumption that U is a locale, it is easy to see that the
collection of covering sieves determines a Grothendieck topology on X. The
∞-category P≤−1(X) can be identified with the nerve of the partially ordered
set of all downward-closed subsets U0 ⊆ U. Moreover, an object of P≤−1(X)
belongs to Shv≤−1(X) if and only if the corresponding subset U0 ⊆ U is
stable under joins. Every such subset U0 ⊆ U has a largest element U ∈ U,
and we then have an identification U0 = {V ∈ U : V ≤ U}. It follows that
Shv≤−1(X) is equivalent to the nerve of the partially ordered set U, which
is X. This proves (1) and concludes the argument.

We may summarize the results of this section as follows:

Corollary 6.4.2.6. An ∞-category X is a 0-topos if and only if it is equiv-
alent to N(U), where U is a locale.

Remark 6.4.2.7. Coproducts in a 0-topos are typically not disjoint.

In classical topos theory, there are functorial constructions for passing back
and forth between topoi and locales. Given a locale U (such as the locale
U(X) of open subsets of a topological space X), one may define a topos X of
sheaves (of sets) on U. The original locale U may then be recovered as the
partially ordered set of subobjects of the final object of X. In fact, for any
topos X, the partially ordered set U of subobjects of the final object forms
a locale. In general, X cannot be recovered as the category of sheaves on
U; this is true if and only if X is a localic topos: that is, if and only if X is
generated under colimits by the collection of subobjects of the final object
1X. In §6.3, we will discuss a generalization of this picture which will allow
us to pass between m-topoi and n-topoi for any m ≤ n.
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6.4.3 Giraud’s Axioms for n-Topoi

In §6.1.1, we sketched an axiomatic approach to the theory of ∞-topoi. The
axioms we introduced were closely parallel to Giraud’s axioms for ordinary
topoi with one important difference. If X is an ∞-topos, then every groupoid
object of X is effective. If X is an ordinary topos, then a groupoid U• is
effective only if the diagram

U1
���� U0

exhibits U1 as an equivalence relation on U0. Our first goal in this section is
to formulate an analogue of this condition, which will lead us to an axiomatic
description of n-topoi for all 0 ≤ n ≤ ∞.

Definition 6.4.3.1. Let X be an ∞-category and U• a groupoid object of
X. We will say that U• is n-efficient if the natural map

U1 → U0 × U0

(which is well-defined up to equivalence) is (n− 2)-truncated.

Remark 6.4.3.2. By convention, we regard every groupoid object as ∞-
efficient.

Example 6.4.3.3. If C is (the nerve of) an ordinary category, then giving
a 1-efficient groupoid object U• of C is equivalent to giving an object U0 of
C and an equivalence relation U1 on U0.

Proposition 6.4.3.4. An ∞-category X is equivalent to an n-category if
and only if every effective groupoid in X is n-efficient.

Proof. Suppose first that C is equivalent to an n-category. Let U• be an
effective groupoid in X. Then U• has a colimit U−1. The existence of a
pullback diagram

U1
��

��

U0

��
U0

�� U−1

implies that the map f ′ : U1 → U0 × U0 is a pullback of the diagonal map
f : U−1 → U−1 × U−1. We wish to show that f ′ is (n − 2)-truncated. By
Lemma 5.5.6.12, it suffices to show that f is (n − 2)-truncated. By Lemma
5.5.6.15, this is equivalent to the assertion that U−1 is (n − 1)-truncated.
Since C is equivalent to an n-category, every object of C is (n−1)-truncated.

Now suppose that every effective groupoid in X is n-efficient. Let U ∈ X

be an object; we wish to show that U is (n − 1)-truncated. The constant
simplicial object U• taking the value U is an effective groupoid and therefore
n-efficient. It follows that the diagonal map U → U ×U is (n−2)-truncated.
Lemma 5.5.6.15 implies that U is (n− 1)-truncated, as desired.
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We are now almost ready to supply the “hard” step in the proof of The-
orem 6.4.1.5 (namely, the implication (6) ⇒ (1)). We first need a slightly
technical lemma whose proof requires routine cardinality estimates.

Lemma 6.4.3.5. Let X be a presentable ∞-category in which colimits are
universal. There exists a regular cardinal τ such that X is τ -accessible, and
the full subcategory of Xτ ⊆ X spanned by the τ -compact objects is stable
under the formation of subobjects and finite limits.

Proof. Choose a regular cardinal κ such that X is κ-accessible. We observe
that, up to equivalence, there are a bounded number of κ-compact objects
of X and therefore a bounded number of subobjects of κ-compact objects of
X. Now choose an uncountable regular cardinal τ � κ such that:

(1) The ∞-category Xκ is essentially τ -small.

(2) For each X ∈ Xκ and each monomorphism i : U → X, U is τ -compact.

It is clear that X is τ -accessible, and Xτ is stable under finite limits (in fact,
κ-small limits) by Proposition 5.4.7.4. To complete the proof, we must show
that Xτ is stable under the formation of subobjects. Let i : U → X be a
monomorphism, where X is τ -compact. Since X is κ-accessible, we can write
X as the colimit of a κ-filtered diagram p : J → Xκ. Since X is τ -compact,
it is a retract of the colimit X ′ of some τ -small subdiagram p| J′. Since τ is
uncountable, we can use Proposition 4.4.5.12 to write X as the colimit of a
τ -small diagram Idem → X which carries the unique object of Idem to X ′.
Since colimits in X are universal, it follows that U can be written as a τ -small
colimit of a diagram Idem → X which takes the value U ′ = U ×X X

′. It will
therefore suffice to prove that U ′ is τ -compact. Invoking the universality of
colimits once more, we observe that U ′ is a τ -small colimit of objects of the
form U ′′ = U ′ ×X′ p(J), where J is an object of J′. We now observe that U ′′

is a subobject of p(J) ∈ Xκ and is therefore τ -compact by assumption (2).
It follows that U ′, being a τ -small colimit of τ -compact objects of X, is also
τ -compact.

Proposition 6.4.3.6. Let 0 < n < ∞ and let X be an ∞-category satisfying
the following conditions:

(i) The ∞-category X is presentable.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) The effective groupoid objects of X are precisely the n-efficient group-
oids.

Then there exists a small n-category C which admits finite limits, a Groth-
endieck topology on C, and an equivalence X → Shv≤n−1(C).
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Proof. Without loss of generality, we may suppose that X is minimal. Choose
a regular cardinal κ such that X is κ-accessible, and the full subcategory
C ⊆ X spanned by the κ-compact objects of X is stable under the formation of
subobjects and finite limits (Lemma 6.4.3.5). We endow C with the canonical
topology induced by the inclusion C ⊆ X. According to Theorem 5.1.5.6,
there is an (essentially unique) colimit-preserving functor F : P(C) → X

such that F ◦ j is equivalent to the inclusion C ⊆ X, where j : C → P(C)
denotes the Yoneda embedding. The proof of Theorem 5.5.1.1 shows that F
has a fully faithful right adjoint G : X → P(C). We will complete the proof
by showing that the essential image of G is precisely Shv≤n−1(C).

Since X is equivalent to an n-category (Proposition 6.4.3.4) and G is left
exact, we conclude that G factors through P≤n−1(C). It follows from Proposi-
tion 6.2.4.6 thatG factors through Shv≤n−1(C). Let X′ ⊆ Shv≤n−1(C) denote
the essential image of G. To complete the proof, it will suffice to show that
X′ = Shv≤n−1(C). Let ∅ be an initial object of X. The space MapX(X, ∅)
is contractible if X is an initial object of X and empty otherwise (Lemma
6.1.3.6). It follows from Proposition 6.2.2.10 that G(∅) is an initial object of
Shv≤n−1(C).

We next claim that X′ is stable under small coproducts in Shv≤n−1(C).
It will suffice to show that the map G preserves coproducts. Let {Uα} be a
small collection of objects of X and U their coproduct in X. According to
Lemma 6.1.5.1, we have a pullback diagram

Vα,β
φ ��

φ′

��

Uα

��
Uβ �� U,

where Vα,β is an initial object of X if α �= β, while φ and φ′ are equivalences
if α = β. The functor G preserves all limits, so that the diagram

G(Vα,β) ��

��

G(Uα)

��
G(Uβ) �� G(U)

is a pullback in Shv≤n−1(C). Let U ′ denote a coproduct of the objects i(Uα)
in Shv≤n−1(C) and let g : U ′ → G(U) be the induced map. Since colimits in
X are universal, we obtain a natural identification of U ′ ×G(U) U

′ with the
coproduct ∐

α,β

(G(Uα) ×G(U) G(Uβ)) �
∐
α

Uα � U ′,

where the second equivalence follows from our observation that G preserves
initial objects. Applying Lemma 5.5.6.15, we deduce that g is a monomor-
phism.
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To prove that g is an equivalence, it will suffice to show that the map
π0U

′(C) → π0G(U)(C) = π0 MapX(C,U)
is surjective for every object C ∈ C. Since colimits in X are universal, every
map h : C → U can be written as a coproduct of maps hα : Cα → Uα.
Each Cα is a subobject of C (Lemma 6.4.4.8) and therefore belongs to C.
Let h′α ∈ π0U

′(Cα) denote the homotopy class of the composition G(Cα) hα→
G(Uα) → U ′. Since the topology on C is canonical, Lemma 6.2.4.4 implies
that π0U

′(C) � ∏
α π0U

′(Cα) contains an element h′ which restricts to each
h′α. It is now clear that h is the image of h′ under the map π0U

′(C) →
π0 MapX(C,U).

We will prove the following result by induction on k: if there exists a k-
truncated morphism f : X → Y , where Y ∈ X′ and X ∈ Shv≤n−1(C), then
X ∈ X′. Taking k = n− 1 and Y to be a final object of Shv≤n−1(C) (which
belongs to X′ because C contains a final object), we conclude that every
object of Shv≤n−1(C) belongs to X′, which completes the proof.

If k = −2, then f is an equivalence so that X ∈ X′, as desired. Assume now
that k ≥ −1. Since X′ contains the essential image of the Yoneda embedding
and is stable under coproducts, there exists an effective epimorphism p :
U → X in Shv≤n−1(C), where U ∈ X′. Let U• be a Čech nerve of p in
Shv≤n−1(C) and U• be the associated groupoid object. We claim that U•
is a groupoid object of X′. Since X′ is stable under limits in Shv≤n−1(C),
it suffices to prove that U0 = U and U1 = U ×X U belong to X′. We now
observe that there exists a pullback diagram

U ×X U
δ′ ��

��

U ×Y U

��
X

δ �� X ×Y X.

Since f is k-truncated, δ is (k− 1)-truncated (Lemma 5.5.6.15), so that δ′ is
(k − 1)-truncated. Since U ×Y U belongs to X′ (because X′ is stable under
limits), our inductive hypothesis allows us to conclude that U ×X U ∈ X′,
as desired.

We observe that U• is an n-efficient groupoid object of X′. Invoking as-
sumption (iv), we conclude that U• is effective in X′. LetX ′ ∈ X′ be a colimit
of U• in X′, so that we have a morphism u : X → X ′ in Shv≤n−1(C)U•/.
To complete the proof that X ∈ X′, it will suffice to show that u is an
equivalence. Since u induces an equivalence

U ×X U → U ×X′ U,

it is a monomorphism (Lemma 5.5.6.15). It will therefore suffice to show that
u is an effective epimorphism. We have a commutative diagram

U
p

���
��

��
��

�
p′ �� X ′

X,

u

����������
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where p is an effective epimorphism; it therefore suffices to show that p′

is an effective epimorphism, which follows immediately from Proposition
6.2.4.6.

Remark 6.4.3.7. Proposition 6.4.3.6 is valid also for n = 0 but is almost
vacuous: coproducts in a 0-topos X are never disjoint unless X is trivial
(equivalent to the final ∞-category ∗).
Remark 6.4.3.8. In a certain respect, the theory of ∞-topoi is simpler
than the theory of ordinary topoi: in an ∞-topos, every groupoid object
is effective; it is not necessary to impose any additional conditions like n-
efficiency. The absense of this condition gives the theory of ∞-topoi a slightly
different flavor than ordinary topos theory. In an ∞-topos, we are free to form
quotients of objects not only by equivalence relations but also by arbitrary
groupoid actions. In geometry, this extra flexibility allows the construction
of useful objects such as orbifolds and algebraic stacks, which are useful in
a variety of mathematical situations.

One can imagine weakening the gluing conditions even further and con-
sidering axioms having the form “every category object is effective.” This
seems like a natural approach to a theory of topos-like (∞,∞)-categories.
However, we will not pursue the matter any further here.

It follows from Proposition 6.4.3.6 (and arguments to be given in §6.4.4)
that every left exact localization of a presheaf n-category P≤n−1(C) can also
be obtained as an n-category of sheaves. According to the next two results,
this is no accident: every left exact localization of P≤n−1(C) is topological,
and the topological localizations of P≤n−1(C) correspond precisely to the
Grothendieck topologies on C (provided that C is an n-category).

Proposition 6.4.3.9. Let X be a presentable n-category, let 0 ≤ n < ∞,
and suppose that colimits in X are universal. Let L : X → Y be a left exact
localization. Then L is a topological localization.

Proof. Let S denote the collection of all monomorphisms f : U → V in X

such that Lf is an equivalence. Since L is left exact, it is clear that S is
stable under pullback. Let S be the strongly saturated class of morphisms
generated by S. Proposition 6.2.1.2 implies that S is stable under pullback
and therefore topological. Proposition 6.2.1.6 implies that S is generated by
a (small) set of morphisms. Let X′ ⊆ X denote the full subcategory spanned
by S-local objects. According to Proposition 5.5.4.15, X′ is an accessible
localization of X; let L′ denote the associated localization functor. Since Lf
is an equivalence for each f ∈ S, the localization L is equivalent to the
composition

X
L′
→ X′ L|X′

→ Y .

We may therefore replace X by X′ and thereby reduce to the case where S
consists precisely of the equivalences in X; we wish to prove that L is an
equivalence.
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We now prove the following claim: if f : X → Y is a k-truncated morphism
in C such that Lf is an equivalence, then f is an equivalence. The proof
proceeds by induction on k. If k = −1, then f is a monomorphism and
so belongs to S; it follows that f is an equivalence. Suppose that k ≥ 0.
Let δ : X → X ×Y X be the diagonal map (which is well-defined up to
equivalence). According to Lemma 5.5.6.15, δ is (k − 1)-truncated. Since L
is left exact, L(δ) can be identified with a diagonal map LX → LX×LY LX
which is therefore an equivalence. The inductive hypothesis implies that δ
is an equivalence. Applying Lemma 5.5.6.15 again, we deduce that f is a
monomorphism, so that f ∈ S and is therefore an equivalence as noted
above.

Since X is an n-category, every morphism in X is (n − 1)-truncated. We
conclude that for every morphism f in X, f is an equivalence if and only
if Lf is an equivalence. Since L is a localization functor, it must be an
equivalence.

6.4.4 n-Topoi and Descent

Let X be an ∞-category which admits finite limits and let OX denote the
functor ∞-category Fun(∆1,X) equipped with the Cartesian fibration e :
OX → X (given by evaluation at {1} ⊆ ∆1), as in §6.1.1. Let F : Xop → Ĉat∞
be a functor which classifies e; informally, F associates to each object U ∈ X

the ∞-category X/U . According to Theorem 6.1.3.9, X is an ∞-topos if and
only if the functor F preserves limits and factors through PrL ⊆ Ĉat∞. The
assumption that F preserves limits can be viewed as a descent condition: it
asserts that if X → U is a morphism of X and U is decomposed into “pieces”
Uα, then X can be canonically reconstructed from the “pieces” X ×U Uα.
The goal of this section is to obtain a similar characterization of the class of
n-topoi for 0 ≤ n < ∞.

We begin by considering the case where X is the (nerve of) the category
of sets. In this case, we can think of F as a contravariant functor from sets
to categories, which carries a set U to the category Set/U . This functor does
not preserve pullbacks: given a pushout square

X

))���
��
��
��
�

 ! 
  

  
  

  
 

Y

���
��

��
��

�� Z

+���
��
��
��
�

Y
∐
X Z

in the category Set, there is an associated functor

θ : Set/Y ‘
X Z → Set/Y ×Set/X

Set/Z
(here the right hand side indicates a homotopy fiber product of categories).
The functor θ is generally not an equivalence of categories: for example, θ
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fails to be an equivalence if Y = Z = ∗, provided that X has cardinality of at
least 2. However, θ is always fully faithful. Moreover, we have the following
result:

Fact 6.4.4.1. The functor θ induces an isomorphism of partially ordered
sets

Sub(Y
∐
X

Z) → Sub(Y ) ×Sub(X) Sub(Z),

where Sub(M) denotes the partially ordered set of subsets of M .

In this section, we will show that an appropriate generalization of Fact
6.4.4.1 can be used to characterize the class of n-topoi for all 0 ≤ n ≤ ∞.
First, we need to introduce some terminology.

Notation 6.4.4.2. Let X be an ∞-category which admits pullbacks and
let 0 ≤ n ≤ ∞. We let OnX denote the full subcategory of OX spanned by
morphisms f : U → X which are (n − 2)-truncated, and O

(n)
X ⊆ OnX the

subcategory whose objects are (n− 2)-truncated morphisms in X and whose
morphisms are Cartesian transformations (see Notation 6.1.3.4).

Example 6.4.4.3. Let X be an ∞-category which admits pullbacks. Then
O0

X is the full subcategory of OX spanned by the final objects in each fiber
of the morphism p : OX → X. Since p is a coCartesian fibration (Corollary
2.4.7.12), Proposition 2.4.4.9 asserts that the restriction p|O0

X is a trivial
fibration of simplicial sets.

Lemma 6.4.4.4. Let X be a presentable ∞-category in which colimits are
universal and coproducts are disjoint and let n ≥ −2. Then the class of
n-truncated morphisms in X is stable under small coproducts.

Proof. The proof is by induction on n, where the case n = −2 is obvious.
Suppose that {fα : Xα → Yα} is a family of n-truncated morphisms in X

having coproduct f : X → Y . Since colimits in X are universal, we conclude
that X ×Y X can be written as a coproduct∐

α,β

(Xα ×Y Xβ) �
∐
α,β

(Xα ×Yα
(Yα ×Y Yβ) ×Yβ

Xβ).

Applying Lemma 6.1.5.1, we can rewrite this coproduct as∐
α

(Xα ×Yα
Xα).

Consequently, the diagonal map δ : X → X×Y X is a coproduct of diagonal
maps {δα : Xα → Xα ×Yα

Xα}. Applying Lemma 5.5.6.15, we deduce that
each δα is (n− 1)-truncated, so that δ is (n− 1)-truncated by the inductive
hypothesis. We now apply Lemma 5.5.6.15 again to deduce that f is n-
truncated, as desired.

Combining Lemmas 6.1.3.3, 6.1.3.5, 6.1.3.7, and 6.4.4.4, we deduce the
following analogue of Theorem 6.1.3.9.
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Theorem 6.4.4.5. Let X be a presentable ∞-category in which colimits are
universal and coproducts are disjoint. The following conditions are equiva-
lent:

(1) For every pushout diagram

f
α ��

β

��

g

β′

��
f ′ α′

�� g′

in OnX, if α and β are Cartesian transformations, then α′ and β′ are
also Cartesian transformations.

(2) The class of (n− 2)-truncated morphisms in X is local.

(3) The Cartesian fibration OnX → X is classified by a limit-preserving
functor Xop → Ĉat∞.

(4) The right fibration O
(n)
X → X is classified by a limit-preserving functor

Xop → Ŝ.

(5) Let K be a small simplicial set and α : p → q a natural transformation
of colimit diagrams p, q : K
 → X. Suppose that α = α|K is a Carte-
sian transformation and that α(x) is (n−2)-truncated for every vertex
x ∈ K. Then α is a Cartesian transformation and α(∞) is (n − 2)-
truncated, where ∞ denotes the cone point of K
.

Our next goal is to establish the implication (2) ⇒ (4) of Theorem 6.4.1.5.
We will deduce this from the equivalence (2) ⇔ (3) (which we have already
established) together with Propositions 6.4.4.6 and 6.4.4.7 below.

Proposition 6.4.4.6. Let X be an n-topos, 0 ≤ n ≤ ∞. Then colimits in X

are universal.

Proof. Using Lemma 6.1.3.15, we may reduce to the case X = P≤n−1(C) for
some small ∞-category C. Using Proposition 5.1.2.2, we may further reduce
to the case where X = τ≤n−1 S.

Let f : X → Y be a map of (n− 1)-truncated spaces and let f∗ : S/Y →
S/X be a pullback functor. Since X is stable under limits in S, f∗ restricts
to give a functor X/Y → X/X ; we wish to prove that this restricted functor
commutes with colimits. We observe that X/X and X/Y can be identified
with the full subcategories of S/X and S/Y spanned by the (n−1)-truncated
objects, by Lemma 5.5.6.14. Let τX : S/X → X/X and τY : S/Y → X/Y

denote left adjoints to the inclusions. The functor f∗ preserves all colimits
(Lemma 6.1.3.14) and all limits (since f∗ has a left adjoint). Consequently,
Proposition 5.5.6.28 implies that τX ◦ f∗ � f∗ ◦ τY .

Let p : K
 → X/Y be a colimit diagram. We wish to show that f∗ ◦ p
is a colimit diagram. According to Remark 5.2.7.5, we may assume that
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p = τY ◦ p′ for some colimit diagram p′ : K
 → S/Y . Since colimits in S

are universal (Lemma 6.1.3.14), the composition f∗ ◦ p′ : K
 → S/X is a
colimit diagram. Since τX preserves colimits, we conclude that τX ◦ f∗ ◦ p′ :
K
 → X/X is a colimit diagram, so that f∗ ◦ τY ◦ p′ = f∗ ◦ p is also a colimit
diagram, as desired.

Proposition 6.4.4.7. Let Y be an ∞-topos and let X = τ≤n Y, 0 ≤ n ≤ ∞.
Then the class of (n− 2)-truncated morphisms in X is local.

Proof. Combining Propositions 6.2.3.17 and 6.2.3.14 with Lemma 6.4.4.4,
we conclude that the class of (n − 2)-truncated morphisms in Y is local.
Consequently, the Cartesian fibration OnY → Y is classified by a colimit-
preserving functor F : Y → Ĉat

op

∞. It follows that O
(n)
X → X is classified by

F |X. To prove that F |X is colimit-preserving, it will suffice to show that F
is equivalent to F ◦ τ≤n. In other words, we must show that F carries each
n-truncation Y → τ≤nY to an equivalence in Ĉat

op

∞. Replacing Y by Y/τ≤nY ,
we reduce to Lemma 7.2.1.13.

We conclude this section by proving the following generalization of Propo-
sition 6.1.3.19, which also establishes the implication (4) ⇒ (6) of Theorem
6.4.1.5. We will assume n > 0; the case n = 0 was analyzed in §6.4.2.

Lemma 6.4.4.8. Let X be a presentable ∞-category in which colimits are
universal and let f : ∅ → X be a morphism in X, where ∅ is an initial object
of X. Then f is a monomorphism.

Proof. Let Y be an arbitrary object of X. We wish to show that composition
with f induces a (−1)-truncated map

MapX(Y, ∅) → MapX(Y,X).

If Y is an initial object of X, then both sides are contractible; otherwise the
left side is empty (Lemma 6.1.3.6).

Proposition 6.4.4.9. Let 1 ≤ n ≤ ∞ and let X be a presentable n-category.
Suppose that colimits in X are universal and that the class of (n−2)-truncated
morphisms in X is local. Then X satisfies the n-categorical Giraud axioms:

(i) The ∞-category X is equivalent to a presentable n-category.

(ii) Colimits in X are universal.

(iii) Coproducts in X are disjoint.

(iv) Every n-efficient groupoid object of X is effective.

Proof. Axioms (i) and (ii) hold by assumption. To show that coproducts
in X are disjoint, let us consider an arbitrary pair of objects X,Y ∈ X and
let ∅ denote an initial object of X. Let f : ∅ → X be a morphism (unique
up to homotopy since ∅ is initial). Since colimits in X are universal, f is a
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monomorphism (Lemma 6.4.4.8) and therefore belongs to OnX since n ≥ 1.
We observe that id∅ is an initial object of OX, so we can form a pushout
diagram

id∅
α ��

β

��

idY

β′

��
f

α′
�� g

in OnX. It is clear that α is a Cartesian transformation, and Lemma 6.1.3.6
implies that β is Cartesian as well. Invoking Theorem 6.4.4.5, we deduce that
α′ is a Cartesian transformation. But α′ can be identified with a pushout
diagram

∅ ��

��

Y

��
X �� X

∐
Y.

This proves (iii).
Now suppose that U• is an n-efficient groupoid object of X; we wish to

prove that U• is effective. Let U• : N(∆+)op → X be a colimit of U•. Let
U ′
• : N(∆+)op → X be the result of composing U• with the shift functor

∆+ → ∆+

J �→ J
∐

{∞}.
(In other words, U ′

• is the shifted simplicial object given by U ′
n = Un+1.)

Lemma 6.1.3.17 asserts that U ′
• is a colimit diagram in X. We have a trans-

formation α : U ′
• → U•. Let V • denote the constant augmented simplicial

object of X taking the value U0, so that we have a natural transformation
β : U ′

• → V •. Let W • denote a product of U• and V • in the ∞-category X∆+

of augmented simplicial objects and let γ : U ′
• → W • be the induced map.

We observe that for each n ≥ 0, the map γ(∆n) : Un+1 → Wn is a pullback
of U1 → U0 × U0 and therefore (n − 2)-truncated (since U• is assumed to
be n-efficient). Since U• is a groupoid, we conclude that γ = γ|N(∆)op is
a Cartesian transformation. Invoking Theorem 6.4.4.5, we deduce that γ is
also a Cartesian transformation, so that the diagram

U1
��

��

U0

��
W 0

�� U0 ×W−1

is Cartesian. Combining this with the Cartesian diagram

W 0
��

��

W−1

��
U0

�� U−1,

we deduce that U is effective, as desired.
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6.4.5 Localic ∞-Topoi

The standard example of an ordinary topos is the category Shv(X; Set) of
sheaves (of sets) on a topological space X. Of course, not every topos is of
this form: the category Shv(X; Set) is generated under colimits by subobjects
of its final object (which can be identified with open subsets of X). A topos
X with this property is said to be localic and is determined up to equivalence
by the locale Sub(1X) which we may view as a 0-topos. The objective of this
section is to obtain an ∞-categorical analogue of this picture, which will allow
us to relate the theory of n-topoi to that of m-topoi for all 0 ≤ m ≤ n ≤ ∞.

Definition 6.4.5.1. Let X and Y be n-topoi for 0 ≤ n ≤ ∞. A geometric
morphism from X to Y is a functor f∗ : X → Y which admits a left exact left
adjoint (which we will typically denote by f∗).

We let Fun∗(X,Y) denote the full subcategory of the ∞-category Fun(X,Y)
spanned by the geometric morphisms and let TopR

n denote the subcategory
of Ĉat∞ whose objects are n-topoi and whose morphisms are geometric mor-
phisms.

Remark 6.4.5.2. In the case where n = 1, the ∞-category of geometric
morphisms Fun∗(X,Y) between two 1-topoi is equivalent to (the nerve of)
the category of geometric morphisms between the ordinary topoi hX and hY.

Remark 6.4.5.3. In the case where n = 0, the ∞-category of geometric
morphisms Fun∗(X,Y) between two 0-topoi is equivalent to the nerve of the
partially ordered set of homomorphisms from the underlying locale of Y to
the underlying locale of X. (A homomorphism between locales is a map of
partially ordered sets which preserve finite meets and arbitrary joins.) In the
case where X and Y are associated to (sober) topological spaces X and Y ,
this is simply the set of continuous maps from X to Y partially ordered by
specialization.

If m ≤ n, then the ∞-categories TopR
m and TopR

n are related by the fol-
lowing observation:

Proposition 6.4.5.4. Let X be an n-topos and let 0 ≤ m ≤ n. Then the full
subcategory τ≤m−1 X spanned by the (m−1)-truncated objects is an m-topos.

Proof. Ifm = n = ∞, the result is obvious. Otherwise, it follows immediately
from (2) of Theorem 6.4.1.5.

Lemma 6.4.5.5. Let C be a small n-category which admits finite limits and
let Y be an ∞-topos. Then the restriction map

Fun∗(Y,P(C)) → Fun∗(τ≤n−1 Y,P≤n−1(C))

is an equivalence of ∞-categories.

Proof. Let M ⊆ Fun(P(C),Y) and M′ ⊆ Fun(P≤n−1(C), τ≤n−1 Y) denote
the full subcategories spanned by left exact colimit-preserving functors. In
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view of Proposition 5.2.6.2, it will suffice to prove that the restriction map
θ : M → M′ is an equivalence of ∞-categories.

Let M′′ denote the full subcategory of Fun(P(C), τ≤n−1 Y) spanned by
colimit-preserving functors whose restriction to P≤n−1(C) is left exact. Corol-
lary 5.5.6.22 implies that the restriction map θ′ : M′′ → M′ is an equivalence
of ∞-categories.

Let j : C → P≤n−1(C) ⊆ P(C) denote the Yoneda embedding. Composition
with j yields a commutative diagram

M
θ ��

ψ

��

M′

ψ′

��
Fun(C, τ≤n−1 Y) Fun(C, τ≤n−1 Y).

Theorem 5.1.5.6 implies that ψ and ψ′ ◦ θ′ are fully faithful. Since θ′ is an
equivalence of ∞-categories, we deduce that ψ′ is fully faithful. Thus θ is fully
faithful; to complete the proof, we must show that ψ and ψ′ have the same
essential image. Suppose that f : C → τ≤n−1 Y belongs to the essential image
of ψ′. Without loss of generality, we may suppose that f is a composition

C
j→ P≤n−1(C)

g∗→ τ≤n−1 Y .

As a composition of left exact functors, f is left exact. We may now invoke
Proposition 6.1.5.2 to deduce that f belongs to the essential image of ψ.

Lemma 6.4.5.6. Let C be a small n-category which admits finite limits and
is equipped with a Grothendieck topology and let Y be an ∞-topos. Then the
restriction map

θ : Fun∗(Y,Shv(C)) → Fun∗(τ≤n−1 Y,Shv≤n−1(C))

is an equivalence of ∞-categories.

Proof. We have a commutative diagram

Fun∗(Y,Shv(C)) θ ��

��

Fun∗(τ≤n−1 Y,Shv≤n−1(C))

��
Fun∗(Y,P(C)) θ′ �� Fun∗(τ≤n−1 Y,P≤n−1(C)),

where the vertical arrows are inclusions of full subcategories and θ′ is an
equivalence of ∞-categories (Lemma 6.4.5.5). To complete the proof, it will
suffice to show that if f∗ : Y → P(C) is a geometric morphism such that
f∗|τ≤n−1 Y factors through Shv≤n−1(C), then f∗ factors through Shv(C).

Let f∗ be a left adjoint to f∗ and let S denote the collection of all mor-
phisms in P(C) which localize to equivalences in Shv(C). We must show that
f∗S consists of equivalences in Y. Let S ⊆ S be the collection of monomor-
phisms which belong to S. Since Shv(C) is a topological localization of P(C),
it will suffice to show that f∗S consists of equivalences in Y. Let g : X → Y
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belong to S. Since P(C) is generated under colimits by the essential im-
age of the Yoneda embedding, we can write Y as a colimit of a diagram
K → P≤n−1(C). Since colimits in P(C) are universal, we obtain a correspond-
ing expression of g as a colimit of morphisms {gα : Xα → Yα} which are
pullbacks of g, where Yα ∈ P≤n−1(C). In this case, gα is again a monomor-
phism, so that Xα is also (n − 1)-truncated. Since f∗ commutes with co-
limits, it will suffice to show that each f∗(gα) is an equivalence. But this
follows immediately from our assumption that f∗|τ≤n−1 Y factors through
Shv≤n−1(Y).

Proposition 6.4.5.7. Let 0 ≤ m ≤ n ≤ ∞ and let Y be an m-topos. There
exists an n-topos X and a categorical equivalence f∗ : τ≤m−1 X → Y with the
following universal property: for any n-topos Z, composition with f∗ induces
an equivalence of ∞-categories

θ : Fun∗(Z,X) → Fun∗(τ≤m−1 Z,Y).

Proof. If m = ∞, then n = ∞, and we may take X = Y. Otherwise, we may
apply Theorem 6.4.1.5 to reduce to the case where Y = Shv≤m−1(C), where
C is a small m-category which admits finite limits and is equipped with a
Grothendieck topology. In this case, we let X = Shv≤n−1(C) and define f∗
to be the identity. Let Z be an arbitrary n-topos. According to Theorem
6.4.1.5, we may assume without loss of generality that Z = τ≤n−1 Z′, where
Z′ is an ∞-topos. We have a commutative diagram

Fun∗(Z,X)
θ

��$$
$$$

$$$
$$$

$$

Fun∗(Z′, Shv(C))

θ′
��������������

θ′′ �� Fun∗(τ≤m−1 Z,Y).

Lemma 6.4.5.6 implies that θ′ and θ′′ are equivalences of ∞-categories, so
that θ is also an equivalence of ∞-categories.

Definition 6.4.5.8. Let 0 ≤ m ≤ n ≤ ∞ and let X be an n-topos. We will
say that X is m-localic if, for any n-topos Y, the natural map

Fun∗(Y,X) → Fun∗(τ≤m−1 Y, τ≤m−1 X)
is an equivalence of ∞-categories.

According to Proposition 6.4.5.7, every m-topos X is equivalent to the
subcategory of (m− 1)-truncated objects in an m-localic n-topos X′, and X′

is determined up to equivalence. More precisely, the truncation functor

TopR
n

τ≤m−1 �� TopR
m

induces an equivalence C → TopR
m, where C ⊆ TopR

n is the full subcate-
gory spanned by the m-localic n-topoi. In other words, we may view the
∞-category of m-topoi as a localization of the ∞-category of n-topoi. In
particular, the theory of m-topoi for m < ∞ can be regarded as a special
case of the theory of ∞-topoi. For this reason, we will focus our attention
on the case n = ∞ for most of the remainder of this book.
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Proposition 6.4.5.9. Let X be an n-localic ∞-topos. Then any topological
localization of X is also n-localic.

Proof. The proof of Proposition 6.4.5.7 shows that X is n-localic if and only
if there exists a small n-category C which admits finite limits, a Grothendieck
topology on C, and an equivalence X → Shv(C). In other words, X is n-localic
if and only if it is equivalent to a topological localization of P(C), where C is
a small n-category which admits finite limits. It is clear that any topological
localization of X has the same property.

Let X be an ∞-topos. One should think of the ∞-categories τ≤n−1 X as
“Postnikov sections” of X. The classical 1-truncation τ≤1X of a homotopy
type X remembers only the fundamental groupoid of X. It therefore knows
all about local systems of sets on X but nothing about fibrations over X
with nondiscrete fibers. The relationship between X and τ≤0 X is analogous:
τ≤0 X knows about the sheaves of sets on X but has forgotten about sheaves
with nondiscrete stalks.

Remark 6.4.5.10. In view of the above discussion, the notation τ≤0 X is
unfortunate because the analogous notation for the 1-truncation of a homo-
topy type X is τ≤1X. We caution the reader not to regard τ≤0 X as the result
of applying an operation τ≤0 to X; it instead denotes the essential image of
the truncation functor τ≤0 : X → X.

6.5 HOMOTOPY THEORY IN AN ∞-TOPOS

In classical homotopy theory, the most important invariants of a (pointed)
space X are its homotopy groups πi(X,x). Our first objective in this section
is to define analogous invariants in the case where X is an object of an
arbitrary ∞-topos X. In this setting, the homotopy groups are not ordinary
groups but are instead sheaves of groups on the underlying topos Disc(X). In
§6.5.1, we will study these homotopy groups and the closely related theory
of n-connectivity. The main theme is that the internal homotopy theory of
a general ∞-topos X behaves much like the classical case X = S.

One important classical fact which does not hold in general for an ∞-
topos is Whitehead’s theorem. If f : X → Y is a map of CW complexes,
then f is a homotopy equivalence if and only if f induces bijective maps
πi(X,x) → πi(Y, f(x)) for any i ≥ 0 and any base point x ∈ X. If f : X → Y
is a map in an arbitrary ∞-topos X satisfying an analogous condition on
(sheaves of) homotopy groups, then we say that f is ∞-connective. We will
say that an ∞-topos X is hypercomplete if every ∞-connective morphism
in X is an equivalence. Whitehead’s theorem may be interpreted as saying
that the ∞-topos S is hypercomplete. An arbitrary ∞-topos X need not
be hypercomplete. We will survey the situation in §6.5.2, where we also give
some reformulations of the notion of hypercompleteness and show that every
topos X has a hypercompletion X∧. In §6.5.3, we will show that an ∞-topos
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X is hypercomplete if and only if X satisfies a descent condition with respect
to hypercoverings (other versions of this result can be found in [20] and [78]).

Remark 6.5.0.1. The Brown-Joyal-Jardine theory of (pre)sheaves of sim-
plicial sets on a topological space X is a model for the hypercomplete ∞-
topos Shv(X)∧. In many respects, the ∞-topos Shv(X) of sheaves of spaces
on X is better behaved before hypercompletion. We will outline some of the
advantages of Shv(X) in §6.5.4 and in Chapter 7.

6.5.1 Homotopy Groups

Let X be an ∞-topos and let X be an object of X. We will refer to a discrete
object of X/X as a sheaf of sets on X. Since X is presentable, it is automat-
ically cotensored over spaces as explained in Remark 5.5.2.6. Consequently,
for any object X of X and any simplicial set K, there exists an object XK

of X equipped with natural isomorphisms
MapX(Y,XK) → MapH(K,MapX(Y,X))

in the homotopy category H of spaces.

Definition 6.5.1.1. Let Sn = ∂∆n+1 ∈ H denote the (simplicial) n-sphere
and fix a base point ∗ ∈ Sn. Then evaluation at ∗ induces a morphism
s : XSn → X in X. We may regard s as an object of X/X , and we define
πn(X) = τ≤0s ∈ X/X to be the associated discrete object of X/X .

We will generally identify πn(X) with its image in the underlying topos
Disc(X/X) (where it is well-defined up to canonical isomorphism). The con-
stant map Sn → ∗ induces a map X → XSn

which determines a base point
of πn(X).

Suppose that K and K ′ are pointed simplicial sets and let K ∨K′ denote
the coproduct K

∐
∗K

′. There is a pullback diagram

XK∨K′

 ! 
  

  
  

  

+���
��
��
��
�

XK

 !)
))

))
))

))
XK′

))��
��
��
��
�

X

in X, so that XK∨K′
may be identified with a product of XK and XK′

in
the ∞-topos X/X . We now make the following general observation:

Lemma 6.5.1.2. Let X be an ∞-topos. The truncation functor τ≤n : X → X

preserves finite products.

Proof. We must show that for any finite collection of objects {Xα}α∈A hav-
ing product X, the induced map

τ≤nX →
∏
α∈A

τ≤nXα
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is an equivalence. If X is the ∞-category of spaces, then this follows from
Whitehead’s theorem: simply compute homotopy groups (and sets) on both
sides. If X = P(C), then to prove that a map in X is an equivalence, it suffices
to show that it remains an equivalence after evaluation at any object C ∈ C;
thus we may reduce to the case where X = S considered above. In the general
case, X is equivalent to the essential image of a left exact localization functor
L : P(C) → P(C) for some small ∞-category C. Without loss of generality,
we may identify X with a full subcategory of P(C). Then X ⊆ X′ = P(C) is
stable under limits, so that X may be identified with a product of the family
{Xα}α∈A in X′. It follows from the case treated above that the natural map

τX′
≤nX →

∏
α∈A

τX′
≤nXα

is an equivalence. Proposition 5.5.6.28 implies that L ◦ τX′
≤n|X is an n-

truncation functor for X. The desired result now follows by applying the
functor L to both sides of the above equivalence and invoking the assump-
tion that L is left exact (here we must require the finiteness of A).

It follows from Lemma 6.5.1.2 that there is a canonical isomorphism

τ
X/X

≤0 (XK∨K′
) � τ

X/X

≤0 (XK) × τ
X/X

≤0 (XK′
)

in the topos Disc(X/X). In particular, for n > 0, the usual comultiplication
Sn → Sn ∨ Sn (a well-defined map in the homotopy category H) induces
a multiplication map πn(X) × πn(X) → πn(X). As in ordinary homotopy
theory, we conclude that πn(X) is a group object of Disc(X/X) for n > 0,
which is commutative for n > 1.

In order to work effectively with homotopy sets, it is convenient to define
the homotopy sets πn(f) of a morphism f : X → Y to be the homotopy sets
of f considered as an object of the ∞-topos X/Y . In view of the equivalences
X/f → X/X , we may identify πn(f) with an object of Disc(X/X), which is
again a sheaf of groups if n ≥ 1, and abelian groups if n ≥ 2. The intuition is
that the stalk of these sheaves at a point p of X is the nth homotopy group
of the homotopy fiber of f taken with respect to the base point p.

Remark 6.5.1.3. It is useful to have the following recursive definition
for homotopy groups. Let f : X → Y be a morphism in an ∞-topos X.
Regarding f as an object of the topos X/Y , we may take its 0th trunca-

tion τ
X/Y

≤0 f . This is a discrete object of X/Y , and by definition we have

π0(f) � f∗τX/Y

≤0 (X) � X×Y τ
X/Y

≤0 (f). The natural map X → τ
X/Y

≤0 (f) gives
a global section of π0(f). Note that in this case, π0(f) is the pullback of a
discrete object of X/Y : this is because the definition of π0 does not require
a base point.

If n > 0, then we have a natural isomorphism πn(f) � πn−1(δ) in the
topos Disc(X/X), where δ : X → X ×Y X is the associated diagonal map.
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Remark 6.5.1.4. Let f : X → Y be a geometric morphism of ∞-topoi
and let g : Y → Y ′ be a morphism in Y. Then there is a canonical isomor-
phism f∗(πn(g)) � πn(f∗(g)) in Disc(X/f∗Y ). This follows immediately from
Proposition 5.5.6.28.

Remark 6.5.1.5. Given a pair of composable morphisms X
f→ Y

g→ Z,
there is an associated sequence of pointed objects

· · · → f∗πn+1(g)
δn+1→ πn(f) → πn(g ◦ f) → f∗πn(g)

δn→ πn−1(f) → · · ·
in the ordinary topos Disc(X/X), with the usual exactness properties. To
construct the boundary map δn, we observe that the n-sphere Sn can be
written as a (homotopy) pushout D− ∐

Sn−1 D+ of two hemispheres along
the equator. By construction, f∗πn(g) can be identified with the 0-truncation
of

X ×Y Y
Sn ×ZSn Z � XD− ×Y D− Y S

n ×ZSn Z,

which maps by restriction to

XSn−1 ×Y Sn−1 Y D
+ � XSn−1 ×Y Sn−1 Y.

We now observe that the 0-truncation of the latter object is naturally iso-
morphic to πn−1(f) ∈ Disc(X/X).

To prove the exactness of the above sequence in an ∞-topos X, we first
choose an accessible left exact localization L : P(C) → X. Without loss of

generality, we may suppose that the diagram X
f→ Y

g→ Z is the image
under L of a diagram in P(C). Using Remark 6.5.1.4, we conclude that the
sequence constructed above is equivalent to the image under L of an anal-
ogous sequence in the ∞-topos P(C). Since L is left exact, it will suffice to
prove that this second sequence is exact; in other words, we may reduce to
the case X = P(C). Working componentwise, we can reduce further to the
case where X = S. The desired result now follows from classical homotopy
theory. (Special care should be taken regarding the exactness of the above
sequence at π0(f): this should really be interpreted in terms of an action of
the group f∗π1(g) on π0(f). We leave the details of the construction of this
action to the reader.)

Remark 6.5.1.6. If X = S and η : ∗ → X is a pointed space, then η∗πn(X)
can be identified with the nth homotopy group of X with base point η.

We now study the implications of the vanishing of homotopy groups.

Proposition 6.5.1.7. Let f : X → Y be an n-truncated morphism in an
∞-topos X. Then πk(f) � ∗ for all k > n. If n ≥ 0 and πn(f) � ∗, then f
is (n− 1)-truncated.

Proof. The proof goes by induction on n. If n = −2, then f is an equivalence
and there is nothing to prove. Otherwise, the diagonal map δ : X → X×Y X
is (n−1)-truncated (Lemma 5.5.6.15). The inductive hypothesis and Remark
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6.5.1.3 allow us to deduce that πk(f) � πk−1(δ) � ∗ whenever k > n and
k > 0. Similarly, if n ≥ 1 and πn(f) � πn−1(δ) � ∗, then δ is (n − 2)-
truncated by the inductive hypothesis, so that f is (n−1)-truncated (Lemma
5.5.6.15).

The case of small k and n requires special attention: we must show that if f
is 0-truncated, then f is (−1)-truncated if and only if π0(f) � ∗. Because f is
0-truncated, we have an equivalence τ

X/Y

≤0 (f) � f , so that π0(f) � X ×Y X.
To say π0(f) � ∗ is to assert that the diagonal map δ : X → X ×Y X is
an equivalence, which is equivalent to the assertion that f is (−1)-truncated
(Lemma 5.5.6.15).

Remark 6.5.1.8. Proposition 6.5.1.7 implies that if f is n-truncated for
some n � 0, then we can test whether or not f is m-truncated for any
particular value of m by computing the homotopy groups of f . In contrast
to the classical situation, it is not possible to drop the assumption that f is
n-truncated for n � 0.

Lemma 6.5.1.9. Let X be an object in an ∞-topos X and let p : X → Y be
an n-truncation of X. Then p induces isomorphisms πk(X) � p∗πk(Y ) for
all k ≤ n.

Proof. Let φ : X → Y be a geometric morphism such that φ∗ is fully faithful.
By Proposition 5.5.6.28 and Remark 6.5.1.4, it will suffice to prove the lemma
in the case where X = Y. We may therefore assume that Y is an ∞-category
of presheaves. In this case, homotopy groups and truncations are computed
pointwise. Thus we may reduce to the case X = S, where the conclusion
follows from classical homotopy theory.

Definition 6.5.1.10. Let f : X → Y be a morphism in an ∞-topos X

and let 0 ≤ n ≤ ∞. We will say that f is n-connective if it is an effective
epimorphism and πk(f) = ∗ for 0 ≤ k < n. We shall say that the object
X is n-connective if f : X → 1X is n-connective, where 1X denotes the
final object of X. By convention, we will say that every morphism f in X is
(−1)-connective.

Definition 6.5.1.11. Let X be an object of an ∞-topos X. We will say that
X is connected if it is 1-connective: that is, if the truncation τ≤0X is a final
object in X.

Proposition 6.5.1.12. Let X be an object in an ∞-topos X and let n ≥ −1.
Then X is n-connective if and only if τ≤n−1X is a final object of X.

Proof. The case n = −1 is trivial. The proof in general proceeds by induction
on n ≥ 0. If n = 0, then the conclusion follows from Proposition 6.2.3.4.
Suppose n > 0. Let p : X → τn−1X be an (n − 1)-truncation of X. If
τ≤n−1X is a final object of X, then

πkX � p∗πk(τn−1X) � ∗
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for k < n by Lemma 6.5.1.9. Since the map p : X → τ≤n−1X � 1X is an ef-
fective epimorphism (Proposition 7.2.1.14), it follows that X is n-connective.

Conversely, suppose that X is n-connective. Then p∗πn−1(τ≤n−1X) � ∗.
Since p is an effective epimorphism, Lemma 6.2.3.16 implies that

πn−1(τ≤n−1X) � ∗.
Using Proposition 6.5.1.7, we conclude that τ≤n−1X is (n− 2)-truncated, so
that τ≤n−1X � τ≤n−2X. Repeating this argument, we reduce to the case
where n = 0 which was handled above.

Corollary 6.5.1.13. The class of n-connective objects of an ∞-topos X is
stable under finite products.

Proof. Combine Proposition 6.5.1.12 with Lemma 6.5.1.2.

Let X be an ∞-topos and X an object of X. Since

MapX(X,Y ) � MapX(τ≤nX,Y )

whenever Y is n-truncated, we deduce that X is (n + 1)-connective if and
only if the natural map MapX(1X, Y ) → MapX(X,Y ) is an equivalence for all
n-truncated Y . From this, we can immediately deduce the following relative
version of Proposition 6.5.1.12:

Corollary 6.5.1.14. Let f : X → X ′ be a morphism in an ∞-topos X.
Then f is (n + 1)-connective if and only if composition with f induces a
homotopy equivalence

MapX/X′ (idX′ , Y ) → MapX/X′ (f, Y )

for every n-truncated object Y ∈ X/X′.

Remark 6.5.1.15. Let L : X → Y be a left exact localization of ∞-topoi
and let f : Y → Y ′ be an n-connective morphism in Y. Then f is equivalent
(in Fun(∆1,Y)) to Lf0, where f0 is an n-connective morphism in X. To see
this, we choose a (fully faithful) right adjoint G to L and a factorization

X
f ′′

��*
**

**
**

*

G(Y )

f ′
		�������� G(f0) �� G(Y ′),

where f ′ is n-connective and f ′′ is (n−1)-truncated. Then Lf ′′◦Lf ′ is equiv-
alent to f and is therefore n-connective. It follows that Lf ′′ is an equivalence,
so that Lf ′ is equivalent to f .

We conclude by noting the following stability properties of the class of
n-connective morphisms:

Proposition 6.5.1.16. Let X be an ∞-topos.
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(1) Let f : X → Y be a morphism in X. If f is n-connective, then it is
m-connective for all m ≤ n. Conversely, if f is n-connective for all
n < ∞, then f is ∞-connective.

(2) Any equivalence in X is ∞-connective.

(3) Let f, g : X → Y be homotopic morphisms in X. Then f is n-connective
if and only if g is n-connective.

(4) Let π∗ : X → Y be left adjoint to a geometric morphism from π∗ : Y →
X and let f : X → X ′ be an n-connective morphism in X. Then π∗f
is an n-connective morphism in Y.

(5) Suppose we are given a diagram
Y

g

���
��

��
��

X

f
��������� h �� Z

in X, where f is n-connective. Then g is n-connective if and only if h
is n-connective.

(6) Suppose we are given a pullback diagram

X ′

f ′

��

q′ �� X

f

��
Y ′ q �� Y

in X. If f is n-connective, then so is f ′. The converse holds if q is an
effective epimorphism.

Proof. The first three assertions are obvious. Claim (4) follows from Propo-
sitions 6.5.1.12 and 5.5.6.28. To prove (5), we first observe that Corollary
6.2.3.12 implies that g is an effective epimorphism if and only if h is an
effective epimorphism. According to Remark 6.5.1.5, we have a long exact
sequence

· · · → f∗πi+1(g)→πi(f) → πi(h) → f∗πi(g) → πi−1(f) → · · ·
of pointed objects in the topos Disc(X/X). It is then clear that if f and g
are n-connective, then so is h. Conversely, if f and h are n-connective, then
f∗πi(g) � ∗ for i ≤ n. Since f is an effective epimorphism, Lemma 6.2.3.16
implies that πi(g) � ∗ for i ≤ n, so that g is also n-connective.

The first assertion of (6) follows from (4) since a pullback functor q∗ :
X/Y → X/Y ′ is left adjoint to a geometric morphism. For the converse, let
us suppose that q is an effective epimorphism and that f ′ is n-connective.
According to Lemma 6.2.3.15, the maps f and q′ are effective epimorphisms.
Applying Remark 6.5.1.4, we conclude that there are canonical isomorphisms
q′∗πk(f) � πk(f ′) in the topos Disc(X/X′), so that q′∗πk(f) � ∗ for k < n.
Applying Lemma 6.2.3.16, we conclude that πk(f) � ∗ for k < n, so that f
is n-connective, as desired.
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Corollary 6.5.1.17. Let

X ′ g ��

f ′

��

X

f

��
Y ′ �� Y

be a pushout diagram in an ∞-topos X. Suppose that f ′ is n-connective.
Then f is n-connective.

Proof. Choose an accessible left exact localization functor L : P(C) → X.
Using Remark 6.5.1.15, we can assume without loss of generality that f ′ =
Lf ′0, where f ′0 : X ′

0 → Y ′
0 is a morphism in P(C). Similarly, we may assume

g = Lg0 for some morphism g0 : X ′
0 → X0. Form a pushout diagram

X ′
0

g0 ��

f ′
0

��

X0

f0

��
Y ′

0
�� Y0

in P(C). Then the original diagram is equivalent to the image (under L) of
the diagram above. In view of Proposition 6.5.1.16, it will suffice to show
that f0 is n-connective. Using Propositions 6.5.1.12 and 5.5.6.28, we see that
f0 is n-connective if and only if its image under the evaluation map P(C) → S

associated to any object C ∈ C is n-connective. In other words, we can reduce
to the case where X = S, and the result now follows from classical homotopy
theory.

We conclude by establishing a few results which will be needed in §7.2:

Proposition 6.5.1.18. Let f : X → Y be a morphism in an ∞-topos X,
δ : X → X×YX the associated diagonal morphism, and n ≥ 0. The following
conditions are equivalent:

(1) The morphism f is n-connective.

(2) The diagonal map δ : X → X ×Y X is (n− 1)-connective and f is an
effective epimorphism.

Proof. The proof is immediate from Definition 6.5.1.10 and Remark 6.5.1.3.

Proposition 6.5.1.19. Let X be an ∞-topos containing an object X and
let σ : ∆2 → X be a 2-simplex corresponding to a diagram

Y

��














f �� Z

g
��		
		
		
		

X.

Then f is an n-connective morphism in X if and only if σ is an n-connective
morphism in X/X .
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Proof. We observe that X/g → X/Z is a trivial fibration, so that an object
of X/g is n-connective if and only if its image in X/Z is n-connective.

Proposition 6.5.1.20. Let f : X → Y be a morphism in an ∞-topos X,
let s : Y → X be a section of f (so that f ◦ s is homotopic to idY ), and let
n ≥ 0. Then f is n-connective if and only if s is (n− 1)-connective.

Proof. We have a 2-simplex σ : ∆2 → X which we may depict as follows:
X

f

��












Y

s

��������� idY �� Y.
Corollary 6.2.3.12 implies that f is an effective epimorphism; this completes
the proof in the case n = 0. Suppose that n > 0 and that s is (n − 1)-
connective. In particular, s is an effective epimorphism. The long exact se-
quence of Remark 6.5.1.5 gives an isomorphism πi(s) � s∗πi+1(f), so that
s∗πk(f) vanishes for 1 ≤ k < n. Applying Lemma 6.2.3.16, we conclude that
πk(f) � ∗ for 1 ≤ k < n. Moreover, since s is an effective epimorphism,
it induces an effective epimorphism π0(idY ) → π0(f) in the ordinary topos
Disc(X/Y ), so that π0(f) � ∗ as well. This proves that f is n-connective.

Conversely, if f is n-connective, then πi(s) � ∗ for i < n − 1; the only
nontrivial point is to verify that s is an effective epimorphism. According to
Proposition 6.5.1.19, it will suffice to prove that σ is an effective epimorphism
when viewed as a morphism in X/Y . Using Proposition 7.2.1.14, we may

reduce to proving that σ′ = τ
X/Y

≤0 (σ) is an equivalence in X/Y . This is clear
since the source and target of σ′ are both final objects of X/Y (by virtue of
our assumption that f is 1-connective).

6.5.2 ∞-Connectedness

Let C be an ordinary category equipped with a Grothendieck topology and
let A = SetCop

∆ be the category of simplicial presheaves on C.

Proposition 6.5.2.1 (Jardine [41]). There exists a left proper, combinato-
rial, simplicial model structure on the category A which admits the following
description:

(C) A map f : F• → G• of simplicial presheaves on C is a local cofibration
if it is an injective cofibration: that is, if and only if the induced map
F•(C) → G•(C) is a cofibration of simplicial sets for each object C ∈ C.

(W ) A map f : F• → G• of simplicial presheaves on C is a local equivalence
if and only if, for any object C ∈ C and any commutative diagram of
topological spaces

Sn−1 ��
� �

��

|F•(C)|

��
Dn �� |G•(C)|,
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there exists a collection of morphisms {Cα → C} which generates a
covering sieve on C, such that in each of the induced diagrams

Sn−1 ��
� �

��

|F•(Cα)|

��
Dn ��

� /
/

/
/

/
|G•(Cα)|,

one can produce a dotted arrow so that the upper triangle commutes
and the lower triangle commutes up to a homotopy which is fixed on
Sn−1.

We refer the reader to [41] for a proof (one can also deduce Proposition
6.5.2.1 from Proposition A.2.6.13). We will refer to the model structure of
Proposition 6.5.2.1 as the local model structure on A.

Remark 6.5.2.2. In the case where the topos X of sheaves of sets on C

has enough points, there is a simpler description of the class (W ) of local
equivalences: a map F → G of simplicial presheaves is a local equivalence
if and only if it induces weak homotopy equivalences Fx → Gx of simplicial
sets after passing to the stalk at any point x of X. We refer the reader to
[41] for details.

Let A◦ denote the full subcategory of A consisting of fibrant-cofibrant
objects (with respect to the local model structure) and let X = N(A◦) be
the associated ∞-category. We observe that the local model structure on A
is a localization of the injective model structure on A. Consequently, the
∞-category X is a localization of the ∞-category associated to the injective
model structure on A, which (in view of Proposition 5.1.1.1) is equivalent
to P(N(C)). It is tempting to guess that X is equivalent to the left exact
localization Shv(N(C)) constructed in §6.2.2. This is not true in general;
however, as we will explain below, we can always recover X as an accessible
left exact localization of Shv(N(C)). In particular, X is itself an ∞-topos.

In general, the difference between X and Shv(N(C)) is measured by the
failure of Whitehead’s theorem. Essentially by construction, the equivalences
in A are those maps which induce isomorphisms on homotopy sheaves. In
general, this assumption is not strong enough to guarantee that a morphism
in Shv(N(C)) is an equivalence. However, this is the only difference: the
∞-category X can be obtained from Shv(N(C)) by inverting the class of ∞-
connective morphisms (Proposition 6.5.2.14). Before proving this, we study
the class of ∞-connective morphisms in an arbitrary ∞-topos.

Lemma 6.5.2.3. Let p : C → D be a Cartesian fibration of ∞-categories,
let C′ be a full subcategory of C, and suppose that for every p-Cartesian
morphism f : C → C ′ in C, if C ′ ∈ C′, then C ∈ C′. Let D be an object of D

and let f : C → C ′ be a morphism in the fiber CD = C×D{D} which exhibits
C ′ as a C0

D-localization of C (see Definition 5.2.7.6). Then f exhibits C′ as
a C-localization of C.
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Proof. According to Proposition 2.4.3.3, p induces a Cartesian fibration
CC/ → DD/, which restricts to give a Cartesian fibration p′ : C′

C/ → DD/.
We observe that f is an object of C′

C/ which is an initial object of (p′)−1{idD}
(Remark 5.2.7.7), and that idD is an initial object of DD/. Lemma 2.4.4.7 im-
plies that f is an initial object of C′

C/, so that f exhibits C′ as C′-localization
of C (Remark 5.2.7.7), as desired.

Lemma 6.5.2.4. Let p : C → D be a Cartesian fibration of ∞-categories,
let C′ be a full subcategory of C, and suppose that for every p-Cartesian
morphism f : C → C ′ in C, if C ′ ∈ C′, then C ∈ C′. Suppose that for
each object D ∈ D, the fiber C′

D = C′ ×D{D} is a reflective subcategory of
CD = C×D{D} (see Remark 5.2.7.9). Then C′ is a reflective subcategory of
C.

Proof. Combine Lemma 6.5.2.3 with Proposition 5.2.7.8.

Lemma 6.5.2.5. Let X be a presentable ∞-category, let C be an accessible
∞-category, and let α : F → G be a natural transformation between accessi-
ble functors F,G : C → X. Let C(n) be the full subcategory of C spanned by
those objects C such that α(C) : F (C) → G(C) is n-truncated. Then C(n) is
an accessible subcategory of C (see Definition 5.4.7.8).

Proof. We will work by induction on n. If n = −2, then we have a (homo-
topy) pullback diagram

C(n) ��

��

C

α

��
E �� Fun(∆1,X),

where E is the full subcategory of Fun(∆1,X) spanned by equivalences.
The inclusion of E into Fun(∆1,X) is equivalent to the diagonal map X →
Fun(∆1,X) and therefore accessible. Proposition 5.4.6.6 implies that C(n) is
an accessible subcategory of C as desired.

If n ≥ −1, we apply the the inductive hypothesis to the diagonal functor
δ : F → F ×G F using Lemma 5.5.6.15.

Lemma 6.5.2.6. Let X be a presentable ∞-category and let −2 ≤ n <
∞. Let C be the full subcategory of Fun(∆1,X) spanned by the n-truncated
morphisms. Then C is a strongly reflective subcategory of Fun(∆1,X).

Proof. Applying Lemma 6.5.2.4 to the restriction functor Fun(∆1,X) →
Fun({1},X), we conclude that C is a reflective subcategory of Fun(∆1,X).
The accessibility of C follows from Lemma 6.5.2.5.

Lemma 6.5.2.7. Let X be an ∞-topos, let 0 ≤ n ≤ ∞, and let D(n) be the
full subcategory of Fun(∆1,X) spanned by the n-connective morphisms of X.
Then D(n) is an accessible subcategory of X and is stable under colimits in
X.
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Proof. Suppose first that n < ∞. Let C(n) ⊆ Fun(∆1,X) be the full sub-
category spanned by the n-truncated morphisms in X. According to Lemma
6.5.2.6, the inclusion C(n) ⊆ Fun(∆1,X) has a left adjoint L : Fun(∆1,X) →
C(n). Moreover, the proof of Lemma 6.5.2.3 shows that f is n-connective if
and only if Lf is an equivalence. It is easy to see that the full subcategory
E ⊆ C(n) spanned by the equivalences is stable under colimits in C(n), so
that D(n) is stable under colimits in Fun(∆1,X). The accessibility of D(n)
follows from the existence of the (homotopy) pullback diagram

D(n) ��

��

Fun(∆1,X)

L

��
E �� C(n)

and Proposition 5.4.6.6.
If n = ∞, we observe that D(n) = ∪m<∞ D(m), which is manifestly

stable under colimits and is an accessible subcategory of X∆1

by Proposition
5.4.7.10.

Proposition 6.5.2.8. Let X be an ∞-topos and let S denote the collection
of ∞-connective morphisms of X. Then S is strongly saturated and of small
generation (see Definition 5.5.4.5).

Proof. Lemma 6.5.2.7 implies that S is stable under colimits in Fun(∆1,X),
and Corollary 6.5.1.17 shows that S is stable under pushouts. To prove that
S has the two-out-of-three property, we consider a diagram σ : ∆2 → X,
which we depict as

Y
g

��












X

f
��������� h �� Z.

If f is ∞-connective, then Proposition 6.5.1.16 implies that g is ∞-connective
if and only if h is ∞-connective. Suppose that g and h are ∞-connective.
The long exact sequence

· · · → f∗πn+1(g) → πn(f) → πn(h) → f∗πn(g) → πn−1(f) → · · ·
of Remark 6.5.1.5 shows that πn(f) � ∗ for all n ≥ 0. It will therefore suf-
fice to prove that f is an effective epimorphism. According to Proposition
6.5.1.19, it will suffice to show that σ is an effective epimorphism in X/Z . Ac-

cording to Proposition 7.2.1.14, it suffices to show that τX/Z

≤0 (h) and τX/Z

≤0 (g)
are both final objects of X/Z , which follows from the 0-connectivity of g and
h (Proposition 6.5.1.12).

To show that S is of small generation, it suffices (in view of Lemma
5.5.4.14) to show that the full subcategory of Fun(∆1,X) spanned by S
is accessible. This follows from Lemma 6.5.2.7.
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Let X be an ∞-topos. We will say that an object X of X is hypercomplete
if it is local with respect to the class of ∞-connective morphisms. Let X∧

denote the full subcategory of X spanned by the hypercomplete objects of
X. Combining Propositions 6.5.2.8 and 5.5.4.15, we deduce that X∧ is an
accessible localization of X. Moreover, since Proposition 6.5.1.16 implies that
the class of ∞-connective morphisms is stable under pullback, we deduce
from Proposition 6.2.1.1 that X∧ is a left exact localization of X. It follows
that X∧ is itself an ∞-topos. We will show in a moment that X∧ can be
described by a universal property.

Lemma 6.5.2.9. Let X be an ∞-topos and let n < ∞. Then τ≤n X ⊆ X∧.

Proof. Corollary 6.5.1.14 implies that an n-truncated object of X is local with
respect to every n-connective morphism of X and therefore with respect to
every ∞-connective morphism of X.

Lemma 6.5.2.10. Let X be an ∞-topos, let L : X → X∧ be a left adjoint to
the inclusion, and let X ∈ X be such that LX is an ∞-connective object of
X∧. Then LX is a final object of X∧.

Proof. For each n < ∞, we have equivalences

1X � τX∧
≤nLX � LτX

≤nX � τX
≤nX,

where the first is because of our hypothesis that LX is ∞-connective, the
second is given by Proposition 5.5.6.28, and the third is given by Lemma
6.5.2.9. It follows that X is an ∞-connective object of X, so that LX is a
final object of X∧ by construction.

We will say that an ∞-topos X is hypercomplete if X∧ = X; in other words,
X is hypercomplete if every ∞-connective morphism of X is an equivalence,
so that Whitehead’s theorem holds in X.

Remark 6.5.2.11. In [78], the authors use the term t-completeness to refer
to the property that we have called hypercompleteness.

Lemma 6.5.2.12. Let X be an ∞-topos. Then the ∞-topos X∧ is hyper-
complete.

Proof. Let f : X → Y be an ∞-connective morphism in X∧. Applying
Lemma 6.5.2.10 to the ∞-topos (X∧)/Y � (X/Y )∧, we deduce that f is an
equivalence.

We are now prepared to characterize X∧ by a universal property:

Proposition 6.5.2.13. Let X and Y be ∞-topoi. Suppose that Y is hypercom-
plete. Then composition with the inclusion X∧ ⊆ X induces an isomorphism

Fun∗(Y,X∧) → Fun∗(Y,X).
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Proof. Let f∗ : Y → X be a geometric morphism; we wish to prove that f∗
factors through X∧. Let f∗ denote a left adjoint to f∗; it will suffice to show
that f∗ carries each ∞-connective morphism u of X to an equivalence in Y.
Proposition 6.5.1.16 implies that f∗(u) is ∞-connective, and the hypothesis
that Y is hypercomplete guarantees that u is an equivalence.

The following result establishes the relationship between our notion of
hypercompleteness and the Brown-Joyal-Jardine theory of simplicial pre-
sheaves.

Proposition 6.5.2.14. Let C be a small category equipped with a Grothen-
dieck topology and let A denote the category of simplicial presheaves on C en-
dowed with the local model structure (see Proposition 6.5.2.1). Let A◦ denote
the full subcategory consisting of fibrant-cofibrant objects and let A = N(A◦)
be the corresponding ∞-category. Then A is equivalent to Shv(C)∧; in par-
ticular, it is a hypercomplete ∞-topos.

Proof. Let P(C) denote the ∞-category P(N(C)) of presheaves on N(C) and
let A′ denote the model category of simplicial presheaves on C endowed with
the injective model structure of §A.3.3. According to Proposition 4.2.4.4, the
simplicial nerve functor induces an equivalence

θ : N(A′◦) → P(C).

We may identify N(A◦) with the full subcategory of N(A′◦) spanned by
the S-local objects, where S is the class of local equivalences (Proposition
A.3.7.3).

We first claim that θ|N(A◦) factors through Shv(C). Consider an ob-
ject C ∈ C and a sieve C

(0)
/C ⊆ C/C . Let χC : C → Set be the functor

D �→ HomC(D,C) represented by C, let χ(0)
C be the subfunctor of χC deter-

mined by the sieve C
(0)
/C , and let i : χ(0)

C → χC be the inclusion. We regard

χC and χ(0)
C as simplicial presheaves on C which take values in the full sub-

category of Set∆ spanned by the constant simplicial sets. We observe that
every simplicial presheaf on C which is valued in constant simplicial sets is
automatically fibrant and every object of A′ is cofibrant. Consequently, we
may regard i as a morphism in the ∞-category N(A′◦). It is easy to see that
θ(i) represents the monomorphism U → j(C) classified by the sieve C

(0)
/C . If

C
(0)
/C is a covering sieve on C, then i is a local equivalence. Consequently, ev-

ery object X ∈ N(A◦) is i-local, so that θ(X) is θ(i)-local. By construction,
Shv(C) is the full subcategory of P(C) spanned by those objects which are
θ(i)-local for every covering sieve C

(0)
/C on every object C ∈ C. We conclude

that θ|N(A◦) factors through Shv(C).
Let X = θ−1 Shv(C), so that N(A◦) can be identified with the collection

of S′-local objects of X, where S′ is the collection of all morphisms in X

which belong to S. Then θ induces an equivalence N(A◦) → θ(S′)−1 Shv(C).
We now observe that a morphism f in X belongs to S′ if and only if
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θ(f) is an ∞-connective morphism in Shv(C) (since the condition of be-
ing a local equivalence can be tested on homotopy sheaves). It follows that
θ(S′)−1 Shv(C) = Shv(C)∧, as desired.

Remark 6.5.2.15. In [78], the authors discuss a generalization of Jardine’s
construction in which the category C is replaced by a simplicial category.
Proposition 6.5.2.14 holds in this more general situation as well.

We conclude this section with a few remarks about localizations of an
∞-topos X. In §6.2.1, we introduced the class of topological localizations of
X, which consists of those left exact localizations which can be obtained by
inverting monomorphisms in X. The hypercompletion X∧ is, in some sense,
at the other extreme: it is obtained by inverting the ∞-connective morphisms
in X, which are never monomorphisms unless they are already equivalences.
In fact, X∧ is the maximal (left exact) localization of X which can be obtained
without inverting monomorphisms:

Proposition 6.5.2.16. Let X and Y be ∞-topoi and let f∗ : X → Y be a left
exact colimit-preserving functor. The following conditions are equivalent:

(1) For every monomorphism u in X, if f∗u is an equivalence in Y, then
u is an equivalence in X.

(2) For every morphism u ∈ X, if f∗u is an equivalence in Y, then f is
∞-connective.

Proof. Suppose first that (2) is satisfied. If u is a monomorphism and f ∗u
is an equivalence in Y, then u is ∞-connective. In particular, u is both a
monomorphism and an effective epimorphism and therefore an equivalence in
X. This proves (1). Conversely, suppose that (1) is satisfied and let u : X → Z
be an arbitrary morphism in X such that f∗(u) is an equivalence. We will
prove by induction on n that u is n-connective.

We first consider the case n = 0. Choose a factorization

Y
u′′

���
��

��
��

X

u′
���������� u �� Z,

where u′ is an effective epimorphism and u′′ is a monomorphism. Since f∗u
is an equivalence, Corollary 6.2.3.12 implies that f∗u′′ is an effective epi-
morphism. Since f∗u′′ is also a monomorphism (by virtue of our assumption
that f is left exact), we conclude that f∗u′′ is an equivalence. Applying (1),
we deduce that u′′ is an equivalence, so that u is an effective epimorphism,
as desired.

Now suppose n > 0. According to Proposition 6.5.1.18, it will suffice to
show that the diagonal map δ : X → X ×Z X is (n− 1)-connective. By the
inductive hypothesis, it will suffice to prove that f∗(δ) is an equivalence in
Y. We conclude by observing that f∗ is left exact, so we can identify δ with
the diagonal map associated to the equivalence f∗(u) : f∗X → f∗Z.
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Definition 6.5.2.17. Let X be an ∞-topos and let Y ⊆ X be an accessible
left exact localization of X. We will say that Y is an cotopological localization
of X if the left adjoint L : X → Y to the inclusion of Y in X satisfies the
equivalent conditions of Proposition 6.5.2.16.

Remark 6.5.2.18. Let f∗ : X → Y be the left adjoint of a geometric
morphism between ∞-topoi and suppose that the equivalent conditions of
Proposition 6.5.2.16 are satisfied. Let u : X → Z be a morphism in X and
choose a factorization

Y
u′′

���
��

��
��

X

u′
���������� u �� Z,

where u′ is an effective epimorphism and u′′ is a monomorphism. Then u′′

is an equivalence if and only if f∗(u′′) is an equivalence. Applying Corollary
6.2.3.12, we conclude that u is an effective epimorphism if and only if f∗(u)
is an effective epimorphism.

The hypercompletion X∧ of an ∞-topos X can be characterized as the max-
imal cotopological localization of X (that is, the cotopological localization
which is obtained by inverting as many morphisms as possible). According to
our next result, every localization can be obtained by combining topological
and cotopological localizations:

Proposition 6.5.2.19. Let X be an ∞-topos and let X′′ ⊆ X be an accessible
left exact localization of X. Then there exists a topological localization X′ ⊆ X

such that X′′ ⊆ X′ is a cotopological localization of X′.

Proof. Let L : X → X′′ be a left adjoint to the inclusion, let S be the
collection of all monomorphisms u in X such that Lu is an equivalence, and
let X′ = S−1 X be the collection of S-local objects of X. Since L is left exact, S
is stable under pullbacks and therefore determines a topological localization
of X. By construction, we have X′′ ⊆ X′. The restriction L|X′ exhibits X′′

as an accessible left exact localization of X′. Let u be a monomorphism
in X′ such that Lu is an equivalence. Then u is a monomorphism in X,
so that u ∈ S. Since X′ consists of S-local objects, we conclude that u is
an equivalence. It follows that X′′ is a cotopological localization of X′, as
desired.

Remark 6.5.2.20. It is easy to see that the factorization of Proposition
6.5.2.19 is essentially uniquely determined: more precisely, X′ is unique pro-
vided we assume that it is stable under equivalences in X.

Combining Proposition 6.5.2.19 with Remark 7.2.1.16, we see that every
∞-topos X can be obtained in following way:

(1) Begin with the ∞-category P(C) of presheaves on some small ∞-
category C.
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(2) Choose a Grothendieck topology on C: this is equivalent to choosing a
left exact localization of the underlying topos Disc(P(C)) = SethCop

.

(3) Form the associated topological localization Shv(C) ⊆ P(C), which can
be described as the pullback

P(C) ×P(N(hC)) Shv(N(hC))

in RTop.

(4) Form a cotopological localization of Shv(C) by inverting some class of
∞-connective morphisms of Shv(C).

Remark 6.5.2.21. Let X be an ∞-topos. The collection of all ∞-connective
morphisms in X is saturated. It follows from Proposition 5.5.5.7 that there
exists a factorization system (SL, SR) on X, where SL is the collection of
all ∞-connective morphisms in X. We will say that a morphism in X is
hypercomplete if it belongs to SR. Unwinding the definitions (and using the
fact that a morphism in X/Y is ∞-connective if and only if its image in X is
∞-connective), we conclude that a morphism f : X → Y is hypercomplete
if and only if it is hypercomplete when viewed as an object of the ∞-topos
X/Y (see §6.5.2).

Using Proposition 5.2.8.6, we deduce that the collection of hypercomplete
morphisms in X is stable under limits and the formation of pullback squares.

Remark 6.5.2.22. Let X be an ∞-topos. The condition that a morphism
f : X → Y be hypercomplete is local: that is, if {Yα → Y } is a collection
of morphisms which determine an effective epimorphism

∐
Yα → Y , and

each of the induced maps fα : X ×Y Yα → Yα is hypercomplete, then f is
hypercomplete. To prove this, we set Y0 =

∐
α Yα; then X/Y0 � ∏

α X/Yα

(since coproducts in X are disjoint), so it is easy to see that the induced
map f ′ : X ×Y Y0 → Y0 is hypercomplete. Let Y• be the simplicial object
of X given by the Čech nerve of the effective epimorphism Y0 → Y . For
every map Z → Y , let Z• be the simplicial object described by the formula
Zn = Yn×Y Z (equivalently, Z• is the Čech nerve of the effective epimorphism
Z ×Y Y0 → Z). Using Remark 6.5.2.21, we conclude that each of the maps
Xn → Yn is hypercomplete.

For every map A → Y , the mapping space MapX/Y
(A,X) can be obtained

as the totalization of a cosimplicial space

n �→ MapX/Yn
(An, Xn).

If g : A → B is an ∞-connective morphism in X/Y , then each of the induced
maps An → Bn is ∞-connective, so the induced map

MapX/Yn
(Bn, Xn) → MapX/Yn

(An, Xn)

is a homotopy equivalence. Passing to the totalization, we obtain a homotopy
equivalence MapX/Y

(B,X) → MapX/Y
(A,X). Thus f is hypercomplete, as

desired.
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6.5.3 Hypercoverings

Let X be an ∞-topos. In §6.5.2, we defined the hypercompletion X∧ ⊆ X to
be the left exact localization of X obtained by inverting the ∞-connective
morphisms. In this section, we will give an alternative description of the hy-
percomplete objects X ∈ X∧: they are precisely those objects of X which sat-
isfy a descent condition with respect to hypercoverings (Theorem 6.5.3.12).
We begin by reviewing the definition of a hypercovering.

Let X be a topological space and let F be a presheaf of sets on X. To
construct the sheaf associated to F, it is natural to consider the presheaf F+

defined by

F+ = lim−→
U

lim←−
V ∈U

F(V ).

Here the direct limit is taken over all sieves U which cover U . There is an
obvious map F → F+ which is an isomorphism whenever F is a sheaf. More-
over, F+ is “closer” to being a sheaf than F is. More precisely, F+ is always
a separated presheaf: two sections of F+ which agree locally automatically
coincide. If F is itself a separated presheaf, then F+ is a sheaf.

For a general presheaf F, we need to apply the above construction twice
to construct the associated sheaf (F+)+. To understand the problem, let us
try to prove that F+ is a sheaf (to see where the argument breaks down).
Suppose we are given an open coveringX =

⋃
Uα and a collection of sections

sα ∈ F+(Uα) such that

sα|Uα ∩ Uβ = sβ |Uα ∩ Uβ.
Refining the covering Uα if necessary, we may assume that each sα is the
image of some section tα ∈ F(Uα). However, the equation

tα|Uα ∩ Uβ = tβ |Uα ∩ Uβ
holds only locally on Uα∩Uβ, so the sections tα do not necessarily determine
a global section of F+. To summarize: the freedom to consider arbitrarily
fine open covers U = {Uα} is not enough; we also need to be able to re-
fine the intersections Uα ∩ Uβ. This leads very naturally to the notion of a
hypercovering. Roughly speaking, a hypercovering of X consists of an open
covering {Uα} of X, an open covering {Vαβγ} of each intersection Uα ∩ Uβ ,
and analogous data associated to more complicated intersections (see Defi-
nition 6.5.3.2 for a more precise formulation).

In classical sheaf theory, there are two ways to construct the sheaf associ-
ated to a presheaf F:

(1) One can apply the construction F �→ F+ twice.

(2) Using the theory of hypercoverings, one can proceed directly by defin-
ing

F†(U) = lim−→
U

lim←−F(V ),

where the direct limit is now taken over arbitrary hypercoverings U.
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In higher category theory, the difference between these two approaches
becomes more prominent. For example, suppose that F is not a presheaf of
sets but a presheaf of groupoids on X. In this case, one can construct the
associated sheaf of groupoids using either approach. However, in the case of
approach (1), it is necessary to apply the construction F �→ F+ three times:
the first application guarantees that the automorphism groups of sections
of F are separated presheaves, the second guarantees that they are sheaves,
and the third guarantees that F itself satisfies descent. More generally, if F

is a sheaf of n-truncated spaces, then the sheafification of F via approach
(1) takes place in (n+ 2)-stages.

When we pass to the case n = ∞, the situation becomes more complicated.
If F is a presheaf of spaces on X, then it is not reasonable to expect to obtain
a sheaf by applying the construction F �→ F+ any finite number of times.
In fact, it is not obvious that F+ is any closer than F to being a sheaf.
Nevertheless, this is true: we can construct the sheafification of F via a
transfinite iteration of the construction F �→ F+. More precisely, we define a
transfinite sequence of presheaves

F(0) → F(1) → · · ·
as follows:

(i) Let F(0) = F.

(ii) For every ordinary α, let F(α+ 1) = F(α)+.

(iii) For every limit ordinal λ, let F(λ) = lim−→α
F(α), where α ranges over

ordinals less than λ.

One can show that the above construction converges in the sense that
F(α) is a sheaf for α � 0 (and therefore F(α) � F(β) for β ≥ α). Moreover,
F(α) is universal among sheaves of spaces which admit a map from F.

Alternatively, one can use the construction F �→ F† to construct a sheaf
of spaces from F in a single step. The universal property asserted above
guarantees the existence of a morphism of sheaves θ : F(α) → F†. However,
the morphism θ is generally not an equivalence. Instead, θ realizes F† as
the hypercompletion of F(α) in the ∞-topos Shv(X). We will not prove
this statement directly but will instead establish a reformulation (Corollary
6.5.3.13) which does not make reference to the sheafification constructions
outlined above.

Before we can introduce the definition of a hypercovering, we need to
review some simplicial terminology.

Notation 6.5.3.1. For each n ≥ 0, let ∆≤n denote the full subcategory
of ∆ spanned by the set of objects {[0], . . . , [n]}. If X is a presentable ∞-
category, the restriction functor

skn : X∆ → Fun(N(∆≤n)op,X)
has a right adjoint given by right Kan extension along the inclusion functor
N(∆≤n)op ⊆ N(∆)op. Let coskn : X∆ → X∆ be the composition of skn with
its right adjoint. We will refer to coskn as the n-coskeleton functor.
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Definition 6.5.3.2. Let X be an ∞-topos. A simplicial object U• ∈ X∆ is
a hypercovering of X if, for each n ≥ 0, the unit map

Un → (coskn−1 U•)n

is an effective epimorphism. We will say that U• is an effective hypercovering
of X if the colimit of U• is a final object of X.

Remark 6.5.3.3. More informally, a simplicial object U• ∈ X∆ is a hyper-
covering of X if each of the associated maps

U0 → 1X

U1 → U0 × U0

U2 → · · ·
is an effective epimorphism.

Lemma 6.5.3.4. Let X be an ∞-topos and let U• be a simplicial object in X.
Let L : X → X∧ be a left adjoint to the inclusion. The following conditions
are equivalent:

(1) The simplicial object U• is a hypercovering of X.

(2) The simplicial object L ◦ U• is a hypercovering of X∧.

Proof. Since L is left exact, we can identify L ◦ coskn U• with coskn(L ◦U•).
The desired result now follows from Remark 6.5.2.18.

Lemma 6.5.3.5. Let X be an ∞-topos and let U be an ∞-connective object
of X. Let U• be the constant simplicial object with value U . Then U• is a
hypercovering of X.

Proof. Using Lemma 6.5.3.4, we can reduce to the case where X is hypercom-
plete. Then U � 1X, so that U• is equivalent to the constant functor with
value 1X and is therefore a final object of X∆. For each n ≥ 0, the coskeleton
functor coskn−1 preserves small limits, so coskn−1 U• is also a final object of
U•. It follows that the unit map U• → coskn−1 U• is an equivalence.

Notation 6.5.3.6. Let ∆s be the subcategory of ∆ with the same objects
but where the morphisms are given by injective order-preserving maps be-
tween nonempty linearly ordered sets. If X is an ∞-category, we will refer to
a diagram N(∆s)op → X as a semisimplicial object of X.

Lemma 6.5.3.7. The inclusion N(∆op
s ) ⊆ N(∆op) is cofinal.

Proof. According to Theorem 4.1.3.1, it will suffice to prove that for every
n ≥ 0, the category C = ∆s×∆ ∆/[n] has a weakly contractible nerve. To
prove this, we let F : C → C be the constant functor taking value given
by the inclusion [0] ⊆ [n] and G : C → C be the functor which carries
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an arbitrary map [m] → [n] to the induced map [0]
∐

[m] → [n]. We have
natural transformations of functors

F → G ← idC .

Let X be the topological space |N(C)|. The natural transformations above
show that the identity map idX is homotopic to a constant, so that X is
contractible, as desired.

Consequently, if U• is a simplicial object in an ∞-category X and Us• =
U•|N(∆op

s ) is the associated semisimplicial object, then we can identify co-
limits of U• with colimits of Us• .

We will say that a simplicial object U• in an ∞-category X is n-coskeletal
if it is a right Kan extension of its restriction to N(∆op

≤n). Similarly, we will
say that a semisimplicial object U• of X is n-coskeletal if it is a right Kan
extension of its restriction to N(∆op

s,≤n), where ∆s,≤n = ∆s×∆ ∆≤n.

Lemma 6.5.3.8. Let X be an ∞-category, let U• be a simplicial object of
X, and let Us• = U•|N(∆op

s ) the associated semisimplicial object. Then U• is
n-coskeletal if and only if Us• is n-coskeletal.

Proof. It will suffice to show that, for each ∆m ∈ ∆, the nerve of the inclu-
sion

(∆s)/[m] ×∆s
∆s,≤n ⊆ ∆/[m] ×∆ ∆≤n

is cofinal. Let θ : [m′] → [m] be an object of ∆/[m] ×∆ ∆≤n. We let C denote
the category of all factorizations

[m′] θ
′→ [m′′] θ

′′→ [m]

for θ such that θ′′ is a monomorphism and m′′ ≤ n. According to Theorem
4.1.3.1, it will suffice to prove that N(C) is weakly contractible (for every
choice of θ). We now simply observe that C has an initial object (given by
the unique factorization where θ′ is an epimorphism).

Lemma 6.5.3.9 ([20]). Let X be an ∞-topos and let U• be an n-coskeletal
hypercovering of X. Then U• is effective.

Proof. We will prove this result by induction on n. If n = 0, then U• can
be identified with the underlying groupoid of the Čech nerve of the map
θ : U0 → 1X, where 1X is a final object of X. Since U• is a hypercovering,
θ is an effective epimorphism, so the Čech nerve of θ is a colimit diagram
and the desired result follows. Let us therefore assume that n > 0. Let
V• = coskn−1 U• and let f• : U• → V• be the adjunction map. For each
m ≥ 0, the map fm : Um → Vm is a composition of finitely many pullbacks
of fn. Since U• is a hypercovering, fn is an effective epimorphism, so each fm
is also an effective epimorphism. We also observe that fm is an equivalence
for m < n.

Let W+ : N(∆+ ×∆)op → X be a Čech nerve of f• (formed in the ∞-
category X∆ of simplicial objects of X). We observe that W+|N({∅}×∆)op
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can be identified with V•. Since V• is an (n− 1)-coskeletal hypercovering of
X, the inductive hypothesis implies that any colimit |V•| is a final object of
X. The inclusion N({∅} × ∆)op ⊆ N(∆+ ×∆)op is cofinal (being a product
of N(∆)op and the inclusion of a final object into N(∆+)op ), so we may
identify colimits of W+ with colimits of V•. It follows that any colimit of
W+ is a final object of X. We next observe that each of the augmented
simplicial objects W+|N(∆+ ×{[m]})op is a Čech nerve of fm and therefore
a colimit diagram (since fm is an effective epimorphism). Applying Lemma
4.3.3.9, we conclude that W+ is a left Kan extension of the bisimplicial
object W = W+|N(∆×∆)op. According to Lemma 4.3.2.7, we can identify
colimits of W+ with colimits of W , so any colimit of W is a final object of
X.

Let D• : N(∆op) → X be the simplicial object of X obtained by composing
W with the diagonal map δ : N(∆op) → N(∆×∆)op. According to Lemma
5.5.8.4, δ is cofinal. We may therefore identify colimits of W with colimits
of D•, so that any colimit |D•| of D• is a final object of X.

Let U s• = U•|N(∆op
s ) and let Ds

• = D•|N(∆op
s ). We will prove that Us• is

a retract of Ds
• in the ∞-category of semisimplicial objects of X. According

to Lemma 6.5.3.7, we can identify colimits of Ds
• with colimits of D•. It will

follow that any colimit of Us• is a retract of a final object of X and therefore
itself final. Applying Lemma 6.5.3.7 again, we will conclude that any colimit
of U• is a final object of X, and the proof will be complete.

We observe that Ds
• is the result of composing W with the (opposite of

the nerve of the) diagonal functor

δs : ∆s → ∆×∆ .

Similarly, the semisimplicial object Us• is obtained from W via the composi-
tion

ε : ∆s ⊆ ∆ � {[0]} × ∆ ⊆ ∆×∆ .

There is an obvious natural transformation of functors δs → ε which yields
a map of semisimplicial objects θ : Us• → Ds

•. To complete the proof, it will
suffice to show that there exists a map

θ′ : Ds
• → Us•

such that θ′ ◦ θ is homotopic to the identity on Us• .
According to Lemma 6.5.3.8, Us• is n-coskeletal as a semisimplicial object

of X. Let Ds
≤n and Us≤n denote restrictions of Ds

• and Us• to N(∆op
s,≤n)

and θ≤n : Us≤n → Ds
≤n be the morphism induced by θ. We have canonical

homotopy equivalences

MapFun(N(∆op
s ),X)(D

s
•, U

s
• ) � MapFun(N(∆op

s,≤n
),X)(D

s
≤n, U

s
≤n)

MapFun(N(∆op
s ),X)(U

s
• , U

s
• ) � MapFun(N(∆op

s,≤n
),X)(U

s
≤n, U

s
≤n).

It will therefore suffice to prove that there exists a map

θ′≤n : Ds
≤n → Us≤n
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such that θ′≤n ◦ θ≤n is homotopic to the identity on U s≤n.
Consider the functors

δ
s

: ∆s,≤n → ∆+ ×∆

ε : ∆s,≤n → ∆+ ×∆

defined as follows:

δ
s
([m]) =

{
(∅, [m]) if m < n

([n], [n]) if m = n

ε([m]) =

{
(∅, [m]) if m < n

([0], [n]) if m = n.

We have a commutative diagram of natural transformations

δ
s ��

��

δs

��
ε �� ε

which gives rise to a diagram

D
s

≤n Ds
≤n��

U
s

≤n

ψ≤n

$$

Us≤n

θ≤n

$$

��

in the ∞-category Fun(N(∆op
s,≤n),X). The vertical arrows are equivalences.

Consequently, it will suffice to produce a (homotopy) left inverse to ψ≤n.
For m ≥ 0, let V s≤m = V•|∆s,≤m. We can identify D

s

≤n and U
s

≤n with
objects X,Y ∈ X/V s

≤n−1
and ψ≤n with a morphism f : X → Y . To complete

the proof, it will suffice to produce a left inverse to f in the ∞-category
X/V s

≤n−1
. We observe that because V• is (n−1)-coskeletal, we have a diagram

of trivial fibrations

X/Vn
← X/V s

≤n
→ X/V s

≤n−1
.

Using this diagram (and the construction of W ), we conclude that Y can be
identified with a product of (n+1) copies of X in X/V s

≤n−1
and that f can be

identified with the identity map. The existence of a left homotopy inverse to
f is now obvious (choose any of the (n+1)-projections from Y onto X).

Lemma 6.5.3.10. Let X be an ∞-topos and let f• : U• → V• be a natural
transformation between simplicial objects of X. Suppose that, for each k ≤ n,
the map fk : Uk → Vk is an equivalence. Then the induced map |f•| : |U•| →
|V•| of colimits is n-connective.



674 CHAPTER 6

Proof. Choose a left exact localization functor L : P(C) → X. Without loss
of generality, we may suppose that f• = L ◦ f•, where f• : U• → V • is a
transformation between simplicial objects of P(C), where fk is an equiva-
lence for k ≤ n. Since L preserves colimits and n-connectivity (Proposition
6.5.1.16), it will suffice to prove that |f•| is n-connective. Using Propositions
6.5.1.12 and 5.5.6.28, we see that |f•| is n-connective if and only if, for each
object C ∈ C, the induced morphism in S is n-connective. In other words,
we may assume without loss of generality that X = S.

According to Proposition 4.2.4.4, we may assume that f• is obtained by
taking the simplicial nerve of a map f ′• : U ′

• → V ′
• between simplicial objects

in the ordinary category Kan. Without loss of generality, we may suppose
that U ′

• and V ′
• are projectively cofibrant (as diagrams in the model category

Set∆). According to Theorem 4.2.4.1, it will suffice to prove that the induced
map from the (homotopy) colimit of U ′

• to the (homotopy) colimit of V ′
•

has n-connective homotopy fibers, which follows from classical homotopy
theory.

Lemma 6.5.3.11. Let X be an ∞-topos and let U• be a hypercovering of X.
Then the colimit |U•| is ∞-connective.

Proof. We will prove that θ is n-connective for every n ≥ 0. Let V• =
coskn+1 U• and let u : U• → V• be the adjunction map. Lemma 6.5.3.10
asserts that the induced map |U•| → |V•| is n-connective, and Lemma 6.5.3.9
asserts that |V•| is a final object of X. It follows that |U•| ∈ X is n-connective,
as desired.

The preceding results lead to an easy characterization of the class of hy-
percomplete ∞-topoi:

Theorem 6.5.3.12. Let X be an ∞-topos. The following conditions are
equivalent:

(1) For every X ∈ X, every hypercovering U• of X/X is effective.

(2) The ∞-topos X is hypercomplete.

Proof. Suppose that (1) is satisfied. Let f : U → X be an ∞-connective
morphism in X and let f• be the constant simplicial object of X/X with
value f . According to Lemma 6.5.3.5, f is a hypercovering of X/X . Invoking
(1), we conclude that f � |f•| is a final object of X/X ; in other words, f is
an equivalence. This proves that (1) ⇒ (2).

Conversely, suppose that X is hypercomplete. Let X ∈ X be an object
and U• a hypercovering of X/X . Then Lemma 6.5.3.11 implies that |U•| is
an ∞-connective object of X/X . Since X is hypercomplete, we conclude that
|U•| is a final object of X/X , so that U• is effective.

Corollary 6.5.3.13 (Dugger-Hollander-Isaksen [20], Toën-Vezzosi [78]). Let
X be an ∞-topos. For each X ∈ X and each hypercovering U• of X/X , let
|U•| be the associated morphism of X (which has target X). Let S denote the
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collection of all such morphisms |U•|. Then X∧ = S−1 X. In other words, an
object of X is hypercomplete if and only if it is S-local.

Remark 6.5.3.14. One can generalize Corollary 6.5.3.13 as follows: let
L : X → Y be an arbitrary left exact localization of ∞-topoi and let S be
the collection of all morphisms of the form |U•|, where U• is a simplicial
object of X/X such that L ◦ U• is an effective hypercovering of Y/LX . Then
L induces an equivalence S−1 X → Y.

It follows that every ∞-topos can be obtained by starting with an ∞-
category of presheaves P(C), selecting a collection of augmented simplicial
objects U+

• , and inverting the corresponding maps |U•| → U−1. The speci-
fication of the desired class of augmented simplicial objects can be viewed
as a kind of “generalized topology” on C in which one specifies not only the
covering sieves but also the collection of hypercoverings which are to become
effective after localization. It seems plausible that this notion of topology can
be described more directly in terms of the ∞-category C, but we will not
pursue the matter further.

6.5.4 Descent versus Hyperdescent

Let X be a topological space and let U(X) denote the category of open
subsets of X. The category U(X) is equipped with a Grothendieck topol-
ogy in which the covering sieves on U are those sieves {Uα ⊆ U} such that
U =

⋃
α Uα. We may therefore consider the ∞-topos Shv(N(U(X))), which

we will call the ∞-topos of sheaves on X and denote by Shv(X). In §6.5.2,
we discussed an alternative theory of sheaves on X, which can be obtained
either through Jardine’s local model structure on the category of simpli-
cial presheaves or by passing to the hypercompletion Shv(X)∧ of Shv(X).
According to Theorem 6.5.3.12, Shv(X)∧ is distinguished from Shv(X) in
that objects of Shv(X)∧ are required to satisfy a descent condition for arbi-
trary hypercoverings of X, while objects of Shv(X) are required to satisfy a
descent condition only for ordinary coverings.

Warning 6.5.4.1. We will always use the notation Shv(X) to indicate the
∞-category of S-valued sheaves on X rather than the ordinary category of
set-valued sheaves. If we need to indicate the latter, we will denote it by
ShvSet(X).

The ∞-topos Shv(X)∧ seems to have received more attention than Shv(X)
in the literature (though there is some discussion of Shv(X) in [20] and [78]).
We would like to make the case that for most purposes, Shv(X) has better
properties. A large part of Chapter 7 will be devoted to justifying some of
the claims made below.

(1) In §6.4.5, we saw that the construction
X �→ Shv(X)

could be interpreted as a right adjoint to the functor which associates to
every ∞-topos Y the underlying locale of subobjects of the final object
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of Y. In other words, Shv(X) occupies a universal position among ∞-
topoi which are related to the original space X.

(2) Suppose we are given a Cartesian square

X ′ ψ′
��

π′

��

X

π

��
S′ ψ �� S

in the category of locally compact topological spaces. In classical sheaf
theory, there is a base change transformation

ψ∗π∗ → π′
∗ψ

′∗

of functors between the derived categories of (left bounded) complexes
of (abelian) sheaves on X and on S′. The proper base change theorem
asserts that this transformation is an equivalence whenever the map π
is proper.

The functors ψ∗, ψ′∗, π∗, and π′
∗ can be defined on the ∞-topoi Shv(X),

Shv(X ′), Shv(S), and Shv(S′), and on their hypercompletions. More-
over, one has a base change map

ψ∗π∗ → π′∗ψ′∗

in this nonabelian situation as well.

It is natural to ask if the base change transformation is an equiva-
lence when π is proper. It turns out that this is false if we work with
hypercomplete ∞-topoi. Let us sketch a counterexample:

Counterexample 6.5.4.2. Let Q denote the Hilbert cube [0, 1] ×
[0, 1] × · · · . For each i, we let Qi � Q denote “all but the first i”
factors of Q, so that Q = [0, 1]i ×Qi.

We construct a sheaf of spaces F on X = Q × [0, 1] as follows. Begin
with the empty stack. Adjoin to it two sections defined over the open
sets [0, 1) × Q1 × [0, 1) and (0, 1] × Q1 × [0, 1). These sections both
restrict to give sections of F over the open set (0, 1) × Q1 × [0, 1).
We next adjoin paths between these sections defined over the smaller
open sets (0, 1) × [0, 1) × Q2 × [0, 1

2) and (0, 1) × (0, 1] × Q2 × [0, 1
2).

These paths are both defined on the smaller open set (0, 1) × (0, 1) ×
Q2 × [0, 1

2 ), so we next adjoin two homotopies between these paths
over the open sets (0, 1) × (0, 1) × [0, 1) × Q3 × [0, 1

3
) and (0, 1) ×

(0, 1) × (0, 1] × Q3 × [0, 1
3 ). Continuing in this way, we obtain a sheaf

F. On the closed subset Q × {0} ⊂ X, the sheaf F is ∞-connective
by construction, and therefore its hypercompletion admits a global
section. However, the hypercompletion of F does not admit a global
section in any neighborhood of Q×{0} since such a neighborhood must
contain Q × [0, 1

n ) for n � 0 and the higher homotopies required for
the construction of a section are eventually not globally defined.
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However, in the case where π is a proper map, the base change map

ψ∗π∗ → π′
∗ψ

′∗

is an equivalence of functors from Shv(X) to Shv(S′). One may regard
this fact as a nonabelian generalization of the classical proper base
change theorem. We refer the reader to §7.3 for a precise statement
and proof.

Remark 6.5.4.3. A similar issue arises in classical sheaf theory if
one chooses to work with unbounded complexes. In [72], Spaltenstein
defines a derived category of unbounded complexes of sheaves on X,
whereX is a topological space. Spaltenstein’s definition forces all quasi-
isomorphisms to become invertible, which is analogous to the proce-
dure of obtaining X∧ from X by inverting the ∞-connective morphisms.
Spaltenstein’s work shows that one can extend the definitions of all of
the basic objects and functors. However, it turns out that the theo-
rems do not all extend: in particular, one does not have the proper
base change theorem in Spaltenstein’s setting (Counterexample 6.5.4.2
can be adapted to the setting of complexes of abelian sheaves). The
problem may be rectified by imposing weaker descent conditions which
do not invert all quasi-isomorphisms; we will give a more detailed dis-
cussion in [50].

(3) The ∞-topos Shv(X) often has better finiteness properties than the
∞-topos Shv(X)∧. Recall that a topological space X is coherent if the
collection of compact open subsets of X is stable under finite intersec-
tions and forms a basis for the topology of X.

Proposition 6.5.4.4. Let X be a coherent topological space. Then the
∞-category Shv(X) is compactly generated: that is, Shv(X) is gener-
ated under filtered colimits by its compact objects.

Proof. Let Uc(X) be the partially ordered set of compact open subsets
of X, let Pc(X) = P(N(Uc(X))), and let Shvc(X) be the full sub-
category of Pc(X) spanned by those presheaves F with the following
properties:

(1) The object F(∅) ∈ C is final.

(2) For every pair of compact open sets U, V ⊆ X, the associated
diagram

F(U ∩ V ) ��

��

F(U)

��
F(V ) �� F(U ∪ V )

is a pullback.
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In §7.3.5, we will prove that the restriction functor Shv(X) → Shvc(X)
is an equivalence of ∞-categories (Theorem 7.3.5.2). It will therefore
suffice to prove that Shvc(X) is compactly generated.

Using Lemmas 5.5.4.19, 5.5.4.17, and 5.5.4.18, we deduce that Shvc(X)
is an accessible localization of Pc(X). Let X be a compact object of
Pc(X). We observe that X and LX corepresent the same functor on
Shvc(X). Proposition 5.3.3.3 implies that the subcategory Shvc(X) ⊆
Pc(X) is stable under filtered colimits in Pc(X). It follows that LX is
a compact object of Shv0(X). Since Pc(X) is generated under filtered
colimits by its compact objects (Proposition 5.3.5.12), we conclude
that Shvc(X) has the same property.

It is not possible replace Shv(X) by Shv(X)∧ in the statement of
Proposition 6.5.4.4.

Counterexample 6.5.4.5. Let S = {x, y, z} be a topological space
consisting of three points, with topology generated by the open subsets
S+ = {x, y} ⊂ S and S− = {x, z} ⊂ S. Let X = S × S × · · · be a
product of infinitely many copies of S. ThenX is a coherent topological
space. We will show that the global sections functor Γ : Shv(X)∧ →
S does not commute with filtered colimits, so that the final object
of Shv(X)∧ is not compact. A more elaborate version of the same
argument shows that Shv(X)∧ contains no compact objects other than
its initial object.

To show that Γ does not commute with filtered colimits, we use a
variant on the construction of Counterexample 6.5.4.2. We define a
sequence of sheaves

F0 → F1 → · · ·
as follows. Let F0 be generated by sections

η0
+ ∈ F(S+ × S × · · · )

η0
− ∈ F(S− × S × · · · ).

Let F1 be the sheaf obtained from F0 by adjoining paths

η1
+ : ∆1 → F({x} × S+ × S × · · · )

η1
− : ∆1 → F({x} × S− × S × · · · )

from η0
+ to η0

−. Similarly, let F2 be obtained from F1 by adjoining
homotopies

η2
+ : (∆1)2 → F({x} × {x} × S+ × S × · · · )

η2
− : (∆1)2 → F({x} × {x} × S− × S × · · · )
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from η1
+ to η1

−. Continuing this procedure, we obtain a sequence of
sheaves

F0 → F1 → F2 → · · ·
whose colimit F∞ ∈ Shv(X)∧ admits a section (since we allow de-
scent with respect to hypercoverings). However, none of the individual
sheaves Fn admits a global section.

Remark 6.5.4.6. The analogue of Proposition 6.5.4.4 fails, in general,
if we replace the coherent topological space X by a coherent topos.
For example, we cannot take X to be the topos of étale sheaves on an
algebraic variety. However, it turns out that the analogue Proposition
6.5.4.4 is true for the topos of Nisnevich sheaves on an algebraic variety;
we refer the reader to [50] for details.

Remark 6.5.4.7. A point of an ∞-topos X is a geometric morphism
p∗ : S → X, where S denotes the ∞-category of spaces (which is a
final object of RTop by virtue of Proposition 6.3.4.1). We say that
X has enough points if, for every morphism f : X → Y in X having
the property that p∗(f) is an equivalence for every point p of X, f
is itself an equivalence in X. If f is ∞-connective, then every stalk
p∗(f) is ∞-connective, hence an equivalence by Whitehead’s theorem.
Consequently, if X has enough points, then it is hypercomplete.

In classical topos theory, Deligne’s version of the Gödel completeness
theorem (see [53]) asserts that every coherent topos has enough points.
Counterexample 6.5.4.5 shows that there exist coherent topological
spaces with Shv(X)∧ �= Shv(X), so that Shv(X) does not necessarily
have enough points. Consequently, Deligne’s theorem does not hold in
the ∞-categorical context.

(4) Let k be a field and let C denote the category of chain complexes of
k-vector spaces. Via the Dold-Kan correspondence, we may regard C

as a simplicial category. We let Mod(k) = N(C) denote the simplicial
nerve. We will refer to Mod(k) as the ∞-category of k-modules; it is a
presentable ∞-category which we will discuss at greater length in [50].

Let X be a compact topological space and choose a functorial injective
resolution

F → I0(F) → I1(F) → · · ·
on the category of sheaves F of k-vector spaces on X. For every open
subset U on X, we let kU denote the constant sheaf on U with value
k, extended by zero to X. Let HBM (U) = Γ(X, I•(kU ))∨, the dual
of the complex of global sections of the injective resolution I•(kU ).
Then HBM (U) is a complex of k-vector spaces whose homologies are
precisely the Borel-Moore homology of U with coefficients in k (in other



680 CHAPTER 6

words, they are the dual spaces of the compactly supported cohomology
groups of U). The assignment

U �→ HBM (U)

determines a presheaf on X with values in the ∞-category Mod(k).

In view of the existence of excision exact sequences for Borel-Moore
homology, it is natural to suppose that HBM (U) is actually a sheaf
on X with values in Mod(k). This is true provided that the notion of
sheaf is suitably interpreted: namely, HBM extends (in an essentially
unique fashion) to a colimit-preserving functor

φ : Shv(X) → Mod(k)op.

(In other words, the functor U �→ HBM (U) determines a Mod(k)-
valued sheaf on X in the sense of Definition 7.3.3.1.) However, the
sheaf HBM is not necessarily hypercomplete in the sense that φ does
not necessarily factor through Shv(X)∧.

Counterexample 6.5.4.8. There exists a compact Hausdorff space
X and a hypercovering U• of X such that the natural map HBM (X) →
lim←−HBM (U•) is not an equivalence. Let X be the Hilbert cube Q =
[0, 1]×[0, 1]×· · · (more generally, we could take X to be any nonempty
Hilbert cube manifold). It is proven in [15] that every point of X
has arbitrarily small neighborhoods which are homeomorphic to Q ×
[0, 1). Consequently, there exists a hypercovering U• of X, where each
Un is a disjoint union of open subsets of X homeomorphic to Q ×
[0, 1). The Borel-Moore homology of every Un vanishes; consequently,
lim←−HBM (U•) is zero. However, the (degree zero) Borel-Moore homol-
ogy of X itself does not vanish since X is nonempty and compact.

Borel-Moore homology is a very useful tool in the study of a locally
compact space X, and its descent properties (in other words, the exis-
tence of various Mayer-Vietoris sequences) are very naturally encoded
in the statement that HBM is a k-module in the ∞-topos Shv(X) (in
other words, a sheaf on X with values in Mod(k)); however, this k-
module generally does not lie in Shv(X)∧. We see from this example
that nonhypercomplete sheaves (with values in Mod(k) in this case)
on X often arise naturally in the study of infinite-dimensional spaces.

(5) Let X be a topological space and f : Shv(X) → Shv(∗) � S be the
geometric morphism induced by the projection X → ∗. Let K be a
Kan complex regarded as an object of S. Then π0f∗f∗K is a natural
definition of the sheaf cohomology of X with coefficients in K. If X
is paracompact, then the cohomology set defined above is naturally
isomorphic to the set [X, |K|] of homotopy classes of maps from X into
the geometric realization |K|; we will give a proof of this statement in
§7.1. The analogous statement fails if we replace Shv(X) by Shv(X)∧.
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(6) Let X be a topological space. Combining Remark 6.5.2.2 with Propo-
sition 6.5.2.14, we deduce that Shv(X)∧ has enough points and that
Shv(X)∧ = Shv(X) if and only if Shv(X) has enough points. The pos-
sible failure of Whitehead’s theorem in Shv(X) may be viewed either
as a bug or a feature. The existence of enough points for Shv(X) is ex-
tremely convenient; it allows us to reduce many statements about the
∞-topos Shv(X) to statements about the ∞-topos S of spaces where
we can apply classical homotopy theory. On the other hand, if Shv(X)
does not have enough points, then there is the possibility that it de-
tects certain global phenomena which cannot be properly understood
by restricting to points. Let us consider an example from geometric
topology. A map f : X → Y of compact metric spaces is called cell-
like if each fiber Xy = X×Y {y} has trivial shape (see [18]). This notion
has good formal properties provided that we restrict our attention to
metric spaces which are absolute neighborhood retracts. In the general
case, the theory of cell-like maps can be badly behaved: for example,
a composition of cell-like maps need not be cell-like.

The language of ∞-topoi provides a convenient formalism for dis-
cussing the problem. In §7.3.6, we will introduce the notion of a cell-like
morphism p∗ : X → Y between ∞-topoi. By definition, p∗ is cell-like
if it is proper and if the unit map u : F → p∗p∗ F is an equivalence
for each F ∈ Y. A cell-like map p : X → Y of compact metric spaces
need not give rise to a cell-like morphism p∗ : Shv(X) → Shv(Y ). The
hypothesis that each fiber Xy has trivial shape ensures that the unit
u : F → p∗p∗ F is an equivalence after passing to stalks at each point
y ∈ Y . This implies only that u is ∞-connective, and in general u need
not be an equivalence.

Remark 6.5.4.9. It is tempting to try to evade the problem described
above by working instead with the hypercomplete ∞-topoi Shv(X)∧

and Shv(Y )∧. In this case, we can test whether or not u : F → p∗p∗ F

is an equivalence by passing to stalks. However, since the proper base
change theorem does not hold in the hypercomplete context, the stalk
(p∗p∗ F)y is not generally equivalent to the global sections of p∗ F |Xy.
Thus, we still encounter difficulties if we want to deduce global conse-
quences from information about the individual fibers Xy.

(7) The counterexamples described in this section have one feature in com-
mon: the underlying space X is infinite-dimensional. In fact, this is
necessary: if the space X is finite-dimensional (in a suitable sense),
then the ∞-topos Shv(X) is hypercomplete (Corollary 7.2.1.12). This
finite-dimensionality condition on X is satisfied in many of the situa-
tions to which the theory of simplicial presheaves is commonly applied,
such as the Nisnevich topology on a scheme of finite Krull dimension.



Chapter Seven

Higher Topos Theory in Topology

In this chapter, we will sketch three applications of the theory of ∞-topoi to
the study of classical topology. We begin in §7.1 by showing that if X is a
paracompact topological space, then the ∞-topos Shv(X) of sheaves on X
can be interpreted as a homotopy theory of topological spaces Y equipped
with a map to X. We will deduce, as an application, that if p∗ : Shv(X) →
Shv(∗) is the geometric morphism induced by the projection X → ∗, then
the composition p∗p∗ is equivalent to the functor

K �→ KX

from (compactly generated) topological spaces to itself.
Our second application is to the dimension theory of topological spaces.

There are many different notions of dimension for a topological space X,
including the notion of covering dimension (when X is paracompact), Krull
dimension (when X is Noetherian), and cohomological dimension. We will
define the homotopy dimension of an ∞-topos X, which specializes to the
covering dimension when X = Shv(X) for a paracompact space X and is
closely related to both cohomological dimension and Krull dimension. We
will show that any ∞-topos which is (locally) finite-dimensional is hypercom-
plete, thereby justifying assertion (7) of §6.5.4. We will conclude by proving
a bound on the homotopy dimension of Shv(X), where X is a Heyting space
(see §7.2.4 for a definition); this may be regarded as a generalization of
Grothendieck’s vanishing theorem, which applies to nonabelian cohomology
and to (certain) non-Noetherian spaces X.

Our third application is a generalization of the proper base change theorem.
Suppose we are given a Cartesian diagram

X ′ p′ ��

q′

��

X

q

��
Y ′ p �� Y

of locally compact topological spaces. There is a natural transformation
η : p∗q∗ → q′∗p

′∗

of functors from the derived category of abelian sheaves on X to the derived
category of abelian sheaves on Y ′. The proper base change theorem asserts
that η is an isomorphism whenever q is a proper map. In §7.3, we will gen-
eralize this statement to allow nonabelian coefficient systems. To give the
proof, we will develop a theory of proper morphisms between ∞-topoi, which
is of some interest in itself.
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7.1 PARACOMPACT SPACES

Let X be a topological space and G an abelian group. There are many differ-
ent definitions for the cohomology group Hn(X;G); we will single out three
of them for discussion here. First of all, we have the singular cohomology
groups Hn

sing(X;G), which are defined to be cohomology of a chain complex
of G-valued singular cochains on X. An alternative is to regard Hn(•, G) as
a representable functor on the homotopy category of topological spaces, so
that Hn

rep(X;G) can be identified with the set of homotopy classes of maps
from X into an Eilenberg-MacLane space K(G,n). A third possibility is to
use the sheaf cohomology Hn

sheaf(X;G) of X with coefficients in the constant
sheaf G on X.

If X is a sufficiently nice space (for example, a CW complex), then these
three definitions give the same result. In general, however, all three give
different answers. The singular cohomology of X is defined using continuous
maps from ∆k into X and is useful only when there is a good supply of
such maps. Similarly, the cohomology group Hnrep(X;G) is defined using
continuous maps from X to a simplicial complex and is useful only when
there is a good supply of real-valued functions on X. However, the sheaf
cohomology of X seems to be a good invariant for arbitrary spaces: it has
excellent formal properties and gives sensible answers in situations where
the other definitions break down (such as the étale topology of algebraic
varieties).

We will take the position that the sheaf cohomology of a space X is the
correct answer in all cases. It is then natural to ask for conditions under
which the other definitions of cohomology give the same answer. We should
expect this to be true for singular cohomology when there are many contin-
uous functions into X and for Eilenberg-MacLane cohomology when there
are many continuous functions out of X. It seems that the latter class of
spaces is much larger than the former: it includes, for example, all paracom-
pact spaces, and consequently for paracompact spaces one can show that
the sheaf cohomology Hn

sheaf(X;G) coincides with the Eilenberg-MacLane
cohomology Hn

rep(X;G). Our goal in this section is to prove a generalization
of the preceding statement to the setting of nonabelian cohomology (Theo-
rem 7.1.0.1 below; see also Theorem 7.1.4.3 for the case where the coefficient
system G it not assumed to be constant).

As we saw in §6.5.4, we can associate to every topological space X an
∞-topos Shv(X) of sheaves (of spaces) on X. Moreover, given a continuous
map p : X → Y of topological spaces, p−1 induces a map from the category
of open subsets of Y to the category of open subsets of X. Composition with
p−1 induces a geometric morphism p∗ : Shv(X) → Shv(Y ).

Fix a topological space X and let p : X → ∗ denote the projection from X
to a point. Let K be a Kan complex which we may identify with an object
of S � Shv(∗). Then p∗K ∈ Shv(X) may be regarded as the constant sheaf
on X having value K and p∗p∗K ∈ S as the space of global sections of p∗K.
Let |K| denote the geometric realization of K (a topological space) and let
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[X, |K|] denote the set of homotopy classes of maps from X into |K|. The
main goal of this section is to prove the following:

Theorem 7.1.0.1. If X is paracompact, then there is a canonical bijection

φ : [X, |K|] → π0(p∗p∗K).

Remark 7.1.0.2. In fact, the map φ exists without the assumption that
X is paracompact: the construction in general can be formally reduced to
the paracompact case since the universal example X = |K| is paracompact.
However, in the case where X is not paracompact, the map φ is not neces-
sarily bijective.

Our first step in proving Theorem 7.1.0.1 is to realize the space of maps
from X into |K| as a mapping space in an appropriate simplicial category
of spaces over X. In §7.1.2, we define this category and endow it with a
(simplicial) model structure. We may therefore extract an underlying ∞-
category N(Top◦

/X).
Our next goal is to construct an equivalence between N(Top◦

/X) and the
∞-topos Shv(X) of sheaves of spaces on X (a very similar comparison result
has been obtained by Toën; see [77]). To prove this, we will attempt to
realize N(Top◦

/X) as a localization of a certain ∞-category of presheaves.
We will give an explicit description of the relevant localization in §7.1.3 and
show that it is equivalent to N(Top◦

/X) in §7.1.4. In §7.1.5, we will deduce
Theorem 7.1.0.1 as a corollary of this more general comparison result. We
conclude with §7.1.6, in which we apply our results to obtain a reformulation
of classical shape theory in the language of ∞-topoi.

7.1.1 Some Point-Set Topology

LetX be a paracompact topological space. In order to prove Theorem 7.1.0.1,
we will need to understand the homotopy theory of presheaves on X. We
then encounter the following technical obstacle: an open subset of a para-
compact space need not be paracompact. Because we wish to deal only with
paracompact spaces, it will be convenient to restrict our attention to pre-
sheaves which are defined only with respect to a particular basis B for X
consisting of paracompact open sets. The existence of a well-behaved basis
is guaranteed by the following result:

Proposition 7.1.1.1. Let X be a paracompact topological space and U an
open subset of X. The following conditions are equivalent:

(i) There exists a continuous function f : X → [0, 1] such that U = {x ∈
X : f(x) > 0}.

(ii) There exists a sequence of closed subsets {Kn ⊆ X}n≥0 such that each
Kn+1 contains an open neighborhood of Kn and U =

⋃
n≥0Kn.

(iii) There exists a sequence of closed subsets {Kn ⊆ X}n≥0 such that U =⋃
n≥0Kn.
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Let B denote the collection of all open subsets of X which satisfy these con-
ditions. Then

(1) The elements of B form a basis for the topology of X.

(2) Each element of B is paracompact.

(3) The collection B is stable under finite intersections (in particular, X ∈
B).

(4) The empty set ∅ belongs to B.

Remark 7.1.1.2. A subset of X which can be written as a countable union
of closed subsets of X is called an Fσ-subset of X. Consequently, the basis B

for the topology of X appearing in Proposition 7.1.1.1 can be characterized
as the collection of open Fσ-subsets of X.

Remark 7.1.1.3. If the topological space X admits a metric d, then every
open subset U ⊆ X belongs to the basis B of Proposition 7.1.1.1. Indeed,
we may assume without loss of generality that the diameter of X is at most
1 (adjusting the metric if necessary), in which case the function

f(x) = d(x,X − U) = inf
y/∈U

d(x, y)

satisfies condition (i).

Proof. We first show that (i) and (ii) are equivalent. If (i) is satisfied, then
the closed subsets Kn = {x ∈ X : f(x) ≥ 1

n} satisfy the demands of (ii).
Suppose next that (ii) is satisfied. For each n ≥ 0, let Gn denote the closure
of X −Kn+1, so that Gn ∩Kn = ∅. It follows that there exists a continuous
function fn : X → [0, 1] such that that fn vanishes on Gn and the restriction
of f to Kn is the constant function taking the value 1. Then the function
f =

∑
n>0

fn

2n has the property required by (i).
We now prove that (ii) ⇔ (iii). The implication (ii) ⇒ (iii) is obvious.

For the converse, suppose that U =
⋃
nKn, where the Kn are closed subsets

of X. We define a new sequence of closed subsets {K ′
n}n≥0 by induction as

follows. Let K′
0 = K0. Assuming that K ′

n has already been defined, let V
and W be disjoint open neighborhoods of the closed sets K ′

n ∪ Kn+1 and
X − U , respectively (the existence of such neighborhoods follows from the
assumption that X is paracompact; in fact, it would suffice to assume that
X is normal) and define K ′

n+1 to be the closure of V . It is then easy to see
that the sequence of closed sets {K′

n}n≥0 satisfies the requirements of (ii).
We now verify properties (1) through (4) of the collection of open sets

B. Assertions (3) and (4) are obvious. To prove (1), consider an arbitrary
point x ∈ X and an open set U containing x. Then the closed sets {x} and
X − U are disjoint, so there exists a continuous function f : X → [0, 1]
supported on U such that f(x) = 1. Then U ′ = {y ∈ X : f(y) > 0 is an
open neighborhood of x contained in U , and U ′ ∈ B.
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It remains to prove (2). Let U ∈ B; we wish to prove that U is para-
compact. Write U =

⋃
n≥0Kn, where each Kn is a closed subset of X con-

taining a neighborhood of Kn−1 (by convention, we set Kn = ∅ for n < 0).
Let {Uα} be an open covering of X. Since each Kn is paracompact, we
can choose a locally finite covering {Vα,n} of Kn which refines {Uα ∩Kn}.
Let V 0

α,n denote the intersection of Vα,n with the interior of Kn and let
Wα,n = V 0

α,n ∩ (X −Kn−2). Then {Wα,n} is a locally finite open covering of
X which refines {Uα}.

Let X be a paracompact topological space and let B be the basis con-
structed in Proposition 7.1.1.1. Then B can be viewed as a category with
finite limits and is equipped with a natural Grothendieck topology. To sim-
plify the notation, we will let Shv(B) denote the ∞-topos Shv(N(B)). Note
that because N(B) is the nerve of a partially ordered set, the ∞-topos Shv(B)
is 0-localic. Moreover, the corresponding locale Sub(1) of subobjects of the
final object 1 ∈ Shv(B) is isomorphic to the lattice of open subsets of X.
It follows that the restriction map Shv(X) → Shv(B) is an equivalence of
∞-topoi.

Warning 7.1.1.4. LetX be a topological space and B a basis ofX regarded
as a partially ordered set with respect to inclusions. Then B inherits a Groth-
endieck topology, and we can define Shv(B) as above. However, the induced
map Shv(X) → Shv(B) is generally not an equivalence of ∞-categories: this
requires the assumption that B is stable under finite intersections. In other
words, a sheaf (of spaces) on X generally cannot be recovered by knowing
its sections on a basis for the topology of X; see Counterexample 6.5.4.8.

7.1.2 Spaces over X

Let X be a topological space with a specified basis B fixed throughout this
section. We wish to study the homotopy theory of spaces over X: that is,
spaces Y equipped with a map p : Y → X. We should emphasize that we do
not wish to assume that the map p is a fibration or that p is equivalent to a
fibration in any reasonable sense: we are imagining that p encodes a sheaf of
spaces on X, and we do not wish to impose any condition of local triviality
on this sheaf.

Let Top denote the category of topological spaces and Top/X the category
of topological spaces mapping to X. For each p : Y → X and every open
subset U ⊆ X, we define a simplicial set SingX(Y, U) by the formula

SingX(Y, U)n = HomX(U × |∆n|, Y ).
Face and degeneracy maps are defined in the obvious way. We note that the
simplicial set SingX(Y,U) is always a Kan complex. We will simply write
SingX(Y ) to denote the simplicial presheaf on X given by

U �→ SingX(Y,U).

Proposition 7.1.2.1. There exists a model structure on the category Top/X
uniquely determined by the following properties:
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(W ) A morphism

Y ��

p

���
��

��
��

Z

q
����
��
��
�

X

is a weak equivalence if and only if, for every U ⊆ X belonging to B, the
induced map SingX(Z,U)• → SingX(Y,U)• is a homotopy equivalence
of Kan complexes.

(F ) A morphism

Y ��

p

���
��

��
��

Z

q
����
��
��
�

X

is a fibration if and only if, for every U ⊆ X belonging to B, the induced
map SingX(Z,U)• → SingX(Y,U)• is a Kan fibration.

Remark 7.1.2.2. The model structure on Top/X described in Proposition
7.1.2.1 depends on the chosen basis B for X and not only on the topological
space X itself.

Proof of Proposition 7.1.2.1. The proof uses the theory of cofibrantly gener-
ated model categories; we give a sketch and refer the reader to [38] for more
details. We will say that a morphism Y → Z in Top/X is a cofibration if it
has the left lifting property with respect to every trivial fibration in Top/X .

We begin by observing that a map Y → Z in Top/X is a fibration if
and only if it has the right lifting property with respect to every inclusion
U × Λni ⊆ U × ∆n, where 0 ≤ i ≤ n and U is in B. Let I denote the weakly
saturated class of morphisms in Top/X generated by these inclusions. Using
the small object argument, one can show that every morphism Y → Z in
Top/X admits a factorization

Y
f→ Y ′ g→ Z,

where f belongs to I and g is a fibration. (Although the objects in Top/X
generally are not small, one can still apply the small object argument since
they are small relative to the class I of morphisms: see [38].)

Similarly, a map Y → Z is a trivial fibration if and only if it has the right
lifting property with respect to every inclusion U×| ∂∆n| ⊆ U×|∆n|, where
U ∈ B. Let J denote the weakly saturated class of morphisms generated by
these inclusions: then every morphism Y → Z admits a factorization

Y
f→ Y ′ g→ Z,

where f belongs to J and g is a trivial fibration.
The only nontrivial point to verify is that every morphism which belongs

to I is a trivial cofibration; once this is established, the axioms for a model



688 CHAPTER 7

category follow formally. Since it is clear that I is contained in J and that
J consists of cofibrations, it suffices to show that every morphism in I is
a weak equivalence. To prove this, let us consider the class K of all closed
immersions k : Y → Z in Top/X such that there exist functions λ : Z →
[0,∞) and h : Z × [0,∞) → Z such that k(Y ) = λ−1{0}, h(z, 0) = z, and
h(z, λ(z)) ∈ k(Y ). Now we make the following observations:

(1) Every inclusion U × |Λni | ⊆ U × |∆n| belongs to K.

(2) The class K is weakly saturated; consequently, I ⊆ K.

(3) Every morphism k : Y → Z which belongs to K is a homotopy equiv-
alence in Top/X and is therefore a weak equivalence.

The category Top/X is naturally tensored over simplicial sets if we define
Y ⊗ ∆n = Y × |∆n| for Y ∈ Top/X . This induces a simplicial structure on
Top/X which is obviously compatible with the model structure of Proposition
7.1.2.1.

We note that SingX is a (simplicial) functor from Top/X to the category of
simplicial presheaves on B (here we regard B as a category whose morphisms
are given by inclusions of open subsets ofX). We regard SetBop

∆ as a simplicial
model category via the projective model structure described in §A.3.3. By
construction, SingX preserves fibrations and trivial fibrations. Moreover, the
functor SingX has a left adjoint

F �→ |F |X ;

we will refer to this left adjoint as geometric realization (in the case where X
is a point, it coincides with the usual geometric realization functor from Set∆
to the category of topological spaces). The functor |F |X is determined by the
property that |FU |X � U if FU denotes the presheaf (of sets) represented by
U and the requirement that geometric realization commutes with colimits
and with tensor products by simplicial sets.

We may summarize the situation as follows:

Proposition 7.1.2.3. The adjoint functors (||X ,SingX) determine a sim-
plicial Quillen adjunction between Top/X (with the model structure of Propo-
sition 7.1.2.1) and SetBop

∆ (with the projective model structure).

7.1.3 The Sheaf Condition

Let X be a topological space and B a basis for the topology of X which
is stable under finite intersections. Let A denote the category SetBop

∆ of
simplicial presheaves on B; we regard A as a model category with respect
to the projective model structure defined in §A.3.3. According to Propo-
sition 5.1.1.1, the ∞-category N(A◦) associated to A is equivalent to the
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∞-category P(B) = P(N(B)) of presheaves on B. In particular, the homo-
topy category hP(N(B)) is equivalent to the homotopy category hA (the
category obtained from A by formally inverting all weak equivalences of
simplicial presheaves). The ∞-category Shv(B) is a reflective subcategory
of P(N(B)). Consequently, we may identify the homotopy category hShv(B)
with a reflective subcategory of hA. We will say that a simplicial presheaf
F : Bop → Set∆ is a sheaf if it belongs to this reflective subcategory. The
purpose of this section is to obtain an explicit criterion which will allow us
to test whether or not a given simplicial presheaf F : Bop → Set∆ is a sheaf.

Warning 7.1.3.1. The condition that a simplicial presheaf F : Bop → Set∆
be a sheaf, in the sense defined above, is generally unrelated to the condition
that F be a simplicial object in the category of sheaves of sets on X (though
these two notions do agree in the special case where the simplicial presheaf
F takes values in constant simplicial sets).

Let j : N(B) → P(B) be the Yoneda embedding. By definition, an object
F ∈ P(B) belongs to Shv(B) if and only if, for every U ∈ B and every
monomorphism i : U0 → j(U) which corresponds to a covering sieve U on
U , the induced map

MapP(B)(j(U), F ) → MapP(B)(U
0, F )

is an isomorphism in the homotopy category H. In order to make this con-
dition explicit in terms of simplicial presheaves, we note that i : U0 → j(U)
can be identified with the inclusion χU ⊆ χU of simplicial presheaves, where

χU (V ) =

{
∗ if V ⊆ U

∅ otherwise.

χU(V ) =

{
∗ if V ∈ U

∅ otherwise.

However, we encounter a technical issue: in order to extract the correct
space of maps MapP(B)(U0, F ), we need to select a projectively cofibrant
model for U0 in A. In general, the simplicial presheaf χU defined above is
not projectively cofibrant. To address this problem, we will construct a new
simplicial presheaf, equivalent to χU, which has better mapping properties.

Definition 7.1.3.2. Let U be a linearly ordered set equipped with a map
s : U → B. We define a simplicial presheaf NU : Bop → Set∆ as follows: for
each V ∈ B, let NU(V ) be the nerve of the linearly ordered set {U ∈ U :
V ⊆ s(U)}. NU may be viewed as a subobject of the constant presheaf ∆U

taking the value N(U) = ∆U.

Remark 7.1.3.3. The above notation is slightly abusive in thatNU depends
not only on U but also on the map s and on the linear ordering of U. If
the map s is injective (as it will be in most applications), we will frequently
simply identify U with its image in B. In practice, U will usually be a covering
sieve on some object U ∈ B.



690 CHAPTER 7

Remark 7.1.3.4. The linear ordering of U is unrelated to the partial or-
dering of B by inclusion. We will write the former as ≤ and the latter as
⊆.

Example 7.1.3.5. Let U = ∅. Then NU = ∅.
Example 7.1.3.6. Let U = {U} for some U ∈ B and let s : U → B be the
inclusion. Then NU � χU .

Proposition 7.1.3.7. Let

U

p

��

s

���
��

��
��

�

B

U′

s′
���������

be a commutative diagram, where p is an order-preserving injection between
linearly ordered sets. Then the induced map NU → NU′ is a projective cofi-
bration of simplicial presheaves.

Proof. Without loss of generality, we may identify U with a linearly ordered
subset of U′ via p. Choose a transfinite sequence of simplicial subsets of N U′

K0 ⊆ K1 ⊆ · · · ,
where K0 = N U, Kλ =

⋃
α<λKα if λ is a nonzero limit ordinal, and Kα+1

is obtained from Kα by adjoining a single nondegenerate simplex (if such a
simplex exists). For each ordinal α, let Fα ⊆ NU′ be defined by

Fα(V ) = NU′(V ) ∩Kα ⊆ N(U′).

Then F0 = NU and Fλ = lim−→α<λ
Fα when α is a nonzero limit ordinal, and

Fα � NU′ for α � 0. It therefore suffices to show that each map Fα → Fα+1

is a projective cofibration. If Kα = Kα+1, this is clear; otherwise, we may
suppose that Kα+1 is obtained from Kα by adjoining a single nondegenerate
simplex {U0 < U1 < · · · < Un} of N(U′). Let U = s′(U0) ∩ · · · ∩ s′(Un) ∈ B.

Then there is a coCartesian square

χU ⊗ ∂∆n ��

��

χU ⊗ ∆n

��
Fα �� Fα+1.

The desired result now follows since the upper horizontal arrow is clearly a
projective cofibration.

Corollary 7.1.3.8. Let U be a linearly ordered set and s : U → B a map.
Then the simplicial presheaf NU ∈ SetBop

∆ is projectively cofibrant.
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Note that NU(V ) is contractible if V ⊆ s(U) for some U ∈ U and empty
otherwise. Consequently, we deduce:

Corollary 7.1.3.9. Let U ⊆ B be a sieve equipped with a linear ordering.
The unique map NU → χU is a weak equivalence of simplicial presheaves.

Notation 7.1.3.10. Let U be a linearly ordered set equipped with a map
s : U → B. For any simplicial presheaf F : Bop → Set∆, we let F (U) denote
the simplicial set MapA(NU, F ).

Remark 7.1.3.11. Let U ∈ B, let U = {U}, and let s : U → B be the
inclusion. Then F (U) = F (U). In general, we can think of F (U) as a homo-
topy limit of F (V ) taken over V in the sieve generated by s : U → B. To
give a vertex of F (U), we must give for each U ∈ U a point of F (sU), for
every pair of objects U, V ∈ U a path between the corresponding points in
F (sU ∩ sV ), and so forth.

Corollary 7.1.3.12. Let F : Bop → Kan be a (projectively fibrant) simpli-
cial presheaf on B. Then F is a sheaf if and only if, for every U ∈ B and
every sieve U that covers U , there exists a linearly ordered set U0 equipped
with a map U0 → U, which generates U as a sieve, such that the induced
map F (U) → F (U0) is a weak homotopy equivalence of simplicial sets.

Lemma 7.1.3.13. Suppose that U ⊆ X is paracompact and let U ⊆ B

be a covering of U . Choose a linear ordering of U. Then the natural map
π : |NU|X → U is a homotopy equivalence in Top/X . (In other words, there
exists a section s : U → NU of π such that s ◦ π is fiberwise homotopic to
the identity.)

Proof. Any partition of unity subordinate to the open cover U gives rise to
a section of π. To check that s ◦π is fiberwise homotopic to the identity, use
a “straight-line” homotopy.

Proposition 7.1.3.14. Let X be a topological space and that B a basis for
the topology of X. Assume that B is stable under finite intersections and that
each element of B is paracompact. For every continuous map of topological
spaces p : Y → X, the simplicial presheaf SingX(Y ) of sections of p is sheaf.

Proof. Let F = SingX(Y ). We note that F is a projectively fibrant simplicial
presheaf on B. By Corollary 7.1.3.12, it suffices to show that for every U ∈ B,
every covering U of U , and every linear ordering on U, the natural map
F (U) → F (U) is a homotopy equivalence of simplicial sets. In other words,
it suffices to show that composition with the projection π : NU → U induces
a homotopy equivalence

Map/X(U, Y ) → Map/X(|NU|X , Y )
of simplicial sets. This follows immediately from Lemma 7.1.3.13.

Remark 7.1.3.15. Under the hypotheses of Proposition 7.1.3.14, the object
of Shv(X) corresponding to the simplicial presheaf SingX(Y ) is not neces-
sarily hypercomplete.
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7.1.4 The Main Result

Suppose that X is a paracompact topological space and B is the basis for
the topology of X described in Proposition 7.1.1.1. Our main goal is to show
that the composition of the adjoint functors

F �→ SingX |F |X
may be identified with a “sheafification” of F , at least in the case where F
is a projectively cofibrant simplicial presheaf on B.

In proving this, we have some flexibility regarding the choice of F : it
will suffice to treat the question after replacing F by a weakly equivalent
simplicial presheaf F ′ provided that F ′ is also projectively cofibrant. Our
first step is to make a particularly convenient choice for F ′.

Lemma 7.1.4.1. Let B be a partially ordered set (via ⊆) with a least element
∅ and let F : Bop → Set∆ be an arbitrary simplicial presheaf such that F (∅)
is weakly contractible.

There exists a (linearly ordered) set V and a simplicial presheaf F ′ : Bop →
Set∆ with the following properties:

(1) There exists a monomorphism F ′ → ∆V from F ′ to the (constant)
simplicial presheaf ∆V on B taking the value ∆V . (Recall that ∆V

denotes the nerve of the linearly ordered set V .)

(2) For every finite subset V0 ⊆ V , there exists U ∈ B such that U ′ ⊆ U if
and only if ∆V0 ⊆ F ′(U ′) ⊆ ∆V .

(3) As a simplicial presheaf on B, F ′ is projectively cofibrant.

(4) In the homotopy category of SetBop

∆ , F ′ and F are equivalent to one
another.

Proof. Without loss of generality, we may suppose that F is (weakly) fibrant.
We now build a “cellular model” of F . More precisely, we construct the
following data:

(A) A transfinite sequence of simplicial sets

Y0 → Y1 → · · · ,
where Yα is defined for all ordinals less than α0.

(B) For each α < α0, a subsheaf Fα of the constant presheaf on B taking
the value Yα.

(C) A compatible family of maps Fα → F , so that we may regard {Fα} as
a functor from the linearly ordered set {α : α < α0} to (Set∆)Bop

/F .
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(D) For each α < α0, there exists U ∈ B, n ≥ 0, and compatible pushout
diagrams

∂∆n

��

� � �� ∆n

��
lim−→β<α

Yβ � � �� Yα,

χU × ∂∆n

��

� � �� χU × ∆n

��
lim−→β<α

Fβ � � �� Fα,

where

χU (W ) =

{
∗ if W ⊆ U

∅ otherwise.

(E) The canonical map lim−→β<α0
Fβ → F is a weak equivalence in SetBop

∆ .

For every simplicial set K, let K′′ denote the simplicial set described in
Variant 4.2.3.15, so that we have a canonical cofinal map K ′′ → K (in
particular, a weak homotopy equivalence) and K ′′ is equivalent to the nerve
of a partially ordered set. Let Y = lim−→β<α0

Yβ . We note that Y ′′ can be

identified with a simplicial complex: that is, a simplicial subset of ∆V for
some linearly ordered set V . For each α, let F ′′

α denote the result of applying
the functor K �→ K ′′ termwise. Let F ′′ = lim−→β<α0

F ′′
β . Finally, we define F ′

by the coCartesian square

F ′′(∅) × χ∅ ��

��

∆V × χ∅

��
F ′′ �� F ′.

The simplicial presheaf F ′ satisfies (1) by construction. Properties (2)
and (3) are reasonably clear (in fact, (3) is a formal consequence of (2)).
Condition (4) holds for the simplicial presheaf F ′′ as a consequence of (E).
Moreover, the assumption that F (∅) is weakly contractible ensures that (4)
remains valid for the pushout F ′.

Before we can state the next lemma, let us introduce a bit of notation. Let
F : Bop → Set∆ be a simplicial presheaf. Then we let |F | denote the presheaf
of topological spaces on B obtained by composing F with the geometric re-
alization functor; similarly, if G is a presheaf of topological spaces on B, then
we let SingG denote the presheaf of simplicial sets obtained by composing
G with the functor Sing. We note that there is a natural transformation

Sing |F | → SingX |F |X .
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Lemma 7.1.4.2. Let X be a topological space and let B be the collection
of open Fσ subsets of X (see Proposition 7.1.1.1). Let F : Bop → Set∆ be
a projectively cofibrant simplicial presheaf which is a sheaf (that is, a fibrant
model for F satisfies the criterion of Corollary 7.1.3.12). Then the unit map
F → SingX |F |X is an equivalence.

Proof. We note that the functor F �→ Sing |F | preserves weak equivalences
in F and that the functor F �→ SingX |F |X preserves weak equivalences be-
tween projectively cofibrant presheaves F . Consequently, by Lemma 7.1.4.1,
we may suppose without loss of generality that there is a linearly ordered
set V and that F is a subsheaf of the constant simplicial presheaf taking the
value ∆V , such that F (∅) = ∆V .

It will be sufficient to prove that
Sing |F | → SingX |F |X

is an equivalence: in other words, we wish to show that (Sing |F |)(U) →
(SingX |F |X)(U) is a homotopy equivalence of Kan complexes for every U ∈
B. Replacing X by U , we can reduce to the problem of showing that

p : (Sing |F |)(X) → (SingX |F |X)(X)
is a homotopy equivalence. It now suffices to show that for every inclusion
K ′ ⊆ K of finite simplicial sets (that is, simplicial sets with only finitely
many nondegenerate simplices), a commutative diagram

K ′ × {0}� �

��

�� (Sing |F |)(X)

��
K × {0} g �� (SingX |F |X)(X)

can be expanded to a commutative diagram

(K ′ × ∆1)
∐
K′×{1}(K × {1})

� �

��

�� (Sing |F |)(X)

��
K × ∆1 �� (SingX |F |X)(X).

(In fact, it suffices to treat the case where K ′ ⊆ K is the inclusion ∂∆n ⊆
∆n; however, this will result in no simplification of the following arguments.)

Now let B = {Uα}α∈A, where A is a linearly ordered set. Since F is
assumed to be a sheaf on B, the equivalent presheaf Sing |F | is also a sheaf.
Consequently, for any covering U ⊆ B (and any linear ordering of U), the
natural map (Sing |F |)(X) → (Sing |F |)(U) is an equivalence. Likewise, by
Proposition 7.1.3.14, the map (SingX |F |X)(X) → (SingX |F |X)(U) is an
equivalence. Consequently, it suffices to find a covering U ⊆ B of X and a
diagram

(K′ × ∆1)
∐
K′×{1}(K × {1})

��

�� (Sing |F |)(U)

��
K × ∆1 G �� (SingX |F |X)(U)
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which extends g.
Since K is finite, the map g : K → (SingX |F |X)(X) may be identified

with a continuous fiber-preserving map X × |K| → |F |X , which we will
also denote by g. By assumption, F is a subsheaf of the constant presheaf
taking the value ∆V ; constantly, we may identify |F |X with a subspace of
∆V
X = X ⊗ ∆V . (We may identify ∆V

X with the product X × |∆V | as a set,
though it generally has a finer topology.) We may represent a point of ∆V

X

by an ordered pair (x, q), where x ∈ X and q : V → [0, 1] has the property
that {v ∈ V : q(v) �= 0} is finite and

∑
v∈V q(v) = 1. For each v ∈ V , we

let ∆V
X,v denote the open subset of ∆V

X consisting of all pairs (x, g) such
that q(v) > 0; note that the sets {∆V

X,v}v∈V form an open cover of ∆V
X .

Consequently, the open sets {g−1∆V
X,v}v∈V form an open cover of X × |K|.

Let x be a point of X. The compactness of |K| implies that there is a finite
subset V0 ⊆ V , an open neighborhood Ux of X containing x, and an open
covering {Wx,v : v ∈ V0} of |K|, such that g(Ux ×Wx,v) ⊆ ∆V

X,v. Choose a
partition of unity subordinate to the covering {Wx,v}, thereby determining a
map fx : |K| → |∆V0 |. The open sets {Ux} cover X; since X is paracompact,
this covering has a locally finite refinement. Shrinking the Ux if necessary,
we may suppose that this refinement is given by {Ux}x∈X0 and that each Ux
belongs to B. Let U = {Ux}x∈X0 and choose a linear ordering of U.

We now define a new map g′ : K → (Sing |F |)(U). To do so, we must give,
for every finite U0 = {Ux0 < · · · < Uxn

} ⊆ U, a map
g′A0

: |∆{x0,...,xn}| × |K| → |F (Ux0 ∩ · · · ∩ Uxn
)| ⊆ |∆V |;

moreove, these maps are required to satisfy some obvious compatibilities.
Define g′U0

by the formula

g′U0
(
∑

λixi, z) =
∑

λifxi
(z).

It is clear that g′U0
is well-defined as a map from |∆{x0,...,xn}| × |K| to |∆V |.

We claim that, in fact, this map factors through |F (Ux0 ∩· · ·∩Uxn
)|. Let z ∈

|K| and consider the set V ′ = {v ∈ V : (∃0 ≤ i ≤ n)[fxi
(z)(v) �= 0]} ⊆ V .

Condition (2) of Lemma 7.1.4.1 ensures that there exists U ∈ B such that
∆V ′ ⊆ F (U ′) if and only if U ′ ⊆ U . We note that, for each y ∈ Ux0∩· · ·∩Uxn

,
we have g(y, z)(v) �= 0 for v ∈ V ′; it follows that y ∈ U . Consequently, we
deduce that Uα0 ∩ · · · ∩ Uαn

⊆ U , so that ∆V ′ ⊆ F (Ux0 ∩ · · · ∩ Uxn
). It

follows that g′U0
|{z}× |∆U0 | factors through |F (Ux0 ∩ . . .∩Uxn

)|. Since this
holds for every z ∈ |K|, it follows that g′A0

is well-defined; evidently these
maps are compatible with one another and give the desired map g′ : K →
(Sing |F |)(U).

We now observe that the composite maps

K
g′→ (Sing |F |)(U) → (SingX |F |X)(U)

K
g→ (SingX |F |X)(X) → (SingX |F |X)(U)

are homotopic via a “straight-line” homotopy
G : K × ∆1 → (SingX |F |X)(U),

which has the desired properties.
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Now the hard work is done, and we are ready to enjoy the fruits of our
labors.

Theorem 7.1.4.3. Let X be a paracompact topological space and B the
collection of open Fσ subsets of X (see Proposition 7.1.1.1). Then, for any
projectively cofibrant F : Bop → Set∆, the natural map

F → SingX |F |X
exhibits SingX |F |X as a sheafification of F .

Proof. Let hTop/X be the homotopy category of the model category Top/X
(the category obtained by inverting all of the weak equivalences defined
in Proposition 7.1.2.1) and hSetBop

∆ the homotopy category of the category
of simplicial presheaves on B. It follows from Proposition 7.1.2.3 that the
adjoint functors SingX and ||X induce adjoint functors

hSetBop

∆

||LX ��hTop/X .
SingX

��

Here ||LX denotes the left derived functor of the geometric realization (since
every object of Top/X is fibrant, SingX may be identified with its right
derived functor).

We first claim that for any Y ∈ Top/X , the counit map |SingX Y |LX → Y
is a weak equivalence. To see this, choose a projectively cofibrant model
F → SingX Y for SingX Y ; we wish to show that the induced map |F |X → Y
is a weak equivalence. By definition, this is equivalent to the assertion that
SingX |F |X → SingX Y is a weak equivalence. But we have a commutative
triangle

F ��

 !.
..

..
..

..
. SingX Y

,+&&&
&&&

&&&
&&

SingX |F |X ,
where the left diagonal map is a weak equivalence by Lemma 7.1.4.2 and
Proposition 7.1.3.14 and the top horizontal map is a weak equivalence by
construction; the desired result now follows from the two-out-of-three prop-
erty.

It follows that we may identify hTop/X with a full subcategory C ⊆
hSetBop

∆ . By Proposition 7.1.3.14, the objects of this subcategory are sheaves
on B; by Lemma 7.1.4.2, every sheaf on B is equivalent to SingX Y for an
appropriately chosen Y ; thus C consists of precisely the sheaves on B.

The composite functor F �→ SingX |F |LX may be identified with a local-
ization functor from hSetBop

∆ to the subcategory C. In particular, when F
is projectively cofibrant, the unit of the adjunction F → SingX |F |X is a
localization of F .
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Corollary 7.1.4.4. Under the hypotheses of Theorem 7.1.4.3, the functor
SingX induces an equivalence of ∞-categories

N(Top◦
/X) → Shv(X).

In particular, the ∞-category N(Top◦
/X) is an ∞-topos.

Remark 7.1.4.5. In the language of model categories, we may interpret
Corollary 7.1.4.4 as asserting that SingX and ||X furnish a Quillen equiva-
lence between Top/X (with the model structure of Proposition 7.1.2.1) and
SetBop

∆ where the latter is equipped with the following localization of the
projective model structure:

(1) A map F → F ′ in SetBop

∆ is a cofibration if it is a projective cofibration
(in the sense of Definition A.3.3.1).

(2) A map F → F ′ in SetBop

∆ is a weak equivalence if it induces an equiv-
alence in the ∞-category Shv(X).

7.1.5 Base Change

With Corollary 7.1.4.4 in hand, we are almost ready to deduce Theorem
7.1.0.1. Suppose we are given a paracompact space X and let B denote the
collection of all open Fσ subsets of X. Let p : Shv(X) → Shv(∗) � S be the
geometric morphism induced by the projection X → ∗.

For any simplicial set K, let FK denote the constant simplicial presheaf on
B taking the value K. If we endow SetBop

∆ with the localized model structure
of Remark 7.1.4.5, then FK is a model for the sheaf p∗K. Consequently, the
space p∗p∗K may be identified up to homotopy with the mapping space

MapShv(X)(F∗, FK)

which, by virtue of Corollary 7.1.4.4, is equivalent to

MapTop/X
(X,X ⊗K) = (SingX(X ⊗K))(X).

However, at this point a technical wrinkle appears:X⊗K agrees withX×|K|
as a set, but it is equipped with a finer topology (given by the direct limit of
the product topologies X×|K0|, where K0 ⊆ K is a finite simplicial subset).
In general, we have only an inclusion of simplicial presheaves

η : SingX(X ⊗K) ⊆ SingX(X × |K|),
which need not be an isomorphism. However, we will complete the proof of
Theorem 7.1.0.1 by showing that η is an equivalence of simplicial presheaves.

We consider a slightly more general situation. Let p : X → Y be a con-
tinuous map between paracompact spaces and let BX and BY denote the
collections of open Fσ subsets in X and Y , respectively. Note that the inverse
image along p determines a map q : BY → BX . Composition with q induces a
pushforward functor q∗ : SetBop

X

∆ → SetBop
Y

∆ , which has a left adjoint which we
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will denote by q∗. Similarly, there is a pullback functor p∗ : Top/Y → Top/X ;
however, p∗ generally does not possess a right adjoint. Consider the square

SetBop
Y

∆

||Y ��

q∗

��

Top/Y

p∗

��
SetBop

X

∆

||X �� Top/X .

This square is lax commutative in the sense that there exists a natural trans-
formation of functors

ηF : |q∗F |X → p∗|F |Y = |F |Y ×Y X.

The map ηF is always a bijection of topological spaces but is generally not
a homeomorphism. Nevertheless, we have the following:

Proposition 7.1.5.1. Under the hypotheses above, if F : B
op
Y → Set∆ is a

projectively cofibrant simplicial presheaf on Y , then the map ηF : |q∗F |X →
|F |Y ×Y X is a weak equivalence in Top/X .

The proof is based on the following lemma:

Lemma 7.1.5.2. Let Y be a paracompact topological space and let B be
the collection of open Fσ subsets of Y (see Proposition 7.1.1.1). Let V be a
linearly ordered set. Suppose that for every nonempty finite subset V0 ⊆ V ,
we are given a basic open set U(V0) ∈ B satisfying the following conditions:

(a) If V0 ⊆ V1, then U(V1) ⊆ U(V0).

(b) The open set U(∅) concides with X.

Let F : Bop → Set∆ be the simplicial presheaf which assigns to each U ∈ B

the simplicial subset F (U) ⊆ ∆V spanned by those nondegenerate simplices
σ corresponding to finite subsets V0 ⊆ V such that U ⊆ U(V0) (see Lemma
7.1.4.1).

For every object X ∈ Top/Y , an n-simplex τ of MapTop/Y
(Y, |F |Y ) de-

termines a map of topological spaces from X × |∆n| to |∆V |, which in turn
determines a collection of maps φv : X × |∆n| → [0, 1] such that for every
x ∈ X × |∆n|, the sum Σv∈V φv(x) is equal to 1. Let Map0

Top/Y
(X, |F |Y ) de-

note the simplicial subset of MapTop/Y
(X, |F |Y ) spanned by those simplices

τ which satisfy the following condition, where K = ∆n:

(∗) There exists a locally finite collection of open sets {Uv ⊆ X × |K|}v∈V
such that each Uv contains the closure of the support of the function
φv and

⋂
v∈V0

Uv is contained in the inverse image of U(V0) for every
finite subset V0 ⊆ V .

If the topological space X is paracompact, then the inclusion

i : Map0
Top/Y

(X, |F |Y ) ⊆ MapTop/Y
(X, |F |Y )

is a homotopy equivalence of Kan complexes.
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Proof. Note that for any finite simplicial set K, we can identify

HomSet∆(K,Map0
Top/Y

(X, |F |Y )

with the set of all collections of continuous maps {φv : X × |K| → [0, 1]}
satisfying the condition (∗). Composition with a retraction of |∆n| onto a
horn |Λni | determines a section of the restriction map

HomSet∆(∆n,Map0
Top/Y

(X, |F |Y )) → HomSet∆(Λni ,Map0
Top/Y

(X, |F |Y )),

from which it follows that Map0
Top/Y

(X, |F |Y ) is a Kan complex.
To prove that i is a homotopy equivalence, we argue as in the proof of

Lemma 7.1.4.2: it will suffice to show that for every inclusion K ′ ⊆ K of
finite simplicial sets, every commutative diagram

K ′ × {0}� �

��

�� Map0
Top/Y

(X, |F |Y )

��
K × {0} g �� MapTop/Y

(X, |F |Y )

can be expanded to a commutative diagram

(K′ × ∆1)
∐
K′×{1}(K × {1})

� �

��

�� Map0
Top/Y

(X, |F |Y )

��
K × ∆1 G �� MapTop/Y

(X, |F |Y ).

The map g is classified by a collection of continuous maps {gv : X × |K| →
[0, 1]}v∈V such that Σv∈V gv(x) = 1. Let {Uv}v∈V be a collection of open
subsets of X × |K′| satisfying condition (∗) for the functions {gv|X × |K′|}.
For each v ∈ V , let Wv = {x ∈ X × |K| : gv(x) �= 0}. Choose a locally finite
open covering {U ′

v}v∈V of X × |K| which refines {Wv}. Let {g′v}v∈V be a
partition of unity such that the closure of the support of each g′v is contained
in U ′

v. We define maps {Gv : X × |K| × [0, 1] → [0, 1]}v∈V by the formula

Gv(x, t) =

{
(2t)g′v(x) + (1 − 2t)gv(x) if t ≤ 1

2

g′v(x) if t ≥ 1
2 .

Then the maps {Gv} determine a continuous mapG : X×|K|×[0, 1] → |F |Y ,
which we can identify with a map of simplicial sets

K × ∆1 → MapTop/Y
(X, |F |Y ).

The restriction of this map to (K ′ × ∆1)
∐
K′×{1}(K ×{1}) factors through

Map0
Top/Y

(X, |F |Y ) since the open subsets {(Uv × [0, 1])∪ (U ′
v ×{1}} satisfy

condition (∗).
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Remark 7.1.5.3. In the situation of Lemma 7.1.5.2, suppose we are given
a Kan complex

Map1
Top/Y

(X, |F |Y ) ⊆ MapTop/Y
(X, |F |Y )

which contains Map0
Top/Y

(X, |F |Y ) and is closed under the formation of
“straight-line” homotopies. More precisely, suppose that any map G : ∆n ×
∆1 → MapTop/Y

(X, |F |Y ) factors through Map1
Top/Y

(X, |F |Y ) provided that
it satisfies the properties listed below:

(i) The map G is classified by a collection of continuous functions {Gv :
X × |∆n| × [0, 1] → [0, 1]}v∈V .

(ii) Each Gv can be described by the formula

Gv(x, t) =

{
(2t)g′v(x) + (1 − 2t)gv(x) if t ≤ 1

2

g′v(x) if t ≥ 1
2 .

(iii) The closure of the support of each g′v is contained in the open set
{x ∈ X × |∆n| : gv(x) �= 0}.

(iv) The restriction of G to ∆n × {0} belongs to Map1
Top/Y

(X, |F |Y ). By
virtue of (iii), this implies that G|∆n × {1} factors through the inclu-
sion

Map0
Top/Y

(X, |F |Y ) ⊆ Map1
Top/Y

(X, |F |Y ).

Then the proof of Lemma 7.1.5.2 shows that the inclusions

Map0
Top/Y

(X, |F |Y ) ⊆ Map1
Top/Y

(X, |F |Y ) ⊆ MapTop/Y
(X, |F |Y )

are homotopy equivalences.

Proof of Proposition 7.1.5.1. Suppose we are given a weak equivalence F →
F ′ between projectively cofibrant simplicial presheaves F, F ′ : B

op
Y → Set∆.

Both q∗ and ||X are left Quillen functors and therefore preserve weak equiva-
lences between cofibrant objects; it follows that |q∗F |X → |q∗F ′|X is a weak
equivalence. Similarly, |F |Y → |F ′|Y is a weak equivalence between cofi-
brant objects of Top/Y . Since every object of Top/Y is fibrant, we conclude
that |F |Y → |F ′|Y is a homotopy equivalence in Top/Y ; thus |F |Y ×Y X →
|F ′|Y ×Y X is a homotopy equivalence in Top/X . Consequently, we deduce
that ηF is a weak equivalence if and only if ηF ′ is a weak equivalence.

Let F be an arbitrary projectively cofibrant simplicial presheaf; we wish
to show that ηF is a weak equivalence. There exists a trivial projective
cofibration F → F ′, where F ′ is projectively fibrant. It now suffices to show
that ηF ′ is a weak equivalence. Replacing F by F ′, we reduce to the case
where F is projectively fibrant.

Let F ′ be a simplicial presheaf on BY satisfying the conditions of Lemma
7.1.4.1. Then F ′ and F are equivalent in the homotopy category of simplicial
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presheaves on BY . Since F ′ is projectively cofibrant and F is projectively
fibrant, there exists a weak equivalence F ′ → F . We may therefore once
again reduce to proving that ηF ′ is a weak equivalence. Replacing F by F ′,
we may suppose that F satisfies the conditions of Lemma 7.1.4.1, for some
linearly ordered set V .

For each U ∈ BY , we have a commutative diagram of Kan complexes

Map0
Top/X

(U, |q∗F |X) φ0 ��

��

Map0
Top/Y

(U, |F |Y )

��
MapTop/X

(U, |q∗F |X) φ �� MapTop/Y
(U, |F |Y )

where the vertical maps are defined as in Lemma 7.1.5.2. We wish to show
that φ is a homotopy equivalence. This follows from the observation that
φ0 is an isomorphism, and the vertical arrows are homotopy equivalences by
Lemma 7.1.5.2.

Theorem 7.1.0.1 now follows immediately from Proposition 7.1.5.1 applied
in the case where Y = ∗ and F is the constant simplicial presheaf BX → Set∆
taking the value K.

Remark 7.1.5.4. There is another solution to the technical difficulty pre-
sented by the fact that the bijection X ⊗ K → X × |K| is not necessarily
a homeomorphism: one can work in a suitable category of compactly gener-
ated topological spaces where the base change functor Z �→ X ×Y Z has a
right adjoint and therefore automatically commutes with all colimits. This
is perhaps a more conceptually satisfying approach; however, it leads to a
proof of Theorem 7.1.0.1 only in the special case where the space X is itself
compactly generated.

We close this section by describing a few applications of Proposition 7.1.5.1
and its proof to the theory of sheaves (of spaces) on a paracompact topolog-
ical space X.

Corollary 7.1.5.5. Let X be a paracompact topological space, Y a closed
subset of X, and i : Y → X the inclusion map. Let F be an object of Shv(X)
and let η0 be a global section of i∗ F. Then there exists an open subset U of X
which contains Y and a section η ∈ F(U) whose image under the restriction
map F(U) → (i∗ F)(U ∩ Y ) = (i∗ F)(Y ) lies in the path component of η0.

Proof. Let B denote the collection of open Fσ subsets of X. Without loss of
generality, we may assume that F is represented by a projectively cofibrant
simplicial presheaf F ⊆ ∆V satisfying the conditions of Lemma 7.1.4.1,
where V is a linearly ordered set. Using Proposition 7.1.5.1, Corollary 7.1.4.4,
and Lemma 7.1.5.2, it will suffice to prove the following assertion:
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(a) Every vertex η0 of Map0
Top/X

(Y, |F |X) can be lifted to a vertex of

Map0
Top/X

(U, |F |X) for some sufficiently small paracompact neighbor-
hood U of Y .

To prove (a), suppose we are given a vertex of η0 ∈ Map0
Top/X

(Y, |F |X)
corresponding to a collection of functions {φv : Y → [0, 1]}. Since η0 belongs
to Map0

Top/X
(Y, |F |X), there exist open sets Uv ⊆ Y satisfying condition (∗)

of Lemma 7.1.5.2.
For each y ∈ Y , there exists an open neighborhood Wy of y in X for which

the set V (y) = {v ∈ V : Wy ∩Uv} is finite. Let W =
⋃
y∈Y Wy. Shrinking W

if necessary, we may suppose that W is a paracompact open neighborhood of
Y in X. Since W is paracompact, there exists a locally finite open covering
{W ′

α}α of W , so that for each index α there exists a point yα ∈ Y such
that W ′

α ⊆ Wy. For v ∈ V , let U ′
v =

⋃
v∈V (yα)W

′
α. The open sets U ′

v form
a locally finite open covering of W , and each intersection U ′

v ∩ Y is an open
subset of Uv which contains the closure of the support of φv.

For each v ∈ V , choose a continuous function φ′v : X → [0, 1] such that
φ′v|Y = φv and the closure of the support of φ′v is contained in U ′

v. There
exists another open set U ′′

v whose closure is contained in U ′
v which again

contains the closure of the support of φ′v. For every finite subset V0 ⊆ V , let
KV0 denote the intersection

⋂
v∈V0

U
′′
v and let K0

V0
denote the open subset

of KV0 given by the inverse image of the open set U(V0) ⊆ X (the largest
open subset for which ∆V0 belongs to F (U(V0)) ⊆ ∆V ). Then {KV0 −K0

V0
}

is a locally finite collection of closed subsets of X, none of which intersects
Y . Let K =

⋃
V0

(KV0 −K0
V0

); then K is a closed subset of X. Let W ′ be an
open Fσ-subset of W which contains Y and does not intersect K. Replacing
X by W ′, we may assume that W = X and that K = ∅.

Since the collection of functions {φ′
v}v∈V has locally finite support, the

function φ′ = Σv∈V φ′
v is well-defined and takes the value 1 on Y . The open

set {x ∈ X : φ′(x) > 0} is a paracompact open subset of X (Proposi-
tion 7.1.1.1). Shrinking X further, we may suppose that φ′ is everywhere
nonzero on X. Set φ′′v = φv

φ for each v ∈ V . Then the functions φ′′v determine
a vertex η ∈ MapTop/X

(X, |F |X). Moreover, the open sets {U ′′
v } satisfy con-

dition (∗) appearing in the statement of Lemma 7.1.5.2, so that η belongs
to Map0

Top/X
(X, |F |X), as desired.

Corollary 7.1.5.5 admits the following refinement:

Corollary 7.1.5.6. Let X be a paracompact topological space, Y a closed
subset of X, and i : Y → X the inclusion map. Let F be an object of Shv(X).
Then the canonical map

αF : lim−→
Y⊆U

F(U) → lim−→
Y⊆U

(i∗ F)(U ∩ Y ) � (i∗ F)(Y )

is a homotopy equivalence. Here the colimit is taken over the filtered partially
ordered set of all open subsets of X which contain Y .
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Proof. We will prove by induction on n ≥ 0 that the map αF is n-connective.
The case n = 0 follows from Corollary 7.1.5.5. Suppose that n > 0. We must
show that, for every pair of points η, η′ ∈ lim−→Y⊆U F(U), the induced map of
fiber products

α′
F : ∗ ×lim−→Y ⊆U

F(U) ∗ → ∗ ×(i∗ F)(Y ) ∗

is (n− 1)-connective. Without loss of generality, we may assume that η and
η′ arise from sections of F over some U ⊆ X containing Y . Shrinking U if
necessary, we may assume that U is paracompact. Replacing X by U , we
may assume that η and η′ arise from global sections f, f ′ : 1 → F, where 1
denotes the final object of Shv(X). Let G = 1×F 1 ∈ Shv(X). Using the left
exactness of i∗ and Proposition 5.3.3.3, we can identify α′

F with αG. We now
invoke the inductive hypothesis to deduce that αG is (n− 1)-connective, as
desired.

Lemma 7.1.5.7. Let Y be a paracompact topological and B the collection of
open Fσ subsets of Y (see Proposition 7.1.1.1). Let V be a linearly ordered
set and let F : Bop → Set∆ be as in the statement of Lemma 7.1.5.2. Suppose
we are given a paracompact space X ∈ Top/Y and a closed subspace X ′ ⊆ X.
Then the map

Map0
Top/Y

(X, |F |Y ) → Map0
Top/Y

(X ′, |F |Y )

is a Kan fibration.

Proof. We must show that every lifting problem of the form

Λni ��
� �

��

Map0
Top/Y

(X, |F |Y )

��

∆n �� Map0
Top/Y

(X ′, |F |Y )

admits a solution. Since the pair (|∆m|, |Λmi |) is homeomorphic to (|∆m−1|×
[0, 1], |∆m−1| × {0}), we can replace X by X × |∆m−1| and thereby reduce
to the case m = 1.

Let Z = (X×{0}) ∐
X′×{0}(X

′×[0, 1]) and let η0 ∈ Map0
Top/Y

(Z, |F |Y ); we

wish to show that η0 can be lifted to a point in Map0
Top/Y

(X × [0, 1], |F |Y ).
The proof of Corollary 7.1.5.5 shows that we can lift η0 to a point η1 ∈
Map0

Top/Y
(U, |F |Y ) for some open set U ⊆ X × [0, 1] containing Z.

For each x ∈ X, there exists a real number εx > 0 and an open neighbor-
hood Vx ⊆ X such that Vx × [0, εx) ⊆ U . Since X is paracompact, the open
covering {Vx}x∈X admits a locally finite refinement {Wα}, so that for each
index α there exists a point x(α) ∈ X such that Wα ⊆ Vx(α). Let {φα} be a
partition of unity subordinate to the covering Wα and let

ψ = Σαεx(α)φα.
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Since the interval [0, 1] is compact, there exists an open neighborhood V ⊆ X
containingX ′ such that V ×[0, 1] ⊆ U . Choose a function ψ′ : X → [0, 1] such
that ψ′|(X−V ) = ψ|(X−V ) and ψ′|X ′ is equal to 1. Set K = {(x, t) ∈ X×
[0, 1] : t ≤ φ(x)}, so that Z ⊆ K ⊆ U , and let η2 ∈ Map0

Top/Y
(K, |F |X) be

the restriction of η1. Since K is a retract of X× [0, 1] in the category Top/Y ,
we can lift η2 to a point η ∈ Map0

Top/Y
(X × [0, 1], |F |X), as desired.

Proposition 7.1.5.8. Let X be a paracompact topological space. Suppose
we are given a sequence of closed subspaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X

with the following properties:

(1) The union
⋃
Xi coincides with X.

(2) A subset U ⊆ X is open if and only if each of the intersections U ∩Xi

is an open subset of Xi.

Then the induced diagram

Shv(X0) → Shv(X1) → · · · → Shv(X)

exhibits Shv(X) as the colimit of the sequence {Shv(Xi)}i≥0 in the ∞-
category RTop of ∞-topoi.

Remark 7.1.5.9. Hypotheses (1) and (2) of Proposition 7.1.5.8 can be
summarized by saying that X is the direct limit of the sequence {Xi} in the
category of topological spaces. It follows from this condition that for any
locally compact space Y , the product X × Y is also the direct limit of the
sequence {Xi×Y }. To prove this, we observe that for any topological space
Z we have bijections

Hom(X × Y, Z) � Hom(X,ZY ) � lim←−Hom(Xi, ZY ) � lim←−Hom(Xi × Y,Z),

where ZY is endowed with the compact-open topology. In particular, we
deduce that X ×∆n is the direct limit of the topological spaces Xi×∆n for
each n ≥ 0.

Proof. For each nonnegative integer n, let i(n) denote the inclusion from
Xn to Xn+1 and j(n) the inclusion of Xn into X. These functors induce
geometric morphisms

Shv(Xn+1)
i(n)∗ �� Shv(Xn)
i(n)∗
��

Shv(X)
j(n)∗ �� Shv(Xn)
j(n)∗
�� .

Let C denote a homotopy inverse limit of the tower of ∞-categories

· · · �� Shv(X2)
i(1)∗ �� Shv(X1)

i(0)∗ �� Shv(X0).
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In view of Proposition 6.3.2.3, we can also identify C with the direct limit of
the sequence {Shv(Xi)}i≥0 in RTop. The maps j(n) determine a geometric
morphism

Shv(X)
j∗ �� C
j∗

�� .

To complete the proof, it will suffice to show that the functor j∗ is an equiv-
alence of ∞-categories.

We first show that the unit map u : idShv(X) → j∗j∗ is an equivalence of
functors. Let F ∈ Shv(X); we wish to show that the map

uF : F → j∗j∗ F � lim←− j(n)∗j(n)∗ F

is an equivalence in Shv(X). It will suffice to prove the analogous assertion
after evaluating both sides on every open Fσ subset U ⊆ X. Replacing X
by U , we are reduced to proving that the induced map

αF : F(X) → (j∗j∗ F)(X) � lim←−(j(n)∗ F)(Xn)

is a homotopy equivalence. Let B be the collection of all open Fσ subsets
of X. Without loss of generality, we may assume that F is represented by a
projectively cofibrant simplicial presheaf F : Bop → S satisfying the con-
ditions of Lemma 7.1.4.1. Using Theorem 7.1.4.3, Corollary 7.1.4.4, and
Proposition 7.1.5.1, we can identify F(X) with the Kan complex of sec-
tions K = Map0

Top/X
(X, X̃) and each (j(n)∗ F)(Xn) with the Kan complex

of sections K(n) = MapTop/X
(Xn, X̃). It will therefore suffice to show that

the canonical map K → lim←−K(n) exhibits K as a homotopy inverse limit of
the tower {K(n)}.

It follows from Remark 7.1.5.9 that the map K → lim←−K(n) is an isomor-
phism of simplicial sets. For each n ≥ 0, let K(n)0 = Map0

Top/X
(Xn, X̃) ⊆

K(n) (with notation as in Lemma 7.1.5.2) and let K0 = lim←−K(n)0 ⊆ K.
Lemma 7.1.5.2 implies that each inclusion K(n)0 ⊆ K(n) is a homotopy
equivalence. Lemma 7.1.5.7 implies that the restriction maps K(n + 1)0 →
K(n)0 are Kan fibrations. It follows that the inverse limit K0 of the tower
{K(n)0} is a Kan complex and that the map K0 � lim←−{K(n)0} exhibits
K0 as the homotopy inverse limit of {K(n)0}. Invoking Remark 7.1.5.3, we
deduce that the inclusion K0 ⊆ K is a homotopy equivalence, so that the
equivalent diagram K � lim←−{K(n)} exhibits K as a homotopy inverse limit
of {K(n)}, as desired.

We now argue that the counit map v : j∗j∗ → id is an equivalence of
functors. Unwinding the definitions, we must prove the following: given a
collection of sheaves Fn ∈ Shv(Xn) and equivalences Fn � i(n)∗ Fn+1, the
canonical map

j(n)∗(lim←− j(n+ k)∗ Fn+k) → Fn

is an equivalence of sheaves on Xn for each n ≥ 0. It will suffice to show that
this map induces a homotopy equivalence after passing to the global sections
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over every open Fσ subset U ⊆ Xn. There exists a function φ0 : Xn → [0, 1]
such that U = {x ∈ Xn : φ0(x) > 0}. Choose a map φ : X → [0, 1] such that
φ0 = φ|Xn. Replacing X by the paracompact open subset {x ∈ X : φ(x) >
0}, we can reduce to the case where U = Xn.

We will prove by induction on k that, for any compatible collection of
sheaves {Fn ∈ Shv(Xn),Fn � i(n)∗ Fn+1}, the map

ψ : (j(n)∗ F)(Xn) → Fn(Xn)
is k-connective, where F = lim←− j(m)∗ Fm. If k > 0, then it will suffice to
show that for any pair of points η, η′ ∈ (j(n)∗ F)(Xn), the induced map

ψ′ : ∗ ×(j(n)∗ F)(Xn) ∗ → ∗ ×Fn(Xn) ∗
is (k − 1)-connective. Using Corollary 7.1.5.5, we may assume that η and
η′ arise from sections η, η′ ∈ F(U) for some open neighborhood U of Xn.
Shrinking U if necessary, we may assume that U is paracompact. Replacing
X by U , we may assume that η and η′ are global sections of F. Since j(n)∗

is left exact, we can identify ψ′ with the map
j(n)∗(∗ ×F ∗)(Xn) → (∗ ×Fn

∗)(Xn).
The (k−1)-connectivity of this map now follows from the inductive hypoth-
esis.

It remains to treat the case k = 0. Fix an element ηn ∈ Fn(Xn); we wish
to show that ηn lies in the image of π0ψ. For every open set U ⊆ X, the
composition

π0 F(U) = π0 lim←−(j(m)∗ Fm)(U)
→ lim←−(π0j(m)∗ Fm)(U)
� lim←−π0 Fm(U ∩Xm)

is surjective. Consequently, to prove that ηn lies in the image of π0ψ, it will
suffice to show that there exists an open set U containing Xn such that
ηn can be lifted to lim←−π0 Fm(U ∩Xm). By virtue of assumption (2), it will
suffice to construct a sequence of open Fσ subsets {Um ⊆ Xm}m≥n and
a sequence of compatible sections γm ∈ π0 Fm(Um) such that Un = Xn

and γm = ηm. The construction proceeds by induction on m. Assuming
that (Um, ηm) has already been constructed, we invoke the assumption that
Um is an Fσ to choose a continuous function f : Xm → [0, 1] such that
Um = {x ∈ Xm : f(x) > 0}. Let f ′ : Xm+1 → [0, 1] be a continuous extension
of f and let V = {x ∈ Xm+1 : f ′(x) > 0}. Then V is a paracompact
open subset of Xm+1, and Um can be identified with a closed subset of
V . Applying Corollary 7.1.5.5 to the restriction Fn+1 |V , we deduce the
existence of an open set Um+1 ⊆ V such that ηk can be extended to a section
ηk+1 ∈ π0 Fm+1(Um+1). Shrinking Um+1 if necessary, we may assume that
Um+1 is itself an Fσ, which completes the induction.

Remark 7.1.5.10. Suppose we are given a sequence of closed embeddings
of topological spaces

X0 ⊆ X1 ⊆ X2 ⊆ · · · ,
and let X be the direct limit of the sequence. Suppose further that:
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(a) For each n ≥ 0, the space Xn is paracompact.

(b) For each n ≥ 0, there exists an open neighborhood Yn of Xn in Xn+1

and a retraction rn of Yn onto Xn.

Then X is itself paracompact, so that the hypotheses of Proposition 7.1.5.8
are satisfied and Shv(X) is the direct limit of the sequence of ∞-topoi
{Shv(Xn)}n≥0. To prove this, it will suffice to show that every open cov-
ering {Uα}α∈A of X admits a refinement {Vβ}β∈B which is countably locally
finite: that is, that there exists a decomposition B =

⋃
n≥0Bn such that each

of the collections {Vβ}β∈Bn
is a locally finite collection of open sets, each of

which is contained in some Uα (see [59]). To construct this locally finite open
covering, we choose for each n ≥ 0 a locally finite open covering {Wβ}β∈Bn

of Xn which refines the covering {Uα ∩Xn}α∈A. For each β ∈ Bn, we have
Wβ ⊆ Uα for some α ∈ A. We now define Vβ to be the union of a collection
of open subsets {Vβ(m) ⊆ Xm}m≥n, which are constructed as follows:

• If m = n, we set Vβ(m) = Wβ .

• Let m > n and let Zm−1 be an open neighborhood of Xm−1 in Xm

whose closure is contained in Ym−1. We then set Vβ(m) = {z ∈ Zm−1 :
rm−1(z) ∈ Vβ(m− 1)} ∩ Uα.

It is clear that each Vβ(m) is an open subset of Xm contained in Uα and
that Vβ(m + 1) ∩ Xm = Vβ(m). Since X is equipped with the direct limit
topology, the union Vβ =

⋃
m Vβ(m) is open in X. The only nontrivial point

is to verify that the collection {Vβ}β∈Bn
is locally finite.

Pick a point x ∈ X; we wish to prove the existence of a neighborhood
Sx of x such that {β ∈ Bn : S ∩ Vβ �= ∅} is finite. Then there exists some
m ≥ n such that x ∈ Xm; we will construct Sx using induction on m. If
m > n and x ∈ Zm−1, then let x′ = rm−1(x) and set Sx = Sx′ . If m > n
and x /∈ Zm−1, or if m = n, then we define Sx =

⋃
k≥m Sx(k), where Sx(k)

is an open subset of Xk containing x, defined as follows. If m > n, let
Sx(m) = Xm − Zm−1, and if m = n, let Sx(m) be an open subset of Xn

which intersects only finitely many of the sets {Wβ}β∈Bn
. If k > m, we let

Sx(k) = {z ∈ Yk−1 : rk−1(z) ∈ Sx(k − 1)}. It is not difficult to verify that
the open set Sx has the desired properties.

7.1.6 Higher Topoi and Shape Theory

If X is a sufficiently nice topological space (for example, an absolute neigh-
borhood retract), then there exists a homotopy equivalence Y → X, where
Y is a CW complex. If X is merely assumed to be paracompact, then it is
generally not possible to approximate X well by means of a CW complex Y
equipped with a map to X. However, in view of Theorem 7.1.4.3, one can
still extract a substantial amount of information by considering maps from
X to CW complexes. Shape theory is an attempt to summarize all of this
information in a single invariant called the shape of X. In this section, we
will sketch a generalization of shape theory to the setting of ∞-topoi.
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Definition 7.1.6.1. We let Pro(S) denote the full subcategory of Fun(S, S)op

spanned by accessible left exact functors f : S → S. We will refer to Pro(S)
as the ∞-category of Pro-spaces, or as the ∞-category of shapes.

Remark 7.1.6.2. If C is a small ∞-category which admits finite limits,
then any functor f : C → S is accessible and may be viewed as an object
of P(Cop). The left exactness of f is then equivalent to the condition that
f belongs to Ind(Cop) = Pro(C)op. Definition 7.1.6.1 constitutes a natural
extension of this terminology to a case where C is not necessarily small;
here it is convenient to add a hypothesis of accessibility for technical reasons
(which will not play any role in the discussion below).

Definition 7.1.6.3. Let X be an ∞-topos. According to Proposition 6.3.4.1,
there exists a geometric morphism q∗ : X → S which is unique up to homo-
topy. Let q∗ be a left adjoint to q∗ (also unique up to homotopy). The
composition q∗q∗ : S → S is an accessible left exact functor, which we will
refer to as the shape of X and denote by Sh(X) ∈ Pro(S).

Remark 7.1.6.4. This definition of the shape of an ∞-topos also appears
in [78].

Remark 7.1.6.5. Let p∗ : Y → X be a geometric morphism of ∞-topoi and
let p∗ be a left adjoint to p∗. Let q∗ : X → S and q∗ be as in Definition
7.1.6.3. The unit map idX → p∗p∗ induces a transformation

q∗q∗ → q∗p∗p∗q∗ � (q ◦ p)∗(q ◦ p)∗,
which we may view as a map Sh(X) → Sh(Y) in Pro(S). Via this construc-
tion, we may view Sh as a functor from the homotopy category hRTop of
∞-topoi to the homotopy category hPro(S). We will say that a geometric
morphism p∗ : Y → X is a shape equivalence if it induces an equivalence
Sh(Y) → Sh(X) of Pro-spaces.

Remark 7.1.6.6. By construction, the shape of an ∞-topos X is well-
defined up to equivalence in Pro(S). By refining the above construction,
it is possible to construct a shape functor from RTop to the ∞-category
Pro(S) rather than on the level of homotopy.

Remark 7.1.6.7. Our terminology does not quite conform to the usage
in classical topology. Recall that if X is a compact metric space, the shape
of X is defined as a pro-object in the homotopy category of spaces. There
is a refinement of shape, known as strong shape, which takes values in the
homotopy category of Pro-spaces. Definition 7.1.6.3 is a generalization of
strong shape rather than shape. We refer the reader to [55] for a discussion
of classical shape theory.

Proposition 7.1.6.8. Let p : X → Y be a continuous map of paracom-
pact topological spaces. Then p∗ : Shv(X) → Shv(Y ) is a shape equivalence
if and only if, for every Kan complex K, the induced map of Kan com-
plexes MapTop(Y, |K|) → MapTop(X, |K|) is a homotopy equivalence. (Here
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MapTop(Y, |K|) denotes the simplicial set whose n-simplices are given by
continuous maps Y × |∆n| → |K|, and MapTop(X, |K|) is defined likewise.)

Proof. Corollary 7.1.4.4 and Proposition 7.1.5.1 imply that for any para-
compact topological space Z and any Kan complex K, there is a natural
isomorphism

Sh(Shv(Z))(K) � MapTop(Z, |K|)
in the homotopy category H.

Example 7.1.6.9. Let X be a scheme, let X be the topos of étale sheaves
on X, and let X be the associated 1-localic ∞-topos (see §6.4.5). The shape
Sh(X) defined above is closely related to the étale homotopy type introduced
by Artin and Mazur (see [3]). There are three important differences:

(1) Artin and Mazur work with pro-objects in the homotopy category H

rather than with actual pro-objects of S. Our definition is closer in
spirit to that of Friedlander, who works instead in the homotopy cat-
egory of pro-objects in Set∆ (see [30]).

(2) The étale homotopy type of [3] is constructed by considering étale
hypercoverings of X; it is therefore more closely related to the shape
of the hypercompletion X∧.

(3) Artin and Mazur generally study a certain completion of Sh(X∧) with
respect to the class of truncated spaces, which has the effect of erasing
the distinction between X and X∧ and discarding a bit of (generally
irrelevant) information.

Remark 7.1.6.10. Let ∗ denote a topological space consisting of a single
point. By definition, Shv(∗) is the full subcategory of Fun(∆1, S) spanned by
those morphisms f : X → Y , where Y is a final object of S. We observe that
Shv(∗) is equivalent to the full subcategory spanned by those morphisms f
as above, where Y = ∆0 ∈ S, and that this full subcategory is isomorphic to
S.

Definition 7.1.6.11. We will say that an ∞-topos X has trivial shape if
Sh(X) is equivalent to the identity functor S → S.

Remark 7.1.6.12. Let q∗ : X → S be a geometric morphism. Then the unit
map u : idS → q∗q∗ induces a map of Pro-spaces Sh(X) → idS. Since idS is
a final object in Pro(S), we observe that X has trivial shape if and only if
u is an equivalence; in other words, if and only if the pullback functor q∗ is
fully faithful.

We now sketch another interpretation of shape theory based on the ∞-
topoi associated to Pro-spaces. LetX = S, let π : S× S → S be the projection
onto the first factor, let δ : S → S× S denote the diagonal map, and let
φ : (S× S)/δS → S be defined as in §4.2.2. Proposition 4.2.2.4 implies that
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φ is a coCartesian fibration. We may identify the fiber of φ over an object
X ∈ S with the ∞-category S/X . To each morphism f : X → Y in S, φ
associates a functor f! : S/X → S/Y given by composition with f . Since
S admits pullbacks, each f! admits a right adjoint f∗, so that φ is also a
Cartesian fibration associated to some functor ψ : Sop → LTop.

Let X̂ : S → S be a Pro-space. Then X̂ classifies a left fibration Mop → S,
where M is a filtered ∞-category. Let θ denote the composition

Mop → S
ψop

→ (LTop)op.

Although M is generally not small, the accessibility condition on F guaran-
tees the existence of a cofinal map M ′ → M , where M ′ is a small filtered
∞-category. Theorem 6.3.3.1 implies that the diagram θ has a limit, which
we will denote by

S/ bX

and refer to as the ∞-topos of local systems on X̂.

Remark 7.1.6.13. If X̂ is a Pro-space, then Proposition 6.3.6.4 implies
that the associated geometric morphism S/ bX → S is pro-étale. However, the
converse is false in general.

Remark 7.1.6.14. Let G be a profinite group, which we may identify with
a Pro-object in the category of finite groups. We let BG denote the corre-
sponding Pro-object of S obtained by applying the classifying space functor
objectwise. Then S/BG can be identified with the 1-localic ∞-topos associ-
ated to the ordinary topos of sets with a continuous G-action. It follows from
the construction of filtered limits in RTop (see §6.3.3) that we can describe
objects Y ∈ S/BG informally as follows: Y associates to each open subgroup
U ⊆ G a space Y U of U -fixed points which depends functorially on the finite
G-space G/U . Moreover, if U is a normal subgroup of V , then the natural
map from Y V to the (homotopy) fixed-point space (Y U )V/U should be a
homotopy equivalence.

Remark 7.1.6.15. By refining the construction above, it is possible to
construct a functor

Pro(S) → RTop

X̂ �→ S/ bX .

This functor has a left adjoint given by

X �→ Sh(X).

Warning 7.1.6.16. If X̂ is a Pro-space, then the shape of S/ bX is not nec-

essarily equivalent to X̂. In general we have only a counit morphism

Sh(S/ bX) → X̂.
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7.2 DIMENSION THEORY

In this section, we will discuss the dimension theory of topological spaces
from the point of view of higher topos theory. We begin in §7.2.1 by in-
troducing the homotopy dimension of an ∞-topos. We will show that the
finiteness of the homotopy dimension of an ∞-topos X has pleasant con-
sequences: it implies that every object is the inverse limit of its Postnikov
tower and, in particular, that X is hypercomplete.

In §7.2.2, we define the cohomology groups of an ∞-topos X. These co-
homology groups have a natural interpretation in terms of the classification
of higher gerbes on X. Using this interpretation, we will show that the co-
homology dimension of an ∞-topos X almost coincides with its homotopy
dimension.

In §7.2.3, we review the classical theory of covering dimension for para-
compact topological spaces. Using the results of §7.1, we will show that the
covering dimension of a paracompact space X coincides with the homotopy
dimension of the ∞-topos Shv(X).

We conclude in §7.2.4 by introducing a dimension theory for Heyting
spaces, which generalizes the classical theory of Krull dimension for Noethe-
rian topological spaces. Using this theory, we will prove an upper bound for
the homotopy dimension of Shv(X) for suitable Heyting spaces X. This re-
sult can be regarded as a generalization of Grothendieck’s vanishing theorem
for the cohomology of Noetherian topological spaces.

7.2.1 Homotopy Dimension

Throughout this section, we will use the symbol 1X to denote the final object
of an ∞-topos X.

Definition 7.2.1.1. Let X be an ∞-topos. We shall say that X has homotopy
dimension ≤ n if every n-connective object U ∈ X admits a global section
1X → U . We say that X has finite homotopy dimension if there exists n ≥ 0
such that X has homotopy dimension ≤ n.

Example 7.2.1.2. An ∞-topos X is of homotopy dimension ≤ −1 if and
only if X is equivalent to the trivial ∞-category ∗ (the ∞-topos of sheaves
on the empty space ∅). The “if” direction is obvious. Conversely, if X has
homotopy dimension ≤ −1, then the initial object ∅ of X admits a global
section 1X → ∅. For every object X ∈ X, we have a map X → 1X → ∅, so
that X is also initial (Lemma 6.1.3.6). Since the collection of initial objects
of X span a contractible Kan complex (Proposition 1.2.12.9), we deduce that
X is itself a contractible Kan complex.

Example 7.2.1.3. The ∞-topos S has homotopy dimension 0. More gener-
ally, if C is an ∞-category with a final object 1C, then P(C) has homotopy
dimension ≤ 0. To see this, we first observe that the Yoneda embedding
j : C → P(C) preserves limits, so that j(1C) is a final object of P(C). To
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prove that P(C) has homotopy dimension ≤ 0, we need to show that the
functor P(C) → S corepresented by j(1C) preserves effective epimorphisms.
This functor can be identified with evaluation at 1C. It therefore preserves
all limits and colimits and so carries effective epimorphisms to effective epi-
morphisms by Proposition 6.2.3.7.

Example 7.2.1.4. Let X be a Kan complex and let n ≥ −1. The following
conditions are equivalent:

(1) The ∞-topos S/X has homotopy dimension ≤ n.

(2) The geometric realization |X| is a retract (in the homotopy category
H) of a CW complex K of dimension ≤ n.

To prove that (2) ⇒ (1), let us choose an n-connective object of X/X cor-
responding to a Kan fibration p : Y → X whose homotopy fibers are n-
connective. Choose a map K → |X| which admits a right homotopy inverse.
To prove that p admits a section up to homotopy, it will suffice to show that
there exists a dotted arrow

|Y |
p

��
K

f
���

�
�

�
�� |X|

in the category of topological spaces, rendering the diagram commutative.
The construction of f proceeds simplex by simplex on K, using the n-
connectivity of p to solve lifting problems of the form

Sk−1
� �

��

�� |Y |
p

��
Dk ��

		�
�

�
�

|X|
for k ≤ n.

To prove that (1) ⇒ (2), we choose any n-connective map q : K → |X|,
where K is an n-dimensional CW complex. Condition (1) guarantees that
q admits a right homotopy inverse, so that |X| is a retract of K in the
homotopy category H.

If n �= 2, then (1) and (2) are equivalent to the following apparently
stronger condition:

(3) The geometric realization |X| is homotopy equivalent to a CW complex
of dimension ≤ n.

For a proof, we refer the reader to [81].

Remark 7.2.1.5. If X is a coproduct (in the ∞-category RTop) of ∞-topoi
Xα, then X is of homotopy dimension ≤ n if and only if each Xα is of
homotopy dimension ≤ n.
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It is convenient to introduce a relative version of Definition 7.2.1.1.

Definition 7.2.1.6. Let f : X → Y be a geometric morphism of ∞-topoi.
We will say that f is of homotopy dimension ≤ n if, for every k ≥ n and every
k-connective morphism X → X ′ in X, the induced map f∗X → f∗X ′ is a
(k−n)-connective morphism in Y (since f∗ is well-defined up to equivalence,
this condition is independent of the choice of f∗).

Lemma 7.2.1.7. Let X be an ∞-topos and let F∗ : X → S be a geometric
morphism (which is unique up to equivalence). The following are equivalent:

(1) The ∞-topos X is of homotopy dimension ≤ n.

(2) The geometric morphism F∗ is of homotopy dimension ≤ n.

Proof. Suppose first that (2) is satisfied and let X be an n-connective object
of X. Then F∗X is a 0-connective object of S: that is, it is a nonempty Kan
complex. It therefore has a point 1S → F∗X. By adjointness, we see that
there exists a map 1X → X in X, where 1X = F ∗1S is a final object of X

because F ∗ is left exact. This proves (1).
Now assume (1) and let s : X → Y be an k-connective morphism in X;

we wish to show that F∗s is (k−n)-connective. The proof goes by induction
on k ≥ n. If k = n, then we are reduced to proving the surjectivity of the
horizontal maps in the diagram

π0 MapX(1X, X) �� π0 MapX(1X, Y )

π0 MapS(1S, F∗X) �� π0 MapS(1S, F∗Y )

of sets. Let p : 1X → Y be any morphism in X and form a pullback diagram

Z

s′

��

�� X

s

��
1X

p �� Y.

The map s′ is a pullback of s and therefore n-connective by Proposition
6.5.1.16. Using (1), we deduce the existence of a map 1X → Z, and a com-
posite map

1X → Z → X

is a lifting of p up to homotopy.
We now treat the case where k > n. Form a diagram

X
s′

��$$
$$$

$$$
$$$

$$$

X ×Y X ��

��

X

s

��
X

s �� Y
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where the square at the bottom right is a pullback in X. According to Propo-
sition 6.5.1.18, s′ is (k − 1)-connective. Using the inductive hypothesis, we
deduce that F∗(s′) is (k − n − 1)-connective. We now invoke Proposition
6.5.1.18 in the ∞-topos S and deduce that F∗(s) is (k − n)-connective, as
desired.

Definition 7.2.1.8. We will say that an ∞-topos X is locally of homotopy
dimension ≤ n if there exists a collection {Uα} of objects of X which generate
X under colimits, such that each X/Uα

is of homotopy dimension ≤ n.

Example 7.2.1.9. Let C be a small ∞-category. Then P(C) is locally of
homotopy dimension ≤ 0. To prove this, we first observe that P(C) is gen-
erated under colimits by the Yoneda embedding j : C → P(C). It therefore
suffices to prove that each of the ∞-topoi P(C)/j(C) has finite homotopy
dimension. According to Corollary 5.1.6.12, the ∞-topos P(C)/j(C) is equiv-
alent to P(C/C), which is of homotopy dimension 0 (see Example 7.2.1.3).

Our next goal is to prove the following result:

Proposition 7.2.1.10. Let X be an ∞-topos which is locally of homotopy
dimension ≤ n for some integer n. Then Postnikov towers in X are conver-
gent.

Proof. We will show that X satisfies the criterion of Remark 5.5.6.27. Let
X : N(Z∞

≥0)
op → X be a limit tower and assume that the underlying pretower

is highly connected. We wish to show that X is highly connected. Choose
m ≥ −1; we wish to show that the map X(∞) → X(k) is m-connective for
k � 0. Reindexing the tower if necessary, we may suppose that for every
p ≥ q, the map X(p) → X(q) is (m + q)-connective. We claim that, in this
case, we can take k = 0. The proof goes by induction on m. If m > 0, we can
deduce the desired result by applying the inductive hypothesis to the tower

X(∞) → · · · → X(∞) ×X(1) X(∞) → X(∞) ×X(0) X(∞).

Let us therefore assume that m = 0; we wish to show that the map X(∞) →
X(0) is an effective epimorphism. Since the objects {Uα} generate X under
colimits, there is an effective epimorphism φ : U → X(0), where U is a
coproduct of objects of the form {Uα}. Using Remark 7.2.1.5, we deduce
that X/U has homotopy dimension ≤ n. Let F : X → S denote the functor
corepresented by U . Then F factors as a composition

X
f∗
→ X/U

Γ→ S,

where f∗ is the left adjoint to the geometric morphism X/U → X and Γ is
the global sections functor. It follows that F carries n-connective morphisms
to effective epimorphisms (Lemma 7.2.1.7). The map φ determines a point
of F (X(0)). Since each of the maps F (X(k + 1)) → F (X(k)) induces a
surjection on connected components, we can lift this point successively to
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each F (X(k)) and thereby obtain a point in F (X(∞)) � holim{F (X(n))}.
This point determines a diagram

X(∞)
ψ

���
��

��
��

��

U

����������� φ �� X(0)

which commutes up to homotopy. Since φ is an effective epimorphism, we
deduce that the map ψ is an effective epimorphism, as desired.

Lemma 7.2.1.11. Let X be a presentable ∞-category, let Fun(N(Z∞
≥0)

op,X)
be the ∞-category of towers in X, and let Xτ ⊆ Fun(N(Z∞

≥0)
op,X) denote the

full subcategory spanned by the Postnikov towers. Evaluation at ∞ induces a
trivial fibration of simplicial sets Xτ → X. In particular, every object X(∞) ∈
X can be extended to a Postnikov tower

X(∞) → · · · → X(1) → X(0).

Proof. Let C be the full subcategory of X×N(Z∞
≥0)

op spanned by the pairs
(X,n), where X is an object of X, n ∈ Z∞

≥0, and X is n-truncated, and let
p : C → X denote the natural projection. Since every m-truncated object
of X is also n-truncated for m ≥ n, it is easy to see that p is a Cartesian
fibration. Proposition 5.5.6.18 implies that each of the inclusion functors
τ≤m X ⊆ τ≤nX has a left adjoint, so that p is also a coCartesian fibration
(Corollary 5.2.2.5). By definition, Xτ can be identified with the simplicial
set

Map�N(Z∞
≥0)

(N(Z∞
≥0)

�, (Cop)�)op,

and X itself can be identified with

Map�N(Z∞
≥0)

({∞}�, (Cop)�)op.

It now suffices to observe that the inclusion {∞}� ⊆ N(Z∞
≥0)

� is marked
anodyne.

Corollary 7.2.1.12 (Jardine). Let X be an ∞-topos which is locally of
homotopy dimension ≤ n for some integer n. Then X is hypercomplete.

Proof. Let X(∞) be an arbitrary object of X. By Lemma 7.2.1.11, we can
find a Postnikov tower

X(∞) → · · · → X(1) → X(0).

Since X(n) is n-truncated, it belongs to X∧ by Corollary 6.5.1.14. By Propo-
sition 7.2.1.10, the tower exhibits X(∞) as a limit of objects of X∧, so that
X(∞) belongs to X∧ as well since the full subcategory X∧ ⊆ X is stable
under limits.



716 CHAPTER 7

Lemma 7.2.1.13. Let X be an ∞-topos, n ≥ 0, X an (n + 1)-connective
object of X, and f∗ : X → X/X a right adjoint to the projection X/X → X.
Then f∗ induces a fully faithful functor τ≤n X → τ≤n X/X which restricts to
an equivalence from τ≤n−1 X to τ≤n−1 X/X .

Proof. We first prove that f∗ is fully faithful when restricted to the ∞-
category of n-truncated objects of X. Let Y, Z ∈ X be objects, where Y is
n-truncated. We have a commutative diagram

MapX/X
(f∗Y, f∗Z) MapX(X × Y,Z) MapX(τ≤n(X × Y ), Z)��

MapX(Y, Z)

$$

MapX(τ≤nY, Z)

$$

��

in the homotopy category H, where the horizontal arrows are homotopy
equivalences. Consequently, to prove that the left vertical map is a homotopy
equivalence, it suffices to show that the projection τ≤n(X × Y ) → τ≤nY
is an equivalence. This follows immediately from Lemma 6.5.1.2 and our
assumption that X is (n+ 1)-connective.

Now suppose that Y is an (n − 1)-truncated object of X/X . We wish to
show that Y lies in the essential image of f∗|τ≤n−1 X. Let Y denote the
image of Y in X and let Y → Z exhibit Z as an (n− 1)-truncation of Y in
X. To complete the proof, it will suffice to show that the composition

u : Y u′→ f∗Y u′′→ f∗Z

is an equivalence in X/X . Since both Y and f∗Z are (n − 1)-truncated, it
suffices to prove that u is n-connective. According to Proposition 6.5.1.16,
it suffices to prove that u′ and u′′ are n-connective. Proposition 5.5.6.28
implies that u′′ exhibits f∗Z as an (n−1)-truncation of f∗Y and is therefore
n-connective.

We now complete the proof by showing that u′ is n-connective. Let v′

denote the image of u′ in the ∞-topos X. According to Proposition 6.5.1.19,
it will suffice to show that v′ is n-connective. We observe that v′ is a section
of the projection q : Y ×X → Y . According to Proposition 6.5.1.20, it will
suffice to prove that q is (n + 1)-connective. Since q is a pullback of the
projection X → 1X, Proposition 6.5.1.16 allows us to conclude the proof
(since X is (n+ 1)-connective by assumption).

Lemma 7.2.1.13 has some pleasant consequences.

Proposition 7.2.1.14. Let X be an ∞-topos and let τ≤0 : X → τ≤0 X

denote a left adjoint to the inclusion. A morphism φ : U → X in X is an
effective epimorphism if and only if τ≤0(φ) is an effective epimorphism in
the ordinary topos h(τ≤0 X).

Proof. Suppose first that φ is an effective epimorphism. Let U• : N∆op
+ → X

be a Čech nerve of φ, so that U• is a colimit diagram. Since τ≤0 is a left
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adjoint, τ≤0U• is a colimit diagram in τ≤0 X. Using Proposition 6.2.3.10, we
deduce easily that τ≤0φ is an effective epimorphism.

For the converse, choose a factorization of φ as a composition

U
φ′
→ V

φ′′
→ X,

where φ′ is an effective epimorphism and φ′′ is a monomorphism. Applying
Lemma 7.2.1.13 to the ∞-topos X/τ≤0X , we conclude that φ′′ is the pullback
of a monomorphism i : V → τ≤0X. Since the effective epimorphism τ≤0(φ)
factors through i, we conclude that i is an equivalence, so that φ′′ is likewise
an equivalence. It follows that φ is an effective epimorphism, as desired.

Proposition 7.2.1.14 can be regarded as a generalization of the follow-
ing well-known property of the ∞-category of spaces, which can itself be
regarded as the ∞-categorical analogue of the second part of Fact 6.1.1.6:

Corollary 7.2.1.15. Let f : X → Y be a map of Kan complexes. Then f
is an effective epimorphism in the ∞-category S if and only if the induced
map π0X → π0Y is surjective.

Remark 7.2.1.16. It follows from Proposition 7.2.1.14 that the class of
∞-topoi having the form Shv(C), where C is a small ∞-category, is not
substantially larger than the class of ordinary topoi. More precisely, every
topological localization of P(C) can be obtained by inverting morphisms be-
tween discrete objects of P(C). It follows that there exists a pullback diagram
of ∞-topoi

Shv(C) ��

��

P(C)

��
Shv(N(hC)) �� P(N(hC)),

where the ∞-topoi on the bottom line are 1-localic and therefore determined
by the ordinary topoi of presheaves of sets on the homotopy category hC

and sheaves of sets on hC, respectively.

Corollary 7.2.1.17. Let X be a topological space. Suppose that Shv(X) is
locally of homotopy dimension ≤ n for some integer n. Then Shv(X) has
enough points.

Proof. Note that every point x ∈ X gives rise to a point x∗ : Shv(∗) →
Shv(X) of the ∞-topos Shv(X). Let f : F → F′ be a morphism in Shv(X)
such that x∗(f) is an equivalence in S for each x ∈ X. We wish to prove
that f is an equivalence. According to Corollary 7.2.1.12, it will suffice to
prove that f is ∞-connective. We will prove by induction on n that f is
n-connective. If n > 0, we simply apply the inductive hypothesis to the
diagonal morphism δ : F → F ×F′ F. We may therefore reduce to the case
n = 0; we wish to show that f is an effective epimorphism. Since Shv(X)
is generated under colimits by the sheaves χU associated to open subsets
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U ⊆ X, we may assume without loss of generality that F′ = χU . We may
now invoke Proposition 7.2.1.14 to reduce to the case where F is an object of
τ≤0 Shv(X)/χU

. This ∞-category is equivalent to the nerve of the category
of sheaves of sets on U . We are therefore reduced to proving that if F is a
sheaf of sets on U whose stalk Fx is a singleton at each point x ∈ U , then F

has a global section, which is clear.

7.2.2 Cohomological Dimension

In classical homotopy theory, one can analyze a space X by means of its
Postnikov tower

· · · → τ≤nX
φn→ τ≤n−1X → · · · .

In this diagram, the homotopy fiber F of φn (n ≥ 1) is a space which has
only a single nonvanishing homotopy group which appears in dimension n.
The space F is determined up to homotopy equivalence by πnF : in fact,
F is homotopy equivalent to an Eilenberg-MacLane space K(πnF, n) which
can be functorially constructed from the group πnF . The study of these
Eilenberg-MacLane spaces is of central interest because (according to the
above analysis) they constitute basic building blocks out of which any arbi-
trary space can be constructed. Our goal in this section is to generalize the
theory of Eilenberg-MacLane spaces to the setting of an arbitrary ∞-topos
X.

Definition 7.2.2.1. Let X be an ∞-category. A pointed object is a morphism
X∗ : 1 → X in X, where 1 is a final object of X. We let X∗ denote the full
subcategory of Fun(∆1,X) spanned by the pointed objects of X.

A group object of X is a groupoid object U• : N∆op → X for which U0 is
a final object of X. Let Grp(X) denote the full subcategory of X∆ spanned
by the group objects of X.

We will say that a pointed object 1 → X of an ∞-topos X is an Eilenberg-
MacLane object of degree n if X is both n-truncated and n-connective. We
let EMn(X) denote the full subcategory of X∗ spanned by the Eilenberg-
MacLane objects of degree n.

Example 7.2.2.2. Let C be an ordinary category which admits finite limits.
A group object of C is an object X ∈ C which is equipped with an identity
section 1C → X, an inversion map X → X, and a multiplication m : X ×
X → X, which satisfy the usual group axioms. Equivalently, a group object
of C is an object X together with a group structure on each morphism space
HomC(Y,X) which depends functorially on Y . We will denote the category
of group objects of C by Grp(C). The ∞-category N(Grp(C)) is equivalent to
the ∞-category of group objects of N(C) in the sense of Definition 7.2.2.1.
Thus the notion of a group object of an ∞-category can be regarded as a
generalization of the notion of a group object of an ordinary category.

Remark 7.2.2.3. Let X be an ∞-topos and n ≥ 0 an integer. Then the full
subcategory of Fun(∆1,X) consisting of Eilenberg-MacLane objects p : 1 →
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X is stable under finite products. This is an immediate consequence of the
following observations:

(1) A finite product of n-connective objects of X is n-connective (Corollary
6.5.1.13).

(2) Any limit of n-truncated objects of X is n-truncated (since τ≤n X is a
localization of X).

Proposition 7.2.2.4. Let X be an ∞-category and let U• be a simplicial
object of X. Then U• is a group object of X if and only if the following
conditions are satisfied:

(1) The object U0 is final in X.

(2) For every decomposition [n] = S ∪ S′, where S ∩ S′ = {s}, the maps

U(S) ← Un → U(S′)

exhibit Un as a product of U(S) and U(S) in X.

Proof. This follows immediately from characterization (4′′) of Proposition
6.1.2.6.

Corollary 7.2.2.5. Let X and Y be ∞-categories which admit finite products
and let f : X → Y be a functor which preserves finite products. Then the
induced functor X∆ → Y∆ carries group objects of X to group objects of Y.

Corollary 7.2.2.6. Let X be an ∞-category which admits finite products
and let Y ⊆ X be a full subcategory which is stable under finite products. Let
Y• be a simplicial object of Y. Then Y• is a group object of Y if and only if
it is a group object of X.

Definition 7.2.2.7. Let X be an ∞-category. A zero object of X is an object
which is both initial and final.

Lemma 7.2.2.8. Let X be an ∞-category with a final object 1X. Then the
inclusion i : X1X/ ⊆ X∗ is an equivalence of ∞-categories.

Proof. Let K be the full subcategory of X spanned by the final objects
and let 1X be an object of K. Proposition 1.2.12.9 implies that K is a
contractible Kan complex, so that the inclusion {1X} ⊆ K is an equivalence
of ∞-categories. Corollary 2.4.7.12 implies that the projection X∗ → K is
a coCartesian fibration. We now apply Proposition 3.3.1.3 to deduce the
desired result.

Lemma 7.2.2.9. Let X be an ∞-category with a final object. Then the ∞-
category X∗ has a zero object. If X already has a zero object, then the forgetful
functor X∗ → X is an equivalence of ∞-categories.
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Proof. Let 1X be a final object of X and let U = id1X
∈ X∗. We wish to show

that U is a zero object of X∗. According to Lemma 7.2.2.8, it will suffice to
show that U is a zero object of X1X/. It is clear that U is initial, and the
finality of U follows from Proposition 1.2.13.8.

For the second assertion, let us suppose that 1X is also an initial object
of X. We wish to show that the forgetful functor X∗ → X is an equivalence
of ∞-categories. Applying Lemma 7.2.2.8, it will suffice to show that the
projection f : X1X/ → X is an equivalence of ∞-categories. But f is a trivial
fibration of simplicial sets.

Lemma 7.2.2.10. Let X be an ∞-category and let f : X∗ → X be the for-
getful functor (which carries a pointed object 1 → X to X). Then f induces
an equivalence of ∞-categories

Grp(X∗) → Grp(X).

Proof. The functor f factors as a composition

X∗ ⊆ Fun(∆1,X) → X,

where the first map is the inclusion of a full subcategory which is stable
under limits and the second map preserves all limits (Proposition 5.1.2.2). It
follows that f preserves limits so that composition with f induces a functor
F : Grp(X∗) → Grp(X) by Corollary 7.2.2.5.

Observe that the 0-simplex ∆0 is an initial object of ∆op. Consequently,
there exists a functor T : ∆1 × N(∆)op → N(∆)op which is a natural trans-
formation from the constant functor taking the value ∆0 to the identity
functor. Composition with T induces a functor

X∆ → Fun(∆1,X)∆.

Restricting to group objects, we get a functor s : Grp(X) → Grp(X∗). It is
clear that F ◦ s is the identity.

We observe that if X has a zero object, then f is an equivalence of ∞-
categories (Lemma 7.2.2.9). It follows immediately that F is an equivalence
of ∞-categories. Since s is a right inverse to F , we conclude that s is an
equivalence of ∞-categories as well.

To complete the proof in the general case, it will suffice to show that the
composition s ◦ F is an equivalence of ∞-categories. To prove this, we set
Y = X∗ and let F ′ : Grp(Y∗) → Grp(X∗) and s′ : Grp(Y) → Grp(Y∗) be
defined as above. We then have a commutative diagram

Grp(Y) F ��

s′

��

Grp(X)

s

��
Grp(Y∗)

F ′
�� Grp(X∗),

so that s ◦ F = F ′ ◦ s′. Lemma 7.2.2.9 implies that Y has a zero object, so
that F ′ and s′ are equivalences of ∞-categories. Therefore F ′ ◦ s′ = s ◦ F is
an equivalence of ∞-categories, and the proof is complete.



HIGHER TOPOS THEORY IN TOPOLOGY 721

The following proposition guarantees a good supply of Eilenberg-MacLane
objects in an ∞-topos X.

Lemma 7.2.2.11. Let X be an ∞-topos containing a final object 1X and let
n ≥ 1. Let p denote the composition

Fun(∆1,X) Č→ X∆+ → X∆,

which associates to each morphism U → X the underlying groupoid of its
Čech nerve. Then

(1) Let X′ denote the full subcategory of Fun(∆1,X) consisting of connected
pointed objects of X. Then the restriction of p induces an equivalence
of ∞-categories from X′ to the ∞-category Grp(X).

(2) The essential image of p|EMn(X) coincides with the essential image
of the composition

Grp(EMn−1(X)) ⊆ Grp(X∗) → Grp(X).

Proof. Let X′′ be the full subcategory of Fun(∆1,X) spanned by the effective
epimorphisms u : U → X. Since X is an ∞-topos, p induces an equivalence
from X′′ to the ∞-category of groupoid objects of X. Consequently, to prove
(1), it will suffice to show that if u : 1X → X is a morphism in X and 1X is a
final object, then u is an effective epimorphism if and only if X is connected.
We note that X is connected if and only if the map τ≤0(u) : τ≤01X → τ≤0X
is an isomorphism in the ordinary topos Disc(X). According to Proposition
7.2.1.14, u is an effective epimorphism if and only if τ≤0(u) is an effective
epimorphism. We now observe that in any ordinary category C, an effective
epimorphism u′ : 1C → X ′ whose source is a final object of C is automatically
an isomorphism since the equivalence relation 1C ×X′ 1C ⊆ 1C × 1C consists
of the whole of 1C × 1C � 1C.

To prove (2), we consider an augmented simplicial object X• of X which
is a Čech nerve having the property that X0 is a final object of X. We wish
to show that the pointed object X0 → X−1 belongs to EMn(X) if and only if
each Xk is (n− 1)-truncated and (n− 1)-connective for k ≥ 0. We conclude
by making the following observations:

(a) Since Xk is equivalent to a k-fold product of copies of X1, the objects
Xk are (n− 1)-truncated ((n− 1)-connective) for all k ≥ 0 if and only
if X1 is (n− 1)-truncated ((n− 1)-connective).

(b) We have a pullback diagram

X1
f ��

��

X0

g

��
X0

g �� X−1.
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The object X1 is (n−1)-truncated if and only if f is (n−1)-truncated.
Since g is an effective epimorphism, f is (n− 1)-truncated if and only
if g is (n − 1)-truncated (Proposition 6.2.3.17). Using the long exact
sequence of Remark 6.5.1.5, we conclude that this is equivalent to the
vanishing of g∗πkX−1 for k > n. Since g is an effective epimorphism,
this is equivalent to the vanishing of πkX−1 for k > n, which is in turn
equivalent to the requirement that X−1 is n-truncated.

(c) The objectX1 is (n−1)-connective if and only if f is (n−1)-connective.
Arguing as above, we conclude that f is (n − 1)-connective if and
only if g is (n − 1)-connective (Proposition 6.5.1.16). Using the long
exact sequence of Remark 6.5.1.5, this is equivalent to the vanishing
of the homotopy sheaf g∗πkX−1 for k < n. Since g is an effective
epimorphism, this is equivalent to the vanishing of πkX−1 for k <
n, which is in turn equivalent to the condition that X−1 is (n − 1)-
truncated.

Proposition 7.2.2.12. Let X be an ∞-topos, let n ≥ 0 be a nonnegative
integer, and let πn : X∗ → N(Disc(X)) denote the associated homotopy group
functor.

Then

(1) If n = 0, then πn determines an equivalence from the ∞-category
EM0(X) to the (nerve of the) category of pointed objects of Disc(X).

(2) If n = 1, then πn determines an equivalence from the ∞-category
EM1(X) to the (nerve of the) category of group objects of Disc(X).

(3) If n ≥ 2, then πn determines an equivalence from the ∞-category
EMn(X) to the (nerve of the) category of commutative group objects of
Disc(X).

Proof. We use induction on n. The case n = 0 follows immediately from the
definitions. The case n = 1 follows from the case n = 0 by combining Lemmas
7.2.2.11 and 7.2.2.10. If n = 2, we apply the inductive hypothesis together
with Lemma 7.2.2.11 and the observation that if C is an ordinary category
which admits finite products, then Grp(Grp(C)) is equivalent to category
Ab(C) of commutative group objects of C. The argument in the case n > 2
makes use of the inductive hypothesis, Lemma 7.2.2.11, and the observation
that Grp(Ab(C)) is equivalent to Ab(C) for any ordinary category C which
admits finite products.

Fix an ∞-topos X, a final object 1X ∈ X, and an integer n ≥ 0. According
to Proposition 7.2.2.12, there exists a homotopy inverse to the functor π. We
will denote this functor by

A �→ (p : 1X → K(A,n)),
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where A is a pointed object of the topos Disc(X) if n = 0, a group object if
n = 1, and an abelian group object if n ≥ 2.

Remark 7.2.2.13. The functor A �→ K(A,n) preserves finite products.
This is clear since the class of Eilenberg-MacLane objects is stable under
finite products (Remark 7.2.2.3) and the homotopy inverse functor π com-
mutes with finite products (since homotopy groups are constructed using
pullback and truncation functors, each of which commutes with finite prod-
ucts).

Definition 7.2.2.14. Let X be an ∞-topos, n ≥ 0 an integer, and A an
abelian group object of the topos Disc(X). We define

Hn(X;A) = π0 MapX(1X,K(A,n));

we refer to Hn(X;A) as the nth cohomology group of X with coefficients in
A.

Remark 7.2.2.15. It is clear that we can also make sense of H1(X;G) when
G is a sheaf of nonabelian groups, or H0(X;E) when E is only a sheaf of
(pointed) sets.

Remark 7.2.2.16. It is clear from the definition that Hn(X;A) is functo-
rial in A. Moreover, this functor commutes with finite products by Remark
7.2.2.13 (and the fact that products in X are products in the homotopy cat-
egory hX). If A is an abelian group, then the multiplication map A×A → A
induces a (commutative) group structure on Hn(X;A). This justifies our
terminology in referring to Hn(X;A) as a cohomology group.

Remark 7.2.2.17. Let C be a small category equipped with a Grothendieck
topology and let X be the ∞-topos Shv(NC) of sheaves of spaces on C, so
that the underlying topos Disc(X) is equivalent to the category of sheaves
of sets on C. Let A be a sheaf of abelian groups on C. Then Hn(X;A) may
be identified with the nth cohomology group of Disc(X) with coefficients in
A in the sense of ordinary sheaf theory. To see this, choose a resolution

A → I0 → I1 → · · · → In−1 → J

of A by abelian group objects of Disc(X), where each Ik is injective. The
complex

I0 → · · · → J

may be identified, via the Dold-Kan correspondence, with a simplicial abelian
group object C• of Disc(X). Regard C• as a presheaf on C with values in
Set∆. Then

(1) The induced presheaf F : N(C)op → S belongs to X = Shv(N(C)) ⊆
P(N(C)) (this uses the injectivity of the objects Ik) and is equipped
with a canonical base point p : 1X → F .
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(2) The pointed object p : 1X → F is an Eilenberg-MacLane object of X,
and there is a canonical identification A � p∗(πnF ). We may therefore
identify F with K(A,n).

(3) The set of homotopy classes of maps from 1X to F in X may be iden-
tified with the cokernel of the map Γ(Disc(X); In−1) → Γ(Disc(X);J),
which is also the nth cohomology group of Disc(X) with coefficients in
A in the sense of classical sheaf theory.

For further discussion of this point, we refer the reader to [41].

We are ready to define the cohomological dimension of an ∞-topos.

Definition 7.2.2.18. Let X be an ∞-topos. We will say that X has co-
homological dimension ≤ n if, for any sheaf of abelian groups A on X, the
cohomology group Hk(X, A) vanishes for k > n.

Remark 7.2.2.19. For small values of n, some authors prefer to require
a stronger vanishing condition which also applies when A is a nonabelian
coefficient system. The appropriate definition requires the vanishing of co-
homology for coefficient systems which are defined only up to inner auto-
morphisms, as in [31]. With the appropriate modifications, Theorem 7.2.2.29
below remains valid for n < 2.

The cohomological dimension of an ∞-topos X is closely related to the
homotopy dimension of X. If X has homotopy dimension ≤ n, then

Hm(X;A) = π0 MapX(1X,K(A,m)) = ∗
for m > n by Lemma 7.2.1.7, so that X is also of cohomological dimension
≤ n. We will establish a partial converse to this result.

Definition 7.2.2.20. Let X be an ∞-topos. An n-gerbe on X is an object
X ∈ X which is n-connective and n-truncated.

Let X be an ∞-topos containing an n-gerbe X and let f : X/X → X

denote the associated geometric morphism. If X is equipped with a base
point p : 1X → X, then X is canonically determined (as a pointed object) by
p∗πnX by Proposition 7.2.2.12. We now wish to consider the case in which X
is not pointed. If n ≥ 2, then πnX can be regarded as an abelian group object
in the topos Disc(X/X). Proposition 7.2.1.13 implies that πnX � f∗A, where
A is a sheaf of abelian groups on X, which is determined up to canonical
isomorphism. (In concrete terms, this boils down to the observation that the
1-connectivity of X allows us to extract higher homotopy groups without
specifying a base point on X.) In this situation, we will say that X is banded
by A.

Remark 7.2.2.21. For n < 2, the situation is more complicated. We refer
the reader to [31] for a discussion.
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Our next goal is to show that the cohomology groups of an ∞-topos X can
be interpreted as classifying equivalence classes of n-gerbes over X. Before
we can prove this, we need to establish some terminology.

Notation 7.2.2.22. Let X be an ∞-topos. We define a category Band(X)
as follows:

(1) The objects of Band(X) are pairs (U,A), where U is an object of X

and A is an abelian group object of the homotopy category Disc(X/U ).

(2) Morphisms from (U,A) to (U ′, A′) are given by pairs (η, f), where
η ∈ π0 MapX(U,U ′) and f : A → A′ is a map which induces an isomor-
phism A � η∗A′ of abelian group objects. Composition of morphisms
is defined in the obvious way.

For n ≥ 2, let Gerbn(X) denote the subcategory of Fun(∆1,X) spanned
by those objects f : X → S which are n-gerbes in X/S and those morphisms
which correspond to pullback diagrams

X ′ ��

f

��

X

f

��
S′ �� S.

Remark 7.2.2.23. Since the class of morphisms f : X → S which belong
to X∆1

is stable under pullback, we can apply Corollary 2.4.7.12 (which
asserts that p : Fun(∆1,X) → Fun({1},X) is a Cartesian fibration), Lemma
6.1.1.1 (which characterizes the p-Cartesian morphisms of Fun(∆1,X)), and
Corollary 2.4.2.5 to deduce that the projection Gerbn(X) → X is a right
fibration.

If f : X → U belongs to Gerbn(X), then there exists an abelian group
object A of Disc(X/U ) such that X is banded by A. The construction

(f : X → U) �→ (U,A)
determines a functor

χ : Gerbn(X) → N(Band(X)).
Let A be an abelian group object of Disc(X). We let BandA(X) be the

category whose objects are triples (X,AX , φ), where X ∈ hX, AX is an
abelian group object of Disc(X/X), and φ is a map AX → A which induces
an isomorphism AX � A × X of abelian group objects of Disc(X/X). We
have forgetful functors

BandA(X)
φ→ Band(X) → hX,

both of which are Grothendieck fibrations and whose composition is an equiv-
alence of categories. We define GerbAn (X) by the following pullback diagram:

GerbAn (X) ��

��

Gerbn(X)

χ

��
N(BandA(X)) �� N(Band(X)).
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Note that since φ is a Grothendieck fibration, Nφ is a Cartesian fibration
(Remark 2.4.2.2), so that the diagram above is homotopy Cartesian (Propo-
sition 3.3.1.3). We will refer to GerbAn (X) as the sheaf of gerbes over X banded
by A.

More informally, an object of GerbAn (X) is an n-gerbe f : X → U in X/U
together with an isomorphism φX : πnX � X × A of abelian group objects
of Disc(X/X). Morphisms in GerbAn are given by pullback squares

X ′

��

f �� X

��
U ′ �� U

such that the associated diagram of abelian group objects of Disc(X/X′)

f∗(πnX)
f∗φX

!"++
+++

+++
++

πnX
′

πnf
� ///////// φX′ �� A×X ′

is commutative.

Lemma 7.2.2.24. Let X be an ∞-topos, n ≥ 1, and A an abelian group
object in the topos Disc(X). Let X be an n-gerbe in X equipped with a fixed
isomorphism φ : πnX � X×A of abelian group objects of Disc(X/X), and let
u : 1X → K(A,n) be an Eilenberg-MacLane object of X classified by A. Let
MapφX(K(A,n), X) be the summand of MapX(K(A,n), X) corresponding to
those maps f : K(A,n) → X for which the composition

A×K(A,n) � πnK(A,n) → f∗(πnX)
f∗φ→ A×K(A,n)

is the identity (in the category of abelian group objects of X/K(A,n)). Then
composition with u induces a homotopy equivalence

θφ : MapφX(K(A,n), X) → MapX(1X, X).

Proof. Let θ : MapX(K(A,n), X) → MapX(1X, X) and let f : 1X → X be
any map (which we may identify with an Eilenberg-MacLane object of X).
The homotopy fiber of θ over the point represented by f can be identified
with MapX1X/

(u, f). In view of the equivalence between X1X/ and X∗, we
can identify this mapping space with MapX∗(u, f). Applying Proposition
7.2.2.12, we deduce that the homotopy fiber of θ is equivalent to the (discrete)
set of all endomorphisms v : A → A (in the category of group objects of
Disc(X)). We now observe that the homotopy fiber of θφ over f is a summand
of the homotopy fiber of θ over f corresponding to those components for
which v = idA. It follows that the homotopy fibers of θφ are contractible, so
that θφ is a homotopy equivalence, as desired.
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Lemma 7.2.2.25. Let X be an ∞-topos, n ≥ 1, and A an abelian group
object of Disc(X). Let f : K(A,n) × X → X be a trivial n-gerbe over X
banded by A and g : Ỹ → Y be any n-gerbe over Y banded by A. Then there
is a canonical homotopy equivalence

MapGerbA
n
(f, g) � MapX(X, Ỹ ).

Proof. Choose a morphism α : idX → f in X/X corresponding to a diagram

X

��

s �� X ×K(A,n)

f

��
X

idX �� X

which exhibits f as an Eilenberg-MacLane object of X/X . We observe that
evaluation at {0} ⊆ ∆1 induces a trivial fibration

HomL
X∆1 (idX , g) → HomL

X(X, Ỹ ).

Consequently, we may identify MapX(X, Ỹ ) with the Kan complex

Z = Fun(∆1,X)idX / ×Fun(∆1,X) {g}.
Similarly, the trivial fibration Fun(∆1,X)α/ → Fun(∆1,X)f/ allows us to
identify MapGerbn

(f, g) with the Kan complex

Z ′ = Fun(∆1,X)α/ ×Fun(∆1,X) {g}
and MapGerbn

(f, g) with the summand Z′′ of Z ′ corresponding to those maps
which induce the identity isomorphism of A×(K(A,n)×X) (in the category
of group objects of Disc(X/K(A,n)×X)). We now observe that evaluation at
{1} ⊆ ∆1 gives a commutative diagram

Z ′′ ��

ψ′′

%%++
+++

+++
++ Z′

ψ′

��

�� Z

ψ

��
XidX /×X{Y } �� XX/×X{Y },

where the vertical maps are Kan fibrations. If we fix a pullback square

X̃ ��

g′

��

Ỹ

��
X

h �� Y,

then we can identify the Kan complex ψ−1{h} with MapX/X (idX , g′), the
Kan complex ψ′−1{s0h} with MapX/X (X ×K(A,n), g′), and the Kan com-
plex ψ′−1{s0h} with the summand of MapX/X (X×K(A,n), g′) correspond-
ing to those maps which induce the identity on A × (K(A,n) ×X) (in the
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category of group objects of Disc(X/K(A,n)×X)). Invoking Lemma 7.2.2.24
in the ∞-topos X/X , we deduce that the map θ in the diagram

Z′′ θ ��

ψ′′

��

Z

ψ

��
XidX /×X{Y } �� XX/×X{Y }

induces homotopy equivalences from the fibers of ψ′′ to the fibers of ψ. Since
the lower horizontal map is a trivial fibration of simplicial sets, we conclude
that θ is itself a homotopy equivalence, as desired.

Theorem 7.2.2.26. Let X be an ∞-topos, n ≥ 1, and A an abelian group
object of Disc(X). Then

(1) The composite map

θ : GerbAn (X) → Gerbn(X) ⊆ Fun(∆1,X) → Fun({1},X) � X

is a right fibration.

(2) The right fibration θ is representable by an Eilenberg-MacLane object
K(A,n+ 1).

Proof. For each object X ∈ X, we let AX denote the projection A×X → X
viewed as an abelian group object of Disc(X/X). The functor

φ : BandA(X) → Band(X)

is a fibration in groupoids, so that Nφ is a right fibration (Proposition
2.1.1.3). The functor θ admits a factorization

GerbAn (X) θ′→ Gerbn(X) θ
′′

→ X,

where θ′′ is a right fibration (Remark 7.2.2.23) and θ′ is a pullback of Nφ
and therefore also a right fibration. It follows that θ, being a composition of
right fibrations, is a right fibration; this proves (1).

To prove (2), we consider an Eilenberg-MacLane object u : 1X → K(A,n+
1). Since K(A,n + 1) is (n + 1)-truncated and 1X is n-truncated (in fact,
(−2)-truncated), Lemma 5.5.6.14 implies that u is n-truncated. The long
exact sequence

· · · → u∗πi+1K(A,n+ 1) → πiu → πi(1X) → i∗πi(K(A,n+ 1)) → · · ·
of Remark 6.5.1.5 shows that u is n-connective and provides an isomorphism
φ : A � πn(u) in the category of group objects of Disc(X), so that we may
view the pair (u, φ) as an object of GerbAn (X). Since 1X is a final object of
X, Lemma 7.2.2.25 implies that (u, φ) is a final object of GerbAn (X), so that
the right fibration θ is representable by θ(u, φ) = K(A,n+ 1).

Corollary 7.2.2.27. Let X be an ∞-topos, let n ≥ 2, and let A be an abelian
group object of Disc(X). There is a canonical bijection of Hn+1(X;A) with
the set of equivalence classes of n-gerbes on X banded by A.
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Remark 7.2.2.28. Under the correspondence of Proposition 7.2.2.27, an n-
gerbe X on X admits a global section 1X → X if and only if the associated
cohomology class in Hn+1(X;A) vanishes.

Theorem 7.2.2.29. Let X be an ∞-topos and n ≥ 2. Then X has cohomo-
logical dimension ≤ n if and only if it satisfies the following condition: any
n-connective truncated object of X admits a global section.

Proof. Suppose that X has the property that every n-connective truncated
object X ∈ X admits a global section. As in the proof of Lemma 7.2.1.7,
we deduce that for any (n + 1)-connective truncated object X ∈ X, the
space of global sections MapX(1, X) is connected. Let k > n and let G be
a sheaf of abelian groups on X. Then K(G, k) is (n+ 1)-connective, so that
Hk(X, G) = ∗. Thus X has cohomological dimension ≤ n.

For the converse, let us assume that X has cohomological dimension ≤ n
and let X denote an n-connective k-truncated object of X. We will show that
X admits a global section by descending induction on k. If k ≤ n−1, then X
is a final object of X and there is nothing to prove. In the general case, choose
a truncation X → τ≤k−1X; we may assume by the inductive hypothesis that
τ≤k−1X has a global section s : 1 → τ≤k−1X. Form a pullback square

X ′ ��

��

X

��
1

s �� τ≤k−1X.

It now suffices to prove that X ′ has a global section. We note that X ′ is
k-connective, where k ≥ n ≥ 2. It follows that X ′ is a k-gerbe on X; suppose
it is banded by an abelian group object A ∈ Disc(X). According to Corollary
7.2.2.27,X ′ is classified up to equivalence by an element in Hk+1(X, A), which
vanishes by virtue of the fact that k+1 > n and the cohomological dimension
of X is ≤ n. Consequently, X′ is equivalent to K(A, k) and therefore admits
a global section.

Corollary 7.2.2.30. Let X be an ∞-topos. If X has homotopy dimension
≤ n, then X has cohomological dimension ≤ n. The converse holds provided
that X has finite homotopy dimension and n ≥ 2.

Proof. Only the last claim requires proof. Suppose that X has cohomological
dimension ≤ n and homotopy dimension ≤ k. We must show that every n-
connective object X of X has a global section. Choose a truncation X →
τ≤k−1X. Then τ≤k−1X is truncated and n-connective, so it admits a global
section by Theorem 7.2.2.29. Form a pullback square

X ′ ��

��

X

��
1 �� τ≤k−1X.
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It now suffices to prove that X ′ has a global section. But X ′ is k-connective
and therefore has a global section by virtue of the assumption that X has
homotopy dimension ≤ k.

Warning 7.2.2.31. [Weiland] The converse to Corollary 7.2.2.30 is false if
we do not assume that X has finite homotopy dimension. To see this, we
discuss the following example, which we learned from Ben Wieland. Let G
denote the group Zp of p-adic integers (viewed as a profinite group). Let C

denote the category whose objects are the finite quotients {Zp/pnZp}n≥0

and whose morphisms are given by G-equivariant maps. We regard C as
endowed with a Grothendieck topology in which every nonempty sieve is a
covering. The ∞-topos Shv(NC) is 1-localic, and the underlying ordinary
topos hτ≤0 Shv(NC) can be identified with the category BG of continuous
G-sets (that is, sets C equipped with an action of G such that the stabilizer
of each element x ∈ C is an open subgroup of G). Since the profinite group
G has cohomology dimension 2 (see [69]), we deduce that X is of cohomo-
logical dimension 2. However, we will show that X is not hypercomplete and
therefore cannot be of finite homotopy dimension.

Let K be a finite CW complex whose homotopy groups consist entirely of
p-torsion (for example, we could take K to be a Moore space M(Z/pZ)) and
let X = SingK ∈ S. Let F : N(C)op → S denote the constant functor taking
the value X. We claim that F belongs to Shv(C). Unwinding the definitions,
we must show that for each m ≤ n, the diagram F exhibits F (Zp/pmZp) as
equivalent to the homotopy invariants for the trivial action of pmZp/pnZp
on F (Zp/pnZp). In other words, we must show that the diagonal embedding

α : X → Fun(BH,X)
is a homotopy equivalence, where H denotes the quotient group pmZp/pnZp.
Since both sides are p-adically complete, it will suffice to show that α is a
p-adic homotopy equivalence, which follows from a suitable version of the
Sullivan conjecture (see, for example, [67]).

We define another functor F ′ : N(C)op → S, which is obtained as the
simplicial nerve of the functor described by the formula

Zp/pnZp �→ Sing(KR /pnZ).
For m ≤ n, the loop space KR /pmZ can be identified with the homotopy
fixed points of the (nontrivial) action of H = pmZp/pnZp � pmZ/pnZ on
the loop space KR /pnZ: this follows from the observation that H acts freely
on R /pnZ with quotient R /pmZ. Consequently, F ′ belongs to Shv(N(C)).

The inclusion of K into each loop space KR /pnZ induces a morphism
α : F → F ′ in the ∞-topos Shv(N(C)). Using the fact that the homotopy
groups of K are p-torsion, we deduce that the morphism α is ∞-connective
(this follows from the observation that the map

X � lim−→F (Zp/pnZp) → lim−→F ′(Z/pnZP )
is a homotopy equivalence). However, the morphism α is not an equivalence
in Shv(N(C)) unless K is essentially discrete. Consequently, Shv(N(C)) is not
hypercomplete and therefore cannot be of finite homotopy dimension.
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In spite of Warning 7.2.2.31, many situations which guarantee that a topo-
logical space (or topos) X is of bounded cohomological dimension also guar-
antee that the associated ∞-topos is of bounded homotopy dimension. We
will see some examples in the next two sections.

7.2.3 Covering Dimension

In this section, we will review the classical theory of covering dimension
for paracompact spaces and then show that the covering dimension of a
paracompact space X coincides with its homotopy dimension.

Definition 7.2.3.1. A paracompact topological space X has covering di-
mension ≤ n if the following condition is satisfied: for any open covering
{Uα} of X, there exists an open refinement {Vα} of X such that each inter-
section Vα0 ∩ · · · ∩ Vαn+1 = ∅ provided the αi are pairwise distinct.

Remark 7.2.3.2. When X is paracompact, the condition of Definition
7.2.3.1 is equivalent to the (a priori weaker) requirement that such a refine-
ment exist whenever {Uα} is a finite covering of X. This weaker condition
gives a good notion whenever X is a normal topological space. Moreover, if
X is normal, then the covering dimension of X (by this second definition) co-
incides with the covering dimension of the Stone-Čech compactification of X.
Thus the dimension theory of normal spaces is controlled by the dimension
theory of compact Hausdorff spaces.

Remark 7.2.3.3. Suppose that X is a compact Hausdorff space, which is
written as a filtered inverse limit of compact Hausdorff spaces {Xα}, each of
which has dimension ≤ n. Then X has dimension ≤ n. Conversely, any com-
pact Hausdorff space of dimension ≤ n can be written as a filtered inverse
limit of finite simplicial complexes having dimension ≤ n. Thus the dimen-
sion theory of compact Hausdorff spaces is controlled by the (completely
straightforward) dimension theory of finite simplicial complexes.

Remark 7.2.3.4. There are other approaches to classical dimension theory.
For example, a topological space X is said to have small ( large ) inductive
dimension ≤ n if every point of X (every closed subset of X) has arbitrarily
small open neighborhoods U such that ∂ U has small inductive dimension
≤ n− 1. These notions are well-behaved for separable metric spaces, where
they coincide with the covering dimension (and with each other). In general,
the covering dimension has better formal properties.

Our goal in this section is to prove that the covering dimension of a
paracompact topological space X coincides with the homotopy dimension
of Shv(X). First, we need a technical lemma.

Lemma 7.2.3.5. Let X be a paracompact space, let k ≥ 0, and let {Uα}α∈A
be a covering of X. Suppose that for every A0 ⊆ A of size k+1, we are given
a covering {Vβ}β∈B(A0) of the intersection UA0 =

⋂
α∈A0

Uα. Then there
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exists a covering {Wα}α∈ eA of X and a map π : Ã → A with the following
properties:

(1) For α̃ ∈ Ã with π(α̃) = α, we have Weα ⊆ Uα.

(2) Suppose that α̃0, · · · , α̃k is a collection of elements of Ã, with π(α̃i) =
αi. Suppose further that A0 = {α0, . . . , αk} has cardinality (k + 1)
(in other words, the αi are all disjoint from one another). Then there
exists β ∈ B(A0) such that Weα0 ∩ . . . ∩Weαk

⊆ Vβ.

Proof. Since X is paracompact, we can find a locally finite covering {U ′
α}α∈A

of X such that each closure U ′
α is contained in Uα. Let S denote the set of

all subsets A0 ⊆ A having size k + 1. For A0 ∈ S, let K(A0) =
⋂
α∈A0

Uα.
Now set

Ã = {(α,A0, β) : α ∈ A0 ∈ S, β ∈ B(A0)} ∪A.
For α̃ = (α,A0, β) ∈ Ã, we set π(α̃) = α and

Weα = (U ′
α −

⋃
α∈A′

0∈S
K(A′

0)) ∪ (Vβ ∩ U ′
α).

If α ∈ A ⊆ Ã, we let π(α) = α and Wα = U ′
α − ⋃

α∈A0∈S K(A0). The local
finiteness of the cover {U ′

α} ensures that each Weα is an open set. It is now
easy to check that the covering {Weα}eα∈ eA has the desired properties.

Theorem 7.2.3.6. Let X be a paracompact topological space of covering
dimension ≤ n. Then the ∞-topos Shv(X) of sheaves on X has homotopy
dimension ≤ n.

Proof. We make use of the results and notations of §7.1. Let B denote the
collection of all open Fσ subsets of X and fix a linear ordering on B. We may
identify Shv(X) with the simplicial nerve of the category of all functors F :
Bop → Kan which have the property that for any U ⊆ B with U =

⋃
V ∈U V ,

the natural map F (U) → F (U) is a homotopy equivalence.
Suppose that F : Bop → Set∆ represents an n-connective sheaf; we wish to

show that the simplicial set F (X) is nonempty. It suffices to prove that F (U)
is nonempty for some covering U of X; in other words, it suffices to produce
a map NU → F . The idea is that since X has finite covering dimension, we
can choose arbitrarily fine covers U such that NU is n-dimensional (in other
words, equal to its n-skeleton).

For every simplicial set K, let K(i) denote the i-skeleton of K (the union
of all nondegenerate simplices of K of dimension ≤ i). If G : Bop → Set∆ is
a simplicial presheaf, we let G(i) denote the simplicial presheaf given by the
formula

G(i)(U) = (G(U))(i).

We will prove the following statement by induction on i, −1 ≤ i ≤ n:

• There exists an open cover Ui ⊆ B of X and a map ηi : N (i)
Ui

→ F .
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Assume that this statement holds for i = n. Passing to a refinement, we
may assume that the cover Un has the property that no more than n + 1
of its members intersect (this is the step where we shall use the assumption
on the covering dimension of X). It follows that N (n)

Un
= NUn

, and the proof
will be complete.

To begin the induction in the case i = −1, we let U−1 = {X}; the (−1)-
skeleton of NU−1 is empty, so that η−1 exists (and is unique).

Now suppose that Ui = {Uα}α∈A and ηi have been constructed, i < n.
Let A0 ⊆ A have cardinality i + 2 and set U(A0) =

⋂
α∈A0

Uα; then A0

determines an n-simplex of NUi
(U(A0)), so that ηi restricts to give a map

ηi,A0 : ∂∆i+1 → F (U(A0)).

By assumption, F is n-connective; it follows that there is an open covering

{Vβ}β∈B(A0)

of U(A0) such that for each Vβ there is a commutative diagram

∂∆i+1
� �

��

�� F (U(A0))

��
∆i+1 �� F (Vβ).

We apply Lemma 7.2.3.5 to this data to obtain an new open cover Ui+1 =
{Weα}eα∈ eA which refines {Uα}α∈A. Refining the cover further if necessary,
we may assume that each of its members belongs to B. By functoriality, we
obtain a map

N
(i)
Ui+1

→ F.

To complete the proof, it will suffice to extend f to the (i + 1)-skeleton of
the nerve of {Wα}α∈ eA. Let Ã0 ⊆ Ã have cardinality i+ 2 and let W (Ã0) =⋂

eα∈fA0
Weα; then we must solve a lifting problem

∂∆i+1
� �

��

�� F (W )

∆i+1.

���
�

�
�

�

Let π : Ã → A denote the map of Lemma 7.2.3.5. If A0 = π(Ã0) has
cardinality smaller than i + 2, then there is a canonical extension given by
applying π and using ηi. Otherwise, Lemma 7.2.3.5 guarantees thatW (Ã0) ⊆
Vβ for some β ∈ B(A0), so that the desired extension exists by construction.

Corollary 7.2.3.7. Let X be a paracompact topological space. The following
conditions are equivalent:

(1) The covering dimension of X is ≤ n.
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(2) The homotopy dimension of Shv(X) is ≤ n.

(3) For every closed subset A ⊆ X, every m ≥ n, and every continuous
map f0 : A → Sm, there exists f : X → Sm extending f0.

Proof. The implication (1) ⇒ (2) is Theorem 7.2.3.6. The equivalence (1) ⇔
(3) follows from classical dimension theory (see, for example, [27]). We will
complete the proof by showing that (2) ⇒ (3). Let A be a closed subset of X,
let m ≥ n, and let f0 : A → Sm a continuous map. Let B be the collection
of all open Fσ subsets of X. We define a simplicial presheaf F : B → Kan,
so that an n-simplex of F (U) is a map f rendering the diagram

(U ∩A) × |∆n| ��

��

A

f0

��
U × |∆n| f ���� Sm

commutative. To prove (3), it will suffice to show that F (X) is nonempty.
By virtue of the assumption that Shv(X) has homotopy dimension ≤ n, it
will suffice to show that F is an n-connective sheaf on X.

We first show that F is a sheaf. Choose a linear ordering on B. We must
show that for every open covering U of U ∈ B, the natural map F(U) →
F(U) is a homotopy equivalence. The proof is similar to that of Proposition
7.1.3.14. Let π : |NU|X → U be the projection; then we may identify F (U)
with the simplicial set parametrizing continuous maps |NU|X → Sm, whose
restriction to π−1(A) is given by f0. The desired equivalence now follows
from the fact that |NU|X is fiberwise homotopy equivalent to U (Lemma
7.1.3.13).

Now we claim that F is n-connective as an object of Shv(X). In other
words, we must show that for any U ∈ B, any k ≤ n, and any map g : ∂∆k →
F (U), there is an open covering {Uα} of U and a family of commutative
diagrams

∂∆k
� �

��

g �� F (U)

��
∆k

gα �� F (Uα).

We may identify g with a continuous map

g : Sk−1 × U → Sm

such that g(z, a) = f0(a) for a ∈ A. Choose a point x ∈ U . Consider the map
g|Sk−1 × {x}. Since k − 1 < n ≤ m, this map is nullhomotopic; therefore
it admits an extension g′x : Dk × {x} → Sm. Moreover, if x ∈ A, then we
may choose g′x to be the constant map with value f0(x). Amalgamating g,
g′x, and f0, we obtain a continuous map

g′0 : (Sk−1 × U) ∪ (Dk × (A ∪ {x})) → Sm.
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Since (Sk−1 × U) ∪ (Dk × (A ∪ {x})) is a closed subset of the paracompact
space U × Dk and the sphere Sm is an absolute neighborhood retract, the
map g′0 extends continuously to a map g′′ : W → Sm, where W is an open
neighborhood of (Sk−1×U)∪(Dk×(A∪{x})) in U×Dk. The compactness of
Dk implies that W contains Dk×Ux, where Ux ⊆ U is an open neighborhood
of x. Shrinking Ux if necessary, we may suppose that Ux belongs to B;
these open sets Ux form an open cover of U , with the required extension
∆k → F (Ux) supplied by the map g′′|Dk × Ux.

7.2.4 Heyting Dimension

For the purposes of studying paracompact topological spaces, Definition
7.2.3.1 gives a perfectly adequate theory of dimension. However, there are
other situations in which Definition 7.2.3.1 is not really appropriate. For ex-
ample, in algebraic geometry one often considers the Zariski topology on an
algebraic variety X. This topology is generally not Hausdorff and is typically
of infinite covering dimension. In this setting, there is a better dimension the-
ory: the theory of Krull dimension. In this section, we will introduce a mild
generalization of the theory of Krull dimension, which we will call the Heyt-
ing dimension of a topological space X. We will then study the relationship
between the Heyting dimension of X and the homotopy dimension of the
associated ∞-topos Shv(X).

Recall that a topological space X is said to be Noetherian if the collection
of closed subsets of X satisfies the descending chain condition. A closed
subset K ⊆ X is said to be irreducible if it cannot be written as a finite union
of proper closed subsets of K (in particular, the empty set is not irreducible
since it can be written as an empty union). The collection of irreducible
closed subsets of X forms a well-founded partially ordered set, therefore it
has a unique ordinal rank function rk, which may be characterized as follows:

• If K is an irreducible closed subset of X, then rk(K) is the smallest
ordinal which is larger than rk(K′) for all proper irreducible closed
subsets K ′ ⊂ K.

We call rk(K) the Krull dimension of K; the Krull dimension of X is the
supremum of rk(K), as K ranges over all irreducible closed subsets of X.

We next introduce a generalization of the Krull dimension to a suitable
class of non-Noetherian spaces. We shall say that a topological space X is a
Heyting space if satisfies the following conditions:

(1) The compact open subsets of X form a basis for the topology of X.

(2) A finite intersection of compact open subsets of X is compact (in par-
ticular, X is compact).

(3) If U and V are compact open subsets of X, then the interior of U ∪
(X − V ) is compact.
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Remark 7.2.4.1. Recall that a Heyting algebra is a distributive lattice L
with the property that for any x, y ∈ L, there exists a maximal element z
with the property that x∧ z ⊆ y. It follows immediately from our definition
that the lattice of compact open subsets of a Heyting space forms a Heyting
algebra. Conversely, given any Heyting algebra, one may form its spectrum,
which is a Heyting space. This sets up a duality between the category of sober
Heyting spaces (Heyting spaces in which every irreducible closed subset has
a unique generic point) and the category of Heyting algebras. This duality is
a special case of a more general duality between coherent topological spaces
and distributive lattices. We refer the reader to [42] for further details.

Remark 7.2.4.2. Suppose that X is a Noetherian topological space. Then
X is a Heyting space since every open subset of X is compact.

Remark 7.2.4.3. If X is a Heyting space and U ⊆ X is a compact open
subset, then X and X −U are also Heyting spaces. In this case, we say that
X − U is a cocompact closed subset of X.

We next define the dimension of a Heyting space. The definition is recur-
sive. Let α be an ordinal. A Heyting space X has Heyting dimension ≤ α
if and only if, for any compact open subset U ⊆ X, the boundary of U has
Heyting dimension < α (we note that the boundary of U is also a Heyting
space); a Heyting space has Heyting dimension < 0 if and only if it is empty.

Remark 7.2.4.4. A Heyting space has dimension ≤ 0 if and only if it is
Hausdorff. The Heyting spaces of dimension ≤ 0 are precisely the compact to-
tally disconnected Hausdorff spaces. In particular, they are also paracompact
spaces, and their Heyting dimension coincides with their covering dimension.

Proposition 7.2.4.5. (1) Let X be a Heyting space of dimension ≤ α.
Then for any compact open subset U ⊆ X, both U and X − U have
Heyting dimension ≤ α.

(2) Let X be a Heyting space which is a union of finitely many compact
open subsets Uα of dimension ≤ α. Then X has dimension ≤ α.

(3) Let X be a Heyting space which is a union of finitely many cocompact
closed subsets Kα of Heyting dimension ≤ α. Then X has Heyting
dimension ≤ α.

Proof. All three assertions are proven by induction on α. The first two are
easy, so we restrict our attention to (3). Let U be a compact open subset
of X having boundary B. Then U ∩ Kα is a compact open subset of Kα,
so that the boundary Bα of U ∩ Kα in Kα has dimension ≤ α. We see
immediately that Bα ⊆ B ∩Kα, so that

⋃
Bα ⊆ B. Conversely, if b /∈ ⋃

Bα,
then for every β such that b ∈ Kβ , there exists a neighborhood Vβ containing
b such that Vβ ∩ Kβ ∩ U = ∅. Let V be the intersection of the Vβ and let
W = V − ⋃

b/∈Kγ
Kγ . Then by construction, b ∈ W and W ∩ U = ∅, so that

b ∈ B. Consequently, B =
⋃
Bα. Each Bα is closed in Kα, thus in X and
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also in B. The hypothesis implies that Bα has dimension < α. Thus the
inductive hypothesis guarantees that B has dimension < α, as desired.

Remark 7.2.4.6. It is not necessarily true that a Heyting space which
is a union of finitely many locally closed subsets of dimension ≤ α is also
of dimension ≤ α. For example, a topological space with 2 points and a
nondiscrete nontrivial topology has Heyting dimension 1 but is a union of
two locally closed subsets of Heyting dimension 0.

Proposition 7.2.4.7. If X is a Noetherian topological space, then the Krull
dimension of X coincides with the Heyting dimension of X.

Proof. We first prove, by induction on α, that if the Krull dimension of a
Noetherian space X is ≤ α, then the Heyting dimension of X is ≤ α. Since
X is Noetherian, it is a union of finitely many closed irreducible subspaces,
each of which automatically has Krull dimension ≤ α. Using Proposition
7.2.4.5, we may reduce to the case where X is irreducible. Consider any
open subset U ⊆ X and let Y be its boundary. We must show that Y has
Heyting dimension ≤ α. Using Proposition 7.2.4.5 again, it suffices to prove
this for each irreducible component of Y . Now we simply apply the inductive
hypothesis and the definition of the Krull dimension.

For the reverse inequality, we again use induction on α. Assume that X
has Heyting dimension ≤ α. To show that X has Krull dimension ≤ α, we
must show that every irreducible closed subset of X has Krull dimension
≤ α. Without loss of generality, we may assume that X is irreducible. Now,
to show that X has Krull dimension ≤ α, it will suffice to show that any
proper closed subset K ⊆ X has Krull dimension < α. By the inductive
hypothesis, it will suffice to show that K has Heyting dimension < α. By
the definition of the Heyting dimension, it will suffice to show that K is the
boundary of X −K. In other words, we must show that X −K is dense in
X. This follows immediately from the irreducibility of X.

We now prepare the way for our vanishing theorem. First, we introduce a
modified notion of connectivity:

Definition 7.2.4.8. Let X be a Heyting space and k any integer. Let F ∈
Shv(V ) be a sheaf of spaces on a compact open subset V ⊆ X. We will say
that F is strongly k-connective if the following condition is satisfied: for every
compact open subset U ⊆ V and every map ζ : ∂∆m → F(U), there exists
a cocompact closed subset K ⊆ U such that K ⊆ X has Heyting dimension
< m − k, an open cover {Uα} of U − K, and a collection of commutative
diagrams

∂∆m
ζ ��

� �

��

F(U)

��
∆m

ηα ���� F(Uα).
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Remark 7.2.4.9. There is a slight risk of confusion with the terminology
of Definition 7.2.4.8. The condition that a sheaf F on V ⊆ X be strongly
k-connective depends not only on V and F but also on X: this is because the
Heyting dimension of a cocompact closed subset K ⊆ U can increase when
we take its closure K in X.

Remark 7.2.4.10. Strong k-connectivity is an unstable analogue of the
connectivity conditions on complexes of sheaves associated to the dual of
the standard perversity. For a discussion of perverse sheaves in the abelian
context, we refer the reader to [6].

Remark 7.2.4.11. It follows easily from the definition that a strongly k-
connective sheaf F on V ⊆ X is k-connective. Conversely, suppose that X
has Heyting dimension ≤ n and that F is k-connective; then F is strongly
(k − n)-connective (if ∂∆m → F(U) is any map, then we may take K = U
for m > n and K = ∅ for m ≤ n).

The strong k-connectivity of a sheaf F is by definition a local property.
The key to our vanishing result is that this is equivalent to an apparently
stronger global property.

Lemma 7.2.4.12. Let X be a Heyting space, let V be a compact open subset
of X, and F : U(V )op → Kan a strongly k-connective sheaf on V . Let A ⊆ B
be an inclusion of finite simplicial sets of dimension ≤ m, let U ⊆ V , and
let ζ : A → F(U) be a map of simplicial sets.

There exists a cocompact closed subset K ⊆ U whose closure K ⊆ X has
Heyting dimension < m − 1 − k, an open covering {Uα} of U − K, and a
collection of commutative diagrams

A� �

��

ζ �� F(U)

��
B

ηα �� F(Uα).

Proof. Induct on the number of simplices of B which do not belong to A,
and invoke Definition 7.2.4.8.

Lemma 7.2.4.13. Let X be a Heyting space, V a compact open subset of
X, let F : U(V )op → Kan be a sheaf on X, let η : ∂∆m → F(V ) be a map,
and form a pullback square

F′ ��

��

F∆m

��
∗ η ��

F∂∆m

.

If F is strongly k-connective, then F′ is strongly (k −m)-connective.
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Proof. Unwinding the definitions, we must show that for every compact U ⊂
V and every map

ζ : (∂∆m × ∆n)
∐

∂∆m×∂∆n

(∆m × ∂∆n) → F(U)

whose restriction ζ| ∂∆m×∆n is given by η, there exists a cocompact closed
subset K ⊆ U such that K ⊆ X has Heyting dimension < n + m − k, an
open covering {Uα} of U −K, and a collection of maps

ζα : ∆m × ∆n → F(Uα)

which extend ζ. This follows immediately from Lemma 7.2.4.12.

Theorem 7.2.4.14. Let X be a Heyting space of dimension ≤ n, let W ⊆ X
be a compact open set, and let F ∈ Shv(W ). The following conditions are
equivalent:

(1) For any compact open sets U ⊆ V ⊆ W and any commutative diagram

∂∆m
ζ ��

� �

��

F(V )

��
∆m

η �� F(U),

there exists a cocompact closed subset K ⊆ V − U such that K ⊆ X
has dimension < m− k and a commutative diagram

∂∆m
ζ ��

� �

��

F(V )

��
∆m

η′ �� F(V −K)

such that the composition ∆m η′→ F(V −K) → F(U) is homotopic to
η relative to ∂∆m.

(2) For any compact open sets V ⊆ W and any map ζ : ∂∆m → F(V ),
there exists a commutative diagram

∂∆m
ζ ��

� �

��

F(V )

��
∆m

η′ �� F(V −K),

where K ⊆ V is a cocompact closed subset and K ⊆ X has dimension
< m− k.

(3) The sheaf F is strongly k-connective.
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Proof. It is clear that (1) implies (2) (take U to be empty) and that (2)
implies (3) (by definition). We must show that (3) implies (1). So let F be a
strongly k-connective sheaf on W and

∂∆m
ζ ��

� �

��

F(V )

��
∆m

η �� F(U)

a commutative diagram as above. Without loss of generality, we may replace
W by V and F by F |V .

We may identify F with a functor from U(V )op into the category Kan of
Kan complexes. Form a pullback square

F′ ��

��

F∆m

��
∗ ζ ��

F∂∆m

in SetU(V )op

∆ . The right vertical map is a projective fibration, so that the dia-
gram is homotopy Cartesian (with respect to the projective model structure).
It follows that F′ is also a sheaf on V , which is strongly (k −m)-connective
by Lemma 7.2.4.13. Replacing F by F′, we may reduce to the case m = 0.

The proof now proceeds by induction on k. For our base case, we take
k = −n− 1, so that there is no connectivity assumption on the stack F. We
are then free to choose K = V − U (it is clear that K has dimension ≤ n).

Now suppose that the theorem is known for strongly (k − 1)-connective
stacks on any compact open subset of X; we must show that for any strongly
k-connective F on V and any η ∈ F(U), there exists a closed subset K ⊆ V −
U such that K ⊆ X has Heyting dimension < −k and a point η′ ∈ F(V −K)
whose restriction to U lies in the same component of F(U) as η.

Since F is strongly k-connective, we deduce that there exists an open
cover {Vα} of some open subset V −K0, where K0 has dimension < −k in
X, together with points ψα ∈ F(Vα). Adjoining the open set U and the point
η if necessary, we may suppose that K0 ∩ U = ∅. Replacing V by V −K0,
we may reduce to the case K0 = ∅.

Since V is compact, we may assume that there exist only finitely many
indices α. Proceeding by induction on the number of indices, we may reduce
to the case where V = U ∪ Vα for some α. Let η′ and ψ′ denote the images
of η and ψ in U ∩ Vα and form a pullback diagram

F′ ��

��

(F |(U ∩ Vα))∆
1

��
∗ (η′,ψ′) �� (F |(U ∩ Vα))∂∆1

.

Again, this diagram is a homotopy pullback, so that F′ is a sheaf on U ∩ Vα
which is strongly (k − 1)-connective by Lemma 7.2.4.13. According to the
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inductive hypothesis, there exists a closed subset K ⊂ U ∩Vα such that K ⊆
X has dimension < −k+ 1, such that the images of ψα and η belong to the
same component of F((U ∩Vα)−K). Since K has dimension < −k+1 in X,
the boundary ∂ K of K has codimension < −k in X. Let V ′ = Vα−(Vα∩K).
Since F is a sheaf, we have a homotopy pullback diagram

F(V ′ ∪ U) ��

��

F(U)

��
F(V ′) �� F(V ′ ∩ U).

We observe that there is a path joining the images of η and ψα in F(V ′∩U) =
F((U∩Vα)−K), so that there is a vertex η̃ ∈ F(V ′∪U) whose image in F(U)
lies in the same component as η. We now observe that V ′∪U = V −(V ∩∂ K)
and that V ∩ ∂ K is contained in ∂ K and therefore has Heyting dimension
≤ −k.
Corollary 7.2.4.15. Let π : X → Y be a continuous map between Heyting
spaces of finite dimension. Suppose that π has the property that for any
cocompact closed subset K ⊆ X of dimension ≤ n, π(K) is contained in a
cocompact closed subset of dimension ≤ n. Then the functor π∗ : Shv(X) →
Shv(Y ) carries strongly k-connective sheaves on X to strongly k-connective
sheaves on Y .

Proof. This is clear from the characterization (2) of Theorem 7.2.4.14.

Corollary 7.2.4.16. Let X be a Heyting space of finite Heyting dimension
and let F be a strongly k-connective sheaf on X. Then F(X) is k-connective.

Proof. Apply Corollary 7.2.4.15 in the case where Y is a point.

Corollary 7.2.4.17. Let X be a Heyting space of Heyting dimension ≤ n
and let F be an n-connective sheaf on X. Then for any compact open U ⊆
X, the map π0 F(X) → π0 F(U) is surjective. In particular, Shv(X) has
homotopy dimension ≤ n.

Proof. Suppose first that (1) is satisfied. Let F be an n-connective sheaf
on X. Then F is strongly 0-connective; by characterization (2) of Theorem
7.2.4.14, we deduce that F(X) → F(U) is surjective. The last claim follows
by taking U = ∅.
Remark 7.2.4.18. Let X be a Heyting space of Heyting dimension ≤ n.
Then any compact open subset of X also has Heyting dimension ≤ n. It
follows that Shv(X) is locally of homotopy dimension ≤ n and therefore
hypercomplete by Corollary 7.2.1.12.

Remark 7.2.4.19. It is not necessarily true that a Heyting space X such
that Shv(X) has homotopy dimension ≤ n is itself of Heyting dimension
≤ n. For example, if X is the Zariski spectrum of a discrete valuation ring
(that is, a 2-point space with a nontrivial topology), then X has homotopy
dimension zero (see Example 7.2.1.3).
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In particular, we obtain Grothendieck’s vanishing theorem (see [34] for the
original, quite different, proof):

Corollary 7.2.4.20. Let X be a Noetherian topological space of Krull di-
mension ≤ n. Then X has cohomological dimension ≤ n.

Proof. Combine Proposition 7.2.4.7 with Corollaries 7.2.4.17 and 7.2.2.30.

Example 7.2.4.21. Let V be a real algebraic variety (defined over the real
numbers, say). Then the lattice of open subsets of V that can be defined by
polynomial equations and inequalities is a Heyting algebra, and the spectrum
of this Heyting algebra is a Heyting space X having dimension at most equal
to the dimension of V . The results of this section therefore apply to X.

More generally, let T be an o-minimal theory (see for example [80]) and let
Sn denote the set of complete n-types of T . We endow Sn with the topology
generated by the sets Uφ = {p : φ ∈ p}, where φ ranges over formulas with
n free variables such that the openness of the set of points satisfying φ is
provable in T . Then Sn is a Heyting space of Heyting dimension ≤ n.

Remark 7.2.4.22. The methods of this section can be adapted to slightly
more general situations, such as the Nisnevich topology on a Noetherian
scheme of finite Krull dimension. It follows that the ∞-topoi associated
to such sites have (locally) finite homotopy dimension and are therefore
hypercomplete. We will discuss this matter in more detail in [50].

7.3 THE PROPER BASE CHANGE THEOREM

Let

X ′ q′ ��

p′

��

X

p

��
Y ′ q �� Y

be a pullback diagram in the category of locally compact Hausdorff spaces.
One has a natural isomorphism of pushforward functors

q∗p′∗ � p∗q′∗

from the category of sheaves of sets on Y to the category of sheaves of sets
on X ′. This isomorphism induces a natural transformation

η : q∗p∗ → p′∗q
′∗.

If p (and therefore also p′) is a proper map, then η is an isomorphism: this
is a simple version of the classical proper base change theorem.

The purpose of this section is to generalize the above result, allowing
sheaves which take values in the ∞-category S of spaces rather than in the
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ordinary category of sets. Our generalization can be viewed as a proper base
change theorem for nonabelian cohomology.

We will begin in §7.3.1 by defining the notion of a proper morphism of
∞-topoi. Roughly speaking, a geometric morphism π∗ : X → Y of ∞-topoi
is proper if and only if it satisfies the conclusion of the proper base change
theorem. Using this language, our job is to prove that a proper map of
topological spaces p : X → Y induces a proper morphism p∗ : Shv(X) →
Shv(Y ) of ∞-topoi. We will outline the proof of this result in §7.3.1 by
reducing to two special cases: the case where p is a closed embedding and
the case where Y is a point. We will treat the first case in §7.3.2, after
introducing a general theory of closed immersions of ∞-topoi. This allows
us to reduce to the case where Y is a point and X is a compact Hausdorff
space. Our approach is now in two parts:

(1) In §7.3.3, we will show that we can identify the ∞-category Shv(X ′) =
Shv(X × Y ′) with an ∞-category of sheaves on X taking values in
Shv(Y ′).

(2) In §7.3.4, we give an analysis of the category of sheaves on a compact
Hausdorff space X taking values in a general ∞-category C. Combining
this analysis with (1), we will deduce the desired base change theorem.

The techniques used in §7.3.4 to analyze Shv(X) can also be applied in
the (easier) setting of coherent topological spaces, as we explain in §7.3.5.
Finally, we conclude in §7.3.6 by reformulating the classical theory of cell-like
maps in the language of ∞-topoi.

7.3.1 Proper Maps of ∞-Topoi

In this section, we introduce the notion of a proper geometric morphism
between ∞-topoi. Here we follow the ideas of [58] and turn the conclusion
of the proper base change theorem into a definition. First, we require a bit
of terminology.

Suppose we are given a diagram of categories and functors

C′ q′∗ ��

p′∗
��

D′

p∗
��

C
q∗ �� D

which commutes up to a specified isomorphism η : p∗q′∗ → q∗p′∗. Suppose
furthermore that the functors q∗ and q′∗ admit left adjoints, which we will
denote by q∗ and q′∗. Consider the composition

γ : q∗p∗
u→ q∗p∗q′∗q

′∗ η→ q∗q∗p′∗q
′∗ v→ p′∗q

′∗,

where u denotes a unit for the adjunction (q′∗, q′∗) and v a counit for the
adjunction (q∗, q∗). We will refer to γ as the push-pull transformation asso-
ciated to the above diagram.
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Definition 7.3.1.1. A diagram of categories

C′ q′∗ ��

p′∗
��

D′

p∗
��

C
q∗ �� D

which commutes up to a specified isomorphism is left adjointable if the func-
tors q∗ and q′∗ admit left adjoints q∗ and q′∗ and the associated push-pull
transformation

γ : q∗p∗ → p′∗q
′∗

is an isomorphism of functors.

Definition 7.3.1.2. A diagram of ∞-categories

C′ q′∗ ��

p′∗
��

D′

p∗
��

C
q∗ �� D

which commutes up to (specified) homotopy is left adjointable if the associ-
ated diagram of homotopy categories is left adjointable.

Remark 7.3.1.3. Suppose we are given a diagram of simplicial sets

M′ P→ M
f→ ∆1,

where both f and f ◦ P are Cartesian fibrations. Then we may view M

as a correspondence from D = f−1{0} to C = f−1{1} associated to some
functor q∗ : C → D. Similarly, we may view M′ as a correspondence from
D′ = (f ◦ P )−1{0} to C′ = (f ◦ P )−1{1} associated to some functor q′∗ :
C′ → D′. The map P determines functors p′∗ : C′ → C, q′∗ : D′ → D and
(up to homotopy) a natural transformation α : p∗q′∗ → q∗p′∗, which is an
equivalence if and only if the map P carries (f ◦ P )-Cartesian edges of M′

to f -Cartesian edges of M. In this case, we obtain a diagram of homotopy
categories

hC′ q′∗ ��

p′∗
��

hD′

p∗
��

hC
q∗ �� hD

which commutes up to canonical isomorphism.
Now suppose that the functors q∗ and q′∗ admit left adjoints, which we

will denote by q∗ and q′∗, respectively. Then the maps f and f ◦ P are co-
Cartesian fibrations. Moreover, the associated push-pull transformation can
be described as follows. Choose an object D′ ∈ D′ and a (f ◦P )-coCartesian
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morphism φ : D′ → C ′, where C ′ ∈ C. Let D = P (D′) and choose an f -
coCartesian morphism ψ : D → C in M, where C ∈ C. Using the fact that
ψ is f -coCartesian, we can choose a 2-simplex in M depicted as follows:

C

θ

��*
**

**
**

*

D

ψ
���������� P (φ) �� P (C′).

We may then identify C with q∗p∗D′, P (C ′) with p′∗q
′∗D′, and θ with the

value of the push-pull transformation q∗p∗ → p′∗q
′∗D′ on the object D′ ∈ D′.

The morphism θ is an equivalence if and only if P (φ) is f -coCartesian.
Consequently, we deduce that the original diagram

hC′ q′∗ ��

p′∗
��

hD′

p∗
��

hC
q∗ �� hD

is left adjointable if and only if P carries (f ◦ P )-coCartesian edges to f -
coCartesian edges. We will make use of this criterion in §7.3.4.

Definition 7.3.1.4. Let p∗ : X → Y be a geometric morphism of ∞-topoi.
We will say that p∗ is proper if the following condition is satisfied:

(∗) For every Cartesian rectangle

X′′

��

�� X′

��

�� X

p∗

��
Y′′ �� Y′ �� Y

of ∞-topoi, the left square is left adjointable.

Remark 7.3.1.5. Let X be an ∞-topos and let J be a small ∞-category.
The diagonal functor δ : X → Fun(J,X) preserves all (small) limits and
colimits, by Proposition 5.1.2.2, and therefore admits both a left adjoint
δ! and a right adjoint δ∗. If J is filtered, then δ! is left exact (Proposition
5.3.3.3). Consequently, we have a diagram of geometric morphisms

X
δ→ Fun(J,X) δ∗→ X .

Now suppose that p∗ : X → Y is a proper geometric morphism of ∞-topoi.
We obtain a rectangle

X ��

p∗

��

Fun(J,X)

pJ
∗

��

�� X

��
Y �� Fun(J,Y) �� Y
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which commutes up to (specified) homotopy. One can show that this is a
Cartesian rectangle in RTop, so that the square on the left is left adjointable.
Unwinding the definitions, we conclude that p∗ commutes with filtered co-
limits. Conversely, if p∗ : X → Y is an arbitrary geometric morphism of
∞-topoi which commutes with colimits indexed by filtered Y-stacks (over
each object of Y), then p∗ is proper. To give a proof (or even a precise for-
mulation) of this statement would require ideas from relative category theory
which we will not develop in this book. We refer the reader to [58], where
the analogous result is established for proper maps between ordinary topoi.

The following properties of the class of proper morphisms follow immedi-
ately from Definition 7.3.1.4:

Proposition 7.3.1.6. (1) Every equivalence of ∞-topoi is proper.

(2) If p∗ and p′∗ are equivalent geometric morphisms from an ∞-topos X

to another ∞-topos Y, then p∗ is proper if and only if p′∗ is proper.

(3) Let

X′

p′∗
��

�� X

p∗

��
Y′ �� Y

be a pullback diagram of ∞-topoi. If p∗ is proper, then so is p′∗.

(4) Let

X
p∗→ Y

q∗→ Z

be proper geometric morphisms between ∞-topoi. Then q∗ ◦ p∗ is a
proper geometric morphism.

In order to relate Definition 7.3.1.4 to the classical statement of the proper
base change theorem, we need to understand the relationship between prod-
ucts in the category of topological spaces and products in the ∞-category
of ∞-topoi. A basic result asserts that these are compatible provided that a
certain local compactness condition is met.

Definition 7.3.1.7. Let X be a topological space which is not assumed to
be Hausdorff. We say that X is locally compact if, for every open set U ⊆ X
and every point x ∈ U , there exists a (not necessarily closed) compact set
K ⊆ U , where K contains an open neighborhood of x.

Example 7.3.1.8. If X is Hausdorff space, then X is locally compact in the
sense defined above if and only if X is locally compact in the usual sense.

Example 7.3.1.9. Let X be a topological space for which the compact open
subsets of X form a basis for the topology of X. Then X is locally compact.
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Remark 7.3.1.10. Local compactness ofX is precisely the condition needed
for function spaces Y X , endowed with the compact-open topology, to repre-
sent the functor Z �→ Hom(Z ×X,Y ).

Proposition 7.3.1.11. Let X and Y be topological spaces and assume that
X is locally compact. The diagram

Shv(X × Y ) ��

��

Shv(X)

��
Shv(Y ) �� Shv(∗)

is a pullback square in the ∞-category RTop of ∞-topoi.

Proof. Let C ⊆ RTop be the full subcategory spanned by the 0-localic ∞-
topoi. Since C is a localization of RTop, the inclusion C ⊆ RTop preserves
limits. It therefore suffices to prove that

Shv(X × Y ) ��

��

Shv(X)

��
Shv(Y ) �� Shv(∗)

gives a pullback diagram in C. Note that Cop is equivalent to the (nerve of
the) ordinary category of locales. For each topological space M , let U(M)
denote the locale of open subsets of M . Let

U(X)
ψX→ P

ψY← U(Y )

be a diagram which exhibits P as a coproduct of U(X) and U(Y ) in the
category of locales and let φ : P → U(X × Y ) be the induced map. We wish
to prove that φ is an isomorphism. This is a standard result in the theory of
locales; we will include a proof for completeness.

Given open subsets U ⊆ X and V ⊆ Y , let U ⊗V = (ψXU)∩ (ψY V ) ∈ P,
so that φ(U ⊗V ) = U ×V ∈ U(X ×Y ). We define a map θ : U(X ×Y ) → P

by the formula

θ(W ) =
⋃

U×V⊆W
U ⊗ V.

Since every open subset of X × Y can be written as a union of products
U × V , where U is an open subset of X and V is an open subset of Y , it is
clear that φ ◦ θ : U(X × Y ) → U(X × Y ) is the identity. To complete the
proof, it will suffice to show that θ ◦φ : P → P is the identity. Every element
of P can be written as

⋃
α Uα ⊗ Vα for Uα ⊆ X and Vα ⊆ Y appropriately

chosen. We therefore wish to show that⋃
U×V⊆S

α Uα⊗Vα

U × V =
⋃
α

Uα ⊗ Vα.
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It is clear that the right hand side is contained in the left hand side. The
reverse containment is equivalent to the assertion that if U×V ⊆ ⋃

α Uα×Vα,
then U ⊗ V ⊆ ⋃

α Uα ⊗ Vα.
We now invoke the local compactness of X. Write U =

⋃
Kβ, where

each Kβ is a compact subset of U and the interiors {K◦
β} cover U . Then

U⊗V =
⋃
βK

◦
β⊗V ; it therefore suffices to prove that K◦

β⊗V ⊆ ⋃
α Uα⊗Vα.

Let v be a point of V . Then Kβ × {v} is a compact subset of
⋃
α Uα × Vα.

Consequently, there exists a finite set of indices {α1, . . . , αn} such that v ∈
Vv,β = Vα1 ∩· · ·∩Vαn

and Kβ ⊆ Uα1 ∪· · ·∪Uαn
. It follows that K◦

β ⊗Vv,β ⊆⋃
α Uα⊗Vα. Taking a union over all v ∈ V , we deduce the desired result.

Let us now return to the subject of the proper base change theorem.
We have essentially defined a proper morphism of ∞-topoi to be one for
which the proper base change theorem holds. The challenge, then, is to
produce examples of proper geometric morphisms. The following results will
be proven in §7.3.2 and §7.3.4, respectively:

(1) If p : X → Y is a closed embedding of topological spaces, then p∗ :
Shv(X) → Shv(Y ) is proper.

(2) If X is a compact Hausdorff space, then the global sections functor
Γ : Shv(X) → Shv(∗) is proper.

Granting these statements for the moment, we can deduce the main result
of this section. First, we must recall a bit of point-set topology:

Definition 7.3.1.12. A topological space X is said to be completely regular
if every point of X is closed in X and if for every closed subset Y ⊆ X and
every point x ∈ X − Y there is a continuous function f : X → [0, 1] such
that f(x) = 0 and f |Y takes the constant value 1.

Remark 7.3.1.13. A topological space X is completely regular if and only
if it is homeomorphic to a subspace of a compact Hausdorff space X (see
[59]).

Definition 7.3.1.14. A map p : X → Y of (arbitrary) topological spaces is
said to be proper if it is universally closed. In other words, p is proper if and
only if for every pullback diagram of topological spaces

X ′

p′

��

�� X

p

��
Y ′ �� Y

the map p′ is closed.

Remark 7.3.1.15. A map p : X → Y of topological spaces is proper if
and only if it is closed and each of the fibers of p is compact (though not
necessarily Hausdorff).
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Theorem 7.3.1.16. Let p : X → Y be a proper map of topological spaces,
where X is completely regular. Then p∗ : Shv(X) → Shv(Y ) is proper.

Proof. Let q : X → X be an identification ofX with a subspace of a compact
Hausdorff space X. The map p admits a factorization

X
q×p→ X × Y

πY→ Y.

Using Proposition 7.3.1.6, we can reduce to proving that (q× p)∗ and (πY )∗
are proper.

Because q identifies X with a subspace of X, q × p identifies X with a
subspace over X × Y . Moreover, q × p factors as a composition

X → X ×X → X × Y,

where the first map is a closed immersion (since X is Hausdorff) and the
second map is closed (since p is proper). It follows that q × p is a closed
immersion, so that (q × p)∗ is a proper geometric morphism by Proposition
7.3.2.12.

Proposition 7.3.1.11 implies that the geometric morphism (πY )∗ is a pull-
back of the global sections functor Γ : Shv(X) → Shv(∗) in the ∞-category
RTop. Using Proposition 7.3.1.6, we may reduce to proving that Γ is proper,
which follows from Corollary 7.3.4.11.

Remark 7.3.1.17. The converse to Theorem 7.3.1.16 holds as well (and
does not require the assumption that X is completely regular): if p∗ :
Shv(X) → Shv(Y ) is a proper geometric morphism, then p is a proper map
of topological spaces. This can be proven easily using the characterization
of properness described in Remark 7.3.1.5.

Corollary 7.3.1.18 (Nonabelian Proper Base Change Theorem). Let

X ′ q′ ��

p′

��

X

p

��
Y ′ q �� Y

be a pullback diagram of locally compact Hausdorff spaces and suppose that
p is proper. Then the associated diagram

Shv(X ′)
q′∗ ��

p′∗
��

Shv(X)

p∗
��

Shv(Y ′)
q∗ �� Shv(Y )

is left adjointable.

Proof. In view of Theorem 7.3.1.16, it suffices to show that

Shv(X ′)
q′∗ ��

p′∗
��

Shv(X)

p∗
��

Shv(Y ′)
q∗ �� Shv(Y )
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is a pullback diagram of ∞-topoi. Let X denote a compactification of X (for
example, the one-point compactification) and consider the larger diagram of
∞-topoi

Shv(X ′) ��

��

Shv(X)

��
Shv(X × Y ′) ��

��

Shv(X × Y ) ��

��

Shv(X)

��
Shv(Y ′) �� Shv(Y ) �� Shv(∗).

The upper square is a (homotopy) pullback by Proposition 7.3.2.12 and
Corollary 7.3.2.10. Both the lower right square and the lower rectangle are
(homotopy) Cartesian by Proposition 7.3.1.11, so that the lower left square
is (homotopy) Cartesian as well. It follows that the vertical rectangle is also
(homotopy) Cartesian, as desired.

Remark 7.3.1.19. The classical proper base change theorem, for sheaves of
abelian groups on locally compact topological spaces, is a formal consequence
of Corollary 7.3.1.18. We give a brief sketch. The usual formulation of the
proper base change theorem (see, for example, [46]) is equivalent to the
statement that if

X ′ q′ ��

p′

��

X

p

��
Y ′ q �� Y

is a pullback diagram of locally compact topological spaces and p is proper,
then the associated diagram

D−(X ′)
q′∗ ��

p′∗
��

D−(X)

p∗
��

D−(Y ′)
q∗ �� D−(Y )

is left adjointable. Here D−(Z) denotes the (bounded below) derived cate-
gory of abelian sheaves on a topological space Z.

Let A denote the category whose objects are chain complexes

· · · → A−1 → A0 → A1 → · · ·
of abelian groups. Then A admits the structure of a combinatorial model
category in which the weak equivalences are given by quasi-isomorphisms.
Let C = N(A◦) be the underlying ∞-category. For any topological space
Z, one can define an ∞-category Shv(Z; C) of sheaves on Z with values in
C; see §7.3.3. The homotopy category hShv(Z ;C) is an unbounded version
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of the derived category D−(Z); in particular, it contains D−(Z) as a full
subcategory. Consequently, we obtain a natural generalization of the proper
base change theorem where boundedness hypotheses have been removed,
which asserts that the diagram

Shv(X ′;C)
q′∗ ��

p′∗
��

Shv(X; C)

p∗
��

Shv(Y ′; C)
q∗ �� Shv(Y ; C)

is left adjointable. Using the fact that C has enough compact objects, one
can deduce this statement formally from Corollary 7.3.1.18.

7.3.2 Closed Subtopoi

If X is a topological space and U ⊆ X is an open subset, then we may view
the closed complement X − U ⊆ X as a topological space in its own right.
Moreover, the inclusion (X −U) ↪→ X is a proper map of topological spaces
(that is, a closed map whose fibers are compact). The purpose of this section
is to present an analogous construction in the case where X is an ∞-topos.

Lemma 7.3.2.1. Let X be an ∞-topos and ∅ an initial object of X. Then ∅
is (−1)-truncated.

Proof. Let X be an object of X. The space MapX(X, ∅) is contractible if X
is an initial object of X and empty otherwise (by Lemma 6.1.3.6). In either
case, MapX(X, ∅) is (−1)-truncated.

Lemma 7.3.2.2. Let X be an ∞-topos and let f : ∅ → X be a morphism in
X, where ∅ is an initial object. Then f is a monomorphism.

Proof. Apply Lemma 7.3.2.1 to the ∞-topos X/X .

Proposition 7.3.2.3. Let X be an ∞-topos and let U be an object of X. Let
SU be the smallest strongly saturated class of morphisms of X which is stable
under pullbacks and contains a morphism f : ∅ → U , where ∅ is an initial
object of X. Then SU is topological (in the sense of Definition 6.2.1.5).

Proof. For each morphism g : X → U in C, form a pullback square

∅′ fY ��

��

Y

g

��
∅ f �� U.

Let S = {fX}g:X→U and let S be the strongly saturated class of morphisms
generated by S. We note that each fX is a pullback of f and therefore a
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monomorphism (by Lemma 7.3.2.2). Let S′ be the collection of all morphisms
h : V → W with the property that for every pullback diagram

V ′ ��

h′

��

V

h

��
W ′ �� W

in X, the morphism h belongs to S. Since colimits in X are universal, we
deduce that S′ is strongly saturated, and S ⊆ S′ ⊆ S by construction.
Therefore S′ = S, so that S is stable under pullbacks. Since f ∈ S, we deduce
that SU ⊆ S. On the other hand, S ⊆ SU and SU is strongly saturated, so
S ⊆ SU . Therefore SU = S. Since S consists of monomorphisms, we conclude
that SU is topological.

In the situation of Proposition 7.3.2.3, we will say that a morphism of X

is an equivalence away from U if it belongs to SU .

Lemma 7.3.2.4. Let X be an ∞-topos containing a pair of objects U,X ∈ X

and let SU denote the class of morphism in X which are equivalences away
from U . The following are equivalent:

(1) The object X is SU -local.

(2) For every map Ũ → U in X, the space MapX(Ũ ,X) is contractible.

(3) There exists a morphism g : U → X such that the diagram

U

idU����
��
��
�

g

���
��

��
��

U X

exhibits U as a product of U and X in X.

Proof. Let S be the collection of all morphisms feU which come from pullback
diagrams

∅′
f eU ��

��

Ũ

��
∅ �� U,

where ∅ and therefore ∅′ also are initial objects of X. We saw in the proof
of Proposition 7.3.2.3 that S generates SU as a strongly saturated class
of morphisms. Therefore X is SU -local if and only if each feU induces an
isomorphism

MapX(Ũ ,X) → MapX(∅′, X) � ∗
in the homotopy category H. This proves that (1) ⇔ (2).
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Now suppose that (2) is satisfied. Taking Ũ = U , we deduce that there
exists a morphism g : U → X. We will prove that g and idX exhibit U
as a product of U and X. As explained in §4.4.1, this is equivalent to the
assertion that for every Z ∈ X, the map

MapX(Z,U) → MapX(Z,U) × MapX(Z,X)

is an isomorphism in H. If there are no morphisms from Z to U in X, then
both sides are empty and the result is obvious. Otherwise, we may invoke (2)
to deduce that MapX(Z,X) is contractible, and the desired result follows.
This completes the proof that (2) ⇒ (3).

Suppose now that (3) is satisfied for some morphism g : U → X. For any
object Z ∈ X, we have a homotopy equivalence

MapX(Z,U) → MapX(Z,U) × MapX(Z,X).

If MapX(Z,U) is nonempty, then we may pass to the fiber over a point of
MapX(Z,U) to obtain a homotopy equivalence ∗ → MapX(Z,X), so that
MapX(Z,X) is contractible. This proves (2).

If X is an ∞-topos and U ∈ X, then we will say that an object X ∈ X is
trivial on U if it satisfies the equivalent conditions of Lemma 7.3.2.4. We let
X /U denote the full subcategory of X spanned by the objects X which are
trivial on U . It follows from Proposition 7.3.2.3 that X /U is a topological
localization of X and, in particular, that X /U is an ∞-topos. We next show
that X /U depends only on the support of U .

Lemma 7.3.2.5. Let X be an ∞-topos and let g : U → V be a morphism
in X. Then X /V ⊆ X /U . Moreover, if g is an effective epimorphism, then
X /U = X /V .

Proof. The first assertion follows immediately from Lemma 7.3.2.4. To prove
the second, it will suffice to prove that if g is strongly saturated, then SV ⊆
SU . Since SU is strongly saturated and stable under pullbacks, it will suffice
to prove that SU contains a morphism f : ∅ → V , where ∅ is an initial object
of X.

Form a pullback diagram σ : ∆1 × ∆1 → X:

∅′ f ′
��

��

U

g

��
∅ f �� V.

We may view σ as an effective epimorphism from f ′ to f in the ∞-topos X∆1
.

Let f• = Č(σ) : ∆+ → X∆1

be a Čech nerve of σ : f ′ → f . We note that for
n ≥ 0, the map fn is a pullback of f ′ and therefore belongs to SU . Since f•
is a colimit diagram, we deduce that f belongs to SU , as desired.

If X is an ∞-topos, we let Sub(1X) denote the partially ordered set of
equivalence classes of (−1)-truncated objects of X. We note that this set is
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independent of the choice of a final object 1X ∈ X up to canonical isomor-
phism. Any U ∈ Sub(1X) can be represented by a (−1)-truncated object
Ũ ∈ X. We define X /U = X /Ũ ⊆ X. It follows from Lemma 7.3.2.5 that
X /U is independent of the choice of Ũ representing U and that for any ob-
ject X ∈ X, we have X /X = X /U , where U ∈ Sub(1X) is the “support” of
X (namely, the equivalence class of the truncation τ−1X).

Definition 7.3.2.6. If X is an ∞-topos and U ∈ Sub(1X), then we will refer
to X /U as the closed subtopos of X complementary to U . More generally, we
will say that a geometric morphism π : Y → X is a closed immersion if there
exists U ∈ Sub(1X) such that π∗ induces an equivalence of ∞-categories
from Y to X /U .

Proposition 7.3.2.7. Let X be an ∞-topos and let U ∈ Sub(1X). Then the
closed immersion

π : X /U → X

induces an isomorphism of partially ordered sets from Sub(1X /U ) to {V ∈
Sub(1X) : U ⊆ V }).
Proof. Choose a (−1)-truncated object Ũ ∈ X representing U . Since π∗ is
left exact, an object X of X /U is (−1)-truncated as an object of X /U if
and only if it is (−1)-truncated as an object of X. It therefore suffices to
prove that if Ṽ is a (−1)-truncated object of X representing an element
V ∈ Sub(1X), then Ṽ is SU -local if and only if U ⊆ V . One direction is
clear: if Ṽ is SU -local, then we have an isomorphism

MapX(Ũ , Ṽ ) → MapX(∅, Ṽ ) = ∗
in the homotopy category H, so that U ⊆ V . The converse follows from
characterization (3) given in Lemma 7.3.2.4.

Corollary 7.3.2.8. Let X be an ∞-topos and let U, V ∈ Sub(1X). Then
SU ⊆ SV if and only if U ⊆ V .

Proof. The “if” direction follows from Lemma 7.3.2.5, and the converse from
Proposition 7.3.2.7.

Corollary 7.3.2.9. Let X be a 0-localic ∞-topos associated to the locale U

and let U ∈ U. Then X /U is a 0-localic ∞-topos associated to the locale
{V ∈ U : U ⊆ V }.
Proof. The ∞-topos X /U is a topological localization of a 0-localic ∞-topos
and is therefore also 0-localic (Proposition 6.4.5.9). The identification of the
underlying locale follows from Proposition 7.3.2.7.

Corollary 7.3.2.10. Let X be a topological space, U ⊆ X an open subset,
and Y = X − U . The inclusion of Y in X induces a closed immersion of
∞-topoi Shv(Y ) → Shv(X) and an equivalence Shv(Y ) → Shv(X)/U .
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Lemma 7.3.2.11. Let X and Y be ∞-topoi and let U ∈ Y be an object. The
map

Fun∗(X,Y /U) → Fun∗(X,Y)

identifies Fun∗(X,Y /U) with the full subcategory of Fun∗(X,Y) spanned by
those geometric morphisms π∗ : X → Y such that π∗U is an initial object of
X (here π∗ denotes a left adjoint to π∗).

Proof. Let π∗ : X → Y be a geometric morphism. Using the adjointness of
π∗ and π∗, it is easy to see that π∗X is SU -local if and only if X is π∗(SU )-
local. In particular, π∗ factors through Y /U if and only if π∗(SU ) consists
of equivalences in X. Choosing f ∈ SU of the form f : ∅ → U , where ∅ is an
initial object of X, we deduce that π∗f is an equivalence so that π∗U � π∗∅
is an initial object of X. Conversely, suppose that π∗U is an initial object of
X. Then π∗f is a morphism between two initial objects of X and therefore
an equivalence. Since π∗ is left exact and colimit-preserving, the collection
of all morphisms g such that π∗g is an equivalence is strongly saturated, is
stable under pullbacks, and contains f ; it therefore contains SU , so that π∗
factors through Y /U , as desired.

Proposition 7.3.2.12. Let π∗ : X → Y be a geometric morphism of ∞-topoi
and let π∗ : Sub(1X) → Sub(1Y) denote the induced map of partially ordered
sets. Let U ∈ Sub(1X). There is a commutative diagram

X /π∗U
π∗|(X /π∗U) ��

��

Y /U

��
X

π∗ �� Y

of ∞-topoi and geometric morphisms, where the vertical maps are given by
the natural inclusions. This diagram is left adjointable and exhibits X /(π∗U)
as a fiber product of X and Y /U over Y in the ∞-category RTop.

Proof. Let π∗ denote a left adjoint to π∗. Our first step is to show that the
upper horizontal map π∗|(X /π∗U) is well-defined. In other words, we must
show that if X ∈ X is trivial on π∗U , then π∗X ∈ Y is trivial on U . Suppose
that Y ∈ Y has support contained in U ; we must show that MapY(Y, π∗X)
is contractible. But this space is homotopy equivalent to MapX(π∗Y,X) � ∗
since π∗Y has support contained in π∗U and X is trivial on π∗U .

We also note that π∗ carries Y /U into X /π∗U . This follows immediately
from characterization (3) of Lemma 7.3.2.4 because π∗ is left exact. Therefore
π∗|Y /U is a left adjoint of π∗|X /π∗U . From the fact that π∗ is left exact,
we easily deduce that π∗|Y /U is left exact. It follows that π∗|X /π∗U has
a left exact left adjoint and is therefore a geometric morphism of ∞-topoi.
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Moreover, the diagram

X /π∗U

��

Y /U

��

π∗|Y /Y��

X Y
π∗

��

is (strictly) commutative, which proves that the diagram of pushforward
functors is left adjointable.

We now claim that the diagram

X /π∗U
π∗|X /π∗U ��

��

Y /U

��
X �� Y

is a pullback diagram of ∞-topoi. For every pair of ∞-topoi A and B, let
[A,B] denote the largest Kan complex contained in Fun∗(A,B). According to
Theorem 4.2.4.1, it will suffice to show that for any ∞-topos Z, the associated
diagram of Kan complexes

[Z,X /π∗U ] ��

��

[Z,Y /U ]

��
[Z,X] �� [Z,Y]

is homotopy Cartesian. Lemma 7.3.2.11 implies that the vertical maps are
inclusions of full simplicial subsets. It therefore suffices to show that if
φ∗ : Z → Y is a geometric morphism such that π∗ ◦ φ∗ factors through
Y /U , then φ∗ factors through X /π∗U . This follows immediately from the
characterization given in Lemma 7.3.2.11.

Corollary 7.3.2.13. Let

X′

p′∗
��

�� X

p∗

��
Y′ �� Y

be a pullback diagram in the ∞-category RTop of ∞-topoi. If p∗ is a closed
immersion, then p′∗ is a closed immersion.

7.3.3 Products of ∞-Topoi

In §6.3.4, we showed that the ∞-category RTop of ∞-topoi admits all (small)
limits. Unfortunately, the construction of general limits was rather inexplicit.
Our goal in this section is to give a very concrete description of the product
of two ∞-topoi, at least in a special case.
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Definition 7.3.3.1. Let X be a topological space and let C be an ∞-
category. We let U(X) denote the collection of all open subsets of X par-
tially ordered by inclusion. A presheaf on X with values in C is a functor
U(X)op → C.

Let F : U(X)op → C be a presheaf on X with values in C. We will say that
F is a sheaf with values in C if, for every U ⊆ X and every covering sieve
U(X)(0)/U ⊆ U(X)/U , the composition

N(U(X)(0)/U )
 ⊆ N(U(X)/U )
 → N(U(X)) F→ Cop

is a colimit diagram.
We let P(X;C) denote the ∞-category Fun(U(X)op,C) consisting of all

presheaves on X with values in C, and Shv(X; C) the full subcategory of
P(X; C) spanned by the sheaves on X with values in C.

Remark 7.3.3.2. We can phrase the sheaf condition informally as follows:
a C-valued presheaf F on a topological space X is a sheaf if, for every open
subset U ⊆ X and every covering sieve {Uα ⊆ U}, the natural map F(U) →
lim←−α

F(Uα) is an equivalence in C.

Remark 7.3.3.3. If X is a topological space, then Shv(X) = Shv(X, S),
where S denotes the ∞-category of spaces.

Lemma 7.3.3.4. Let C, D, and E be ∞-categories which admit finite limits
and let C0 ⊆ C and D0 ⊆ D be the full subcategories of C and D consisting
of final objects. Let F : C×D → E be a functor. The following conditions
are equivalent:

(1) The functor F preserves finite limits.

(2) The functors F |C0 ×D and F |C×D0 preserve finite limits, and for
every pair of morphisms C → 1C, D → 1D where 1C ∈ C and 1D ∈ D

are final objects, the associated diagram

F (1C, D) ← F (C,D) → F (C, 1D)

exhibits F (C,D) as a product of F (1C, D) and F (C, 1D) in E.

(3) The functors F |C0 ×D and F |C×D0 preserve finite limits, and F is
a right Kan extension of the restriction

F 0 = F |(C×D0)
∐

C0 ×D0

(C0 ×D).

Proof. The implication (1) ⇒ (2) is obvious. To see that (2) ⇒ (1), we choose
final objects 1C ∈ C, 1D ∈ D and natural transformations α : idC → 1C,
β : idD → 1D (where X denotes the constant functor with value X). Let
FC : C → E denote the composition

C � C×{1D} ⊆ C×D
F→ E
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and define FD similarly. Then α and β induce natural transformations

FC ◦ πC ← F → FD ◦ πD.

Assumption (2) implies that the functors FC, FD preserve finite limits and
that the above diagram exhibits F as a product of FC ◦ πC and FD ◦ πD

in the ∞-category EC×D. We now apply Lemma 5.5.2.3 to deduce that F
preserves finite limits as well.

We now show that (2) ⇔ (3). Assume that F |C0 ×D and F |C×D0 pre-
serve finite limits, so that in particular F |C0 ×D0 takes values in the full
subcategory E0 ⊆ E spanned by the final objects. Fix morphisms u : C → 1C,
v : D → 1D, where 1C ∈ C and 1D ∈ D are final obejcts. We will show that
the diagram

F (1C, D) ← F (C,D) → F (C, 1D)

exhibits F (C,D) as a product of F (1C, D) and F (C, 1D) if and only if F is
a right Kan extension of F 0 at (C,D).

The morphisms u and v determine a map u×v : ∆1 ×∆1 → C×D, which
we may identify with a map

w : Λ2
2 → ((C0 ×D)

∐
C0 ×D0

(C×D0))(C,D)/.

Using Theorem 4.1.3.1, it is easy to see that wop is cofinal. Consequently, F
is a right Kan extension of F 0 at (C,D) if and only if the diagram

F (C,D) ��

��

F (C, 1D)

��
F (1C, D) �� F (1C, 1D)

is a pullback square. Since F (1C, 1D) is a final object of E, this is equivalent
to assertion (2).

Lemma 7.3.3.5. Let C and D be small ∞-categories which admit finite
limits, let 1C ∈ C, 1D ∈ D be final objects, and let X be an ∞-topos. The
projections

P(C×{1D}) p∗← P(C×D)
q∗→ P({1C} × D)

induce a categorical equivalence

Fun∗(X,P(C×D)) → Fun∗(X,P(C)) × Fun∗(X,P(D)).

In particular, P(C×D) is a product of P(C) and P(D) in the ∞-category
RTop of ∞-topoi.

Proof. For every ∞-category Y which admits finite limits, let [Y,X] denote
the full subcategory of Fun(Y,X) spanned by the left exact functors Y → X.
If Y is an ∞-topos, we let [Y,X]0 denote the full subcategory of [Y,X] spanned
by the colimit-preserving left exact functors Y → X. In view of Proposition
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5.2.6.2 and Remark 5.2.6.4, it will suffice to prove that composition with the
left adjoints to p∗ and q∗ induces an equivalence of ∞-categories

[P(C×D),X]0 → [P(C),X]0 × [P(D),X]0.

Applying Proposition 6.2.3.20, we may reduce to the problem of showing
that the map

[C×D,X] → [C,X] × [D,X]

is an equivalence of ∞-categories.
Let C0 ⊆ C and D0 ⊆ D denote the full subcategories consisting of final

objects of C and D, respectively. Proposition 1.2.12.9 implies that C0 and D0

are contractible. It will therefore suffice to prove that the restriction map

φ : [C×D,X] → [C×D0,X] ×[C0 ×D0,X] [C0 ×D,X]

is a trivial fibration of simplicial sets. This follows immediately from Lemma
7.3.3.4 and Proposition 4.3.2.15.

Notation 7.3.3.6. Let X be an ∞-topos and let p∗ : S → X be a ge-
ometric morphism (essentially unique in view of Proposition 6.3.4.1). Let
πX : X× S → X and πS : X× S → S denote the projection functors. Let ⊗
be a product of πX and p∗ ◦ πS in the ∞-category of functors from X× S

to X. Then ⊗ is uniquely defined up to equivalence, and we have natural
transformations

X ← X ⊗ S → p∗S

which exhibit X ⊗ S as product of X and p∗S for all X ∈ X, S ∈ S. We
observe that ⊗ preserves colimits separately in each variable.

If C is a small ∞-category, we let ⊗C denote the composition

P(C;X) × P(C) � P(C;X× S) ◦⊗→ P(C,X).

We observe that if F ∈ P(C;X) and G ∈ P(C), then F ⊗CG can be identified
with a product of F and p∗ ◦G in P(C;X).

Lemma 7.3.3.7. Let C be a small ∞-category and X an ∞-topos. Let g :
X → S a functor corepresented by an object X ∈ X and let G : P(C;X) →
P(C) be the induced functor. Let X ∈ P(C;X) denote the constant functor
with the value X. Then the functor

F = X ⊗C idP(C)

is a left adjoint to G.

Proof. Since adjoints and ⊗C can both be computed pointwise on C, it suf-
fices to treat the case where C = ∆0. In this case, we deduce the existence of
a left adjoint F ′ to G using Corollary 5.5.2.9 (the accessibility of G follows
from the fact that X is κ-compact for sufficiently large κ since X is accessi-
ble). Now F and F ′ are both colimit-preserving functors S → X. By virtue
of Theorem 5.1.5.6, to prove that F and F ′ are equivalent, it will suffice to
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show that the objects F (∗), F ′(∗) ∈ X are equivalent. In other words, we
must prove that F ′(∗) � X. By adjointness, we have natural isomorphisms

MapX(F ′(∗), Y ) � MapH(∗, G(Y )) � MapX(X,Y )

in H for each Y ∈ X, so that F ′(∗) andX corepresent the same functor on the
homotopy category hX and are therefore equivalent by Yoneda’s lemma.

Lemma 7.3.3.8. Let C be a small ∞-category which admits finite limits
and contains a final object 1C, let X and Y be ∞-topoi, and let p∗ : X → S be
a geometric morphism (essentially unique by virtue of Proposition 6.3.4.1).
Then the maps

P(C) P∗← P(C;X)
e1C→ X

induce equivalences of ∞-categories

Fun∗(Y,P(C;X)) → Fun∗(Y,X) × Fun∗(Y,P(C)).

In particular, P(C;X) is a product of P(C) and X in the ∞-category RTop
of ∞-topoi. Here e1C

denotes the evaluation map at the object 1C ∈ C, and
P∗ : P(C;X) → P(C) is given by composition with p∗.

Proof. According to Proposition 6.1.5.3, we may assume without loss of gen-
erality that there exists a small ∞-category D such that X is the essential
image of an accessible left exact localization functor L : P(D) → P(D) and
that p∗ is given by evaluation at a final object 1D ∈ D. We have a commu-
tative diagram

Fun∗(Y,P(C;X)) ��

��

Fun∗(Y,P(C)) × Fun∗(Y,X)

��
Fun∗(Y,P(C×D)) �� Fun∗(Y,P(C)) × Fun∗(Y,P(D)),

where the vertical arrows are inclusions of full subcategories and the bottom
arrow is an equivalence of ∞-categories by Lemma 7.3.3.5. Consequently, it
will suffice to show that if q∗ : Y → P(C×D) is a geometric morphism with
the property that the composition

r∗ : Y → P(C×D) → P(D)

factors through X, then q∗ factors through P(C;X).
Let Y ∈ Y and C ∈ C; we wish to show that q∗(Y )(C) ∈ X. It will suffice

to show that if s : D → D′ is a morphism in P(D) such that L(s) is an
equivalence in X, then q∗(Y )(C) is s-local. Let F : P(D) → P(C×D) be a
left adjoint to the functor given by evaluation at C. We have a commutative
diagram

MapP(D)(D′, q∗(Y )(C)) ��

��

MapY(q∗F (D′), Y )

��
MapP(D)(D, q∗(Y )(C)) �� MapY(q∗F (D), Y ),
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where the horizontal arrows are homotopy equivalences. Consequently, to
prove that the left vertical map is an equivalence, it will suffice to prove
that q∗F (s) is an equivalence in Y. According to Lemma 7.3.3.7, the functor
F can be identified with a product of a left adjoint r∗ to the projection
r∗ : P(C×D) → P(D) with a constant functor. Since q∗ preserves finite
products, it will suffice to show that (q∗ ◦ r∗)(s) is an equivalence in Y. This
follows immediately from our assumption that r∗ ◦ q∗ : Y → P(D) factors
through X.

The main result of this section is the following:

Theorem 7.3.3.9. Let X be a topological space, X an ∞-topos, and π∗ :
X → S a geometric morphism (which is essentially unique by virtue of Propo-
sition 6.3.4.1). Then Shv(X; X) is an ∞-topos, and the diagram

X
Γ← Shv(X; X) π∗→ Shv(X)

exhibits Shv(X; X) as a product of Shv(X) and X in the ∞-category RTop
of ∞-topoi. Here Γ denotes the global sections functor given by evaluation
at X ∈ U(X).

Proof. We first show that Shv(X; X) is an ∞-topos. Let P(X; X) be the ∞-
category Fun(N(U(X))op,X) of X-valued presheaves on X. For each object
Y ∈ X, choose a morphism eY : ∅X → Y in X whose source is an initial
object of X. For each sieve V on X, let χYV : U(X)op → X be the composition

U(X)op → ∆1 eY→ X,

so that

χYV (U)

{
Y if U ∈ V

∅X if U /∈ V,

so that we have a natural map χYV → χYV′ if V ⊆ V′. For each open subset
U ⊆ X, let χYU = χYV , where V = {V ⊆ U}. Let S be the set of all morphisms
fYV : χYV → χYU , where V is a sieve covering U , and let S be the strongly
saturated class of morphisms generated by X. We first claim that S is setwise-
generated. To see this, we observe that the passage from Y to fYV is a colimit-
preserving functor of Y , so it suffices to consider a set of objects Y ∈ X which
generates X under colimits.

We next claim that S is topological in the sense of Definition 6.2.1.5. By
a standard argument, it will suffice to show that there is a class of objects
Fα ∈ P(X; X) which generates P(X; X) under colimits, such that for every
pullback diagram

F ′
α

f ′

��

�� χYV

fY
V

��
Fα �� χYU ,
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the morphism f ′ belongs to S. We observe that if X is a left exact localization
of P(D), then P(X; X) is a left exact localization of P(U(X) × D) and is
therefore generated under colimits by the Yoneda image of U(X) × D. In
other words, it will suffice to consider Fα of the form χY

′
U ′ , where Y ′ ∈ X

and U ′ ⊆ X. If Y ′ is an initial object of X, then g is an equivalence and
there is nothing to prove. Otherwise, the existence of the lower horizontal
map implies that U ′ ⊆ U . Let V′ = {V ∈ V : V ⊆ U ′}; then it is easy to see
that f ′ is equivalent to χY

′
V′ and therefore belongs to S.

We next claim that Shv(X; X) consists precisely of the S-local objects of
P(X;X). To see this, let Y ∈ X be an arbitrary object and consider the
functor GY : X → S corepresented by Y . It follows from Proposition 5.1.3.2
that an arbitrary F ∈ P(X; X) is a X-valued sheaf onX if and only if, for each
Y ∈ X, the composition GY ◦F ∈ P(X) belongs to Shv(X). This is equivalent
to the assertion that, for every sieve V which covers U ⊆ X, the presheaf
GY ◦ F is sV-local, where sV : χV → χU is the associated monomorphism
of presheaves. Let G∗

Y denote a left adjoint to GY ; then GY ◦ F is sV-local
if and only if F is G∗

Y (sV)-local. We now apply Lemma 7.3.3.7 to identify
G∗
Y (sV) with fYV .
We have an identification Shv(X; X) � S

−1
P(X; X), so that Shv(X; X)

is a topological localization of P(X; X) and, in particular, an ∞-topos. We
now consider an arbitrary ∞-topos Y. We have a commutative diagram

Fun∗(Y,Shv(X; X)) ��

��

Fun∗(Y,Shv(X)) × Fun∗(Y;X)

��
Fun∗(Y,P(X; X)) �� Fun∗(Y,P(X)) × Fun∗(Y,X),

where the vertical arrows are inclusions of full subcategories and the lower
horizontal arrow is an equivalence by Lemma 7.3.3.8. To complete the proof,
it will suffice to show that the upper horizontal arrow is also an equivalence.
In other words, we must show that if g∗ : Y → P(X; X) is a geometric
morphism with the property that the composition

Y
g∗→ P(X;X) h∗→ P(X)

factors through Shv(X), then g∗ factors through Shv(X; X). Let g∗ and h∗

denote left adjoints to g∗ and h∗, respectively. It will suffice to show that
for every morphism fYV ∈ S, the pullback g∗fYV is an equivalence in Y. We
now observe that fYV is a pullback of f1X

V ; since g∗ is left exact, it will
suffice to show that g∗f1X

V is an equivalence in Y. We have an equivalence
f1X

V � h∗sV, where sV is the monomorphism in P(X) associated to the sieve
V. The composition (g∗ ◦ h∗)(sV) is an equivalence because h∗ ◦ g∗ factors
through Shv(X), which consists of sV-local objects of P(X).

7.3.4 Sheaves on Locally Compact Spaces

By definition, a sheaf of sets F on a topological space X is determined
by the sets F(U) as U ranges over the open subsets of X. If X is a locally
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compact Hausdorff space, then there is an alternative collection of data which
determines X: the values F(K), where K ranges over the compact subsets
of X. Here F(K) denotes the direct limit lim−→K⊆U F(U) taken over all open
neighborhoods of K (or equivalently, the collection of global sections of the
restriction F |K). The goal of this section is to prove a generalization of
this result where the sheaf F is allowed to take values in a more general
∞-category C.

Definition 7.3.4.1. Let X be a locally compact Hausdorff space. We let
K(X) denote the collection of all compact subsets of X. If K,K′ ⊆ X, we
write K � K′ if there exists an open subset U ⊆ X such that K ⊆ U ⊆ K ′.
If K ∈ K(X), we let KK�(X) = {K ′ ∈ K(X) : K � K ′}.

Let F : N(K(X))op → C be a presheaf on N(K(X)) (here K(X) is viewed
as a partially ordered set with respect to inclusion) with values in C. We will
say that F is a K-sheaf if the following conditions are satisfied:

(1) The object F(∅) ∈ C is final.

(2) For every pair K,K ′ ∈ K(X), the associated diagram

F(K ∪K ′) ��

��

F(K)

��
F(K′) �� F(K ∩K ′)

is a pullback square in C.

(3) For each K ∈ K(X), the restriction of F exhibits F(K) as a colimit of
F |N(KK�(X))op.

We let ShvK(X; C) denote the full subcategory of Fun(N(K(X))op,C)
spanned by the K-sheaves. In the case where C = S, we will write ShvK(X)
instead of ShvK(X; C).

Definition 7.3.4.2. Let C be a presentable ∞-category. We will say that
filtered colimits in C are left exact if the following condition is satisfied: for
every small filtered ∞-category I, the colimit functor Fun(I,C) → C is left
exact.

Example 7.3.4.3. A Grothendieck abelian category is an abelian category
A whose nerve N(A) is a presentable ∞-category with left exact filtered
colimits in the sense of Definition 7.3.4.2. We refer the reader to [34] for
further discussion.

Example 7.3.4.4. Filtered colimits are left exact in the ∞-category S of
spaces; this follows immediately from Proposition 5.3.3.3. It follows that
filtered colimits in τ≤n S are left exact for each n ≥ −2 since the full sub-
category τ≤n S ⊆ S is stable under filtered colimits and finite limits (in fact,
under all limits).
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Example 7.3.4.5. Let C be a presentable ∞-category in which filtered co-
limits are left exact and let X be an arbitrary simplicial set. Then filtered
colimits are left exact in Fun(X,C). This follows immediately from Propo-
sition 5.1.2.2, which asserts that the relevant limits and colimits can be
computed pointwise.

Example 7.3.4.6. Let C be a presentable ∞-category in which filtered
colimits are left exact and let D ⊆ C be the essential image of an (accessible)
left exact localization functor L. Then filtered colimits in D are left exact. To
prove this, we consider an arbitrary filtered ∞-category I and observe that
the colimit functor lim−→ : Fun(I,D) → D is equivalent to the composition

Fun(I,D) ⊆ Fun(I,C) → C
L→ D,

where the second arrow is given by the colimit functor lim−→Fun(I,C) → C.

Example 7.3.4.7. Let X be an n-topos, 0 ≤ n ≤ ∞. Then filtered colimits
in X are left exact. This follows immediately from Examples 7.3.4.4, 7.3.4.5,
and 7.3.4.6.

Our goal is to prove that if X is a locally compact Hausdorff space and
C is a presentable ∞-category, then the ∞-categories Shv(X) and ShvK(X)
are equivalent. As a first step, we prove that a K-sheaf on X is determined
locally.

Lemma 7.3.4.8. Let X be a locally compact Hausdorff space and C a
presentable ∞-category in which filtered colimits are left exact. Let W be
a collection of open subsets of X which covers X and let KW(X) = {K ∈
K(X) : (∃W ∈ W)[K ⊆ W ]}. Suppose that F ∈ ShvK(X;C). Then F is a
right Kan extension of F |N(KW(X))op.

Proof. Let us say that an open covering W of a locally compact Hausdorff
space X is good if it satisfies the conclusion of the lemma. Note that W is a
good covering of X if and only if, for every compact subset K ⊆ X, the open
sets {K ∩W : W ∈ W} form a good covering of K. We wish to prove that
every covering W of a locally compact topological space X is good. By virtue
of the preceding remarks, we can reduce to the case where X is compact and
thereby assume that W has a finite subcover.

We will prove, by induction on n ≥ 0, that if W is a collection of open
subsets of a locally compact Hausdorff spaceX such that there exist elements
W1, · · · ,Wn ∈ W with W1 ∪ . . .∪Wn = X, then W is a good covering of X.
If n = 0, then X = ∅. In this case, we must prove that F(∅) is final, which is
part of the definition of K-sheaf.

Suppose that W ⊆ W′ are coverings of X and that for every W ′ ∈ W′

the induced covering {W ∩W ′ : W ∈ W} is a good covering of W ′. It then
follows from Proposition 4.3.2.8 that W′ is a good covering of X if and only
if W is a good covering of X.

Now suppose n > 0. Let V = W2 ∪ · · ·∪Wn, and let W′ = W∪{V }. Using
the above remark and the inductive hypothesis, it will suffice to show that
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W′ is a good covering of X. Now W′ contains a pair of open sets W1 and
V which cover X. We thereby reduce to the case n = 2; using the above
remark, we can furthermore suppose that W = {W1,W2}.

We now wish to show that for every compact K ⊆ X, F exhibits F(K) as
the limit of F |N(KW(X))op. Let P be the collection of all pairs K1,K2 ∈
K(X) such that K1 ⊆ W1, K2 ⊆ W2, and K1 ∪K2 = K. We observe that
P is filtered when ordered by inclusion. For α = (K1,K2) ∈ P , let Kα =
{K′ ∈ K(X) : (K ′ ⊆ K1) ∨ (K ′ ⊆ K2)}. We note that KW(X) =

⋃
α∈P Kα.

Moreover, Theorem 4.1.3.1 implies that for α = (K1,K2) ∈ P , the inclusion
N{K1,K2,K1 ∩ K2} ⊆ N(Kα) is cofinal. Since F is a K-sheaf, we deduce
that F exhibits F(K) as a limit of the diagram F |N(Kα)op for each α ∈ P .
Using Proposition 4.2.3.4, we deduce that F(K) is a limit of F |N(KW(X))op

if and only if F(K) is a limit of the constant diagram N(P )op → S taking
the value F(K). This is clear since P is filtered so that the map N(P ) → ∆0

is cofinal by Theorem 4.1.3.1.

Theorem 7.3.4.9. Let X be a locally compact Hausdorff space and let C

be a presentable ∞-category in which filtered colimits are left exact. Let F :
N(K(X) ∪ U(X))op → C be a presheaf on the partially ordered set K(X) ∪
U(X). The following conditions are equivalent:

(1) The presheaf FK = F |N(K(X))op is a K-sheaf, and F is a right Kan
extension of FK.

(2) The presheaf FU = F |N(U(X))op is a sheaf, and F is a left Kan ex-
tension of FU.

Proof. Suppose first that (1) is satisfied. We first prove that F is a left Kan
extension of FU. Let K be a compact subset of X and let UK⊆(X) = {U ∈
U(X) : K ⊆ U}. Consider the diagram

N(UK⊆(X))op
p ��

��

N(UK⊆(X) ∪ KK�(X))op

��

N(KK�(X))op

��

p′��

N(UK⊆(X)op)
 ��

ψ

!"22
22

22
22

22
22

22
22

22
22

22
22

2
N(UK⊆(X)) ∪ KK�(X))op)


��

N(Kop
K�)


ψ′

((///
//
//
//
//
//
//
//
//
//
//
//

��

N(U(X) ∪ K(X))op

F

��
C .

We wish to prove that ψ is a colimit diagram. Since FK is a K-sheaf, we
deduce that ψ′ is a colimit diagram. It therefore suffices to check that p and
p′ are cofinal. According to Theorem 4.1.3.1, it suffices to show that for every
Y ∈ UK⊆(X)∪KK�(X), the partially ordered sets {K ′ ∈ K(X) : K � K′ ⊆
Y } and {U ∈ U(X) : K ⊆ U ⊆ Y } have contractible nerves. We now observe
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that both of these partially ordered sets is filtered since they are nonempty
and stable under finite unions.

We now show that FU is a sheaf. Let U be an open subset of X and let
W be a sieve which covers U . Let K⊆U(X) = {K ∈ K(X) : K ⊆ U} and let
KW(X) = {K ∈ K(X) : (∃W ∈ W)[K ⊆ W ]}. We wish to prove that the
diagram

N(Wop)	 → N(U(X))op FU→ S

is a limit. Using Theorem 4.1.3.1, we deduce that the inclusion

N(W) ⊆ N(W∪KW(X))

is cofinal. It therefore suffices to prove that F |(W∪KW(X) ∪ {U})op is
a right Kan extension of F |(W∪KW(X))op. Since F |(W∪KW(X))op is a
right Kan extension of F |KW(X)op by assumption, it suffices to prove that
F |(W∪KW(X) ∪ {U})op is a right Kan extension of F |KW(X)op. This is
clear at every object distinct from U ; it will therefore suffice to prove that
F |(KW(X) ∪ {U})op is a right Kan extension of F |KW(X)op.

By assumption, the functor F |N(K⊆U(X) ∪ {U})op is a right Kan exten-
sion of F |N(K⊆U (X))op and Lemma 7.3.4.8 implies that F |N(K⊆U (X))op is
a right Kan extension of F |N(KW(X))op. Using Proposition 4.3.2.8, we de-
duce that F |N(KW(X)∪{U})op is a right Kan extension of F |N(KW(X))op.
This shows that FU is a sheaf and completes the proof that (1) ⇒ (2).

Now suppose that F satisfies (2). We first verify that FK is a K-sheaf. The
space FK(∅) = FU(∅) is contractible because FU is a sheaf (and because the
empty sieve is a covering sieve on ∅ ⊆ X). Suppose next that K and K ′ are
compact subsets of X. We wish to prove that the diagram

F(K ∪K′) ��

��

F(K)

��
F(K′) �� F(K ∩K ′)

is a pullback in S. Let us denote this diagram by σ : ∆1 × ∆1 → S. Let P
be the set of all pairs U,U ′ ∈ U(X) such that K ⊆ U and K ′ ⊆ U ′. The
functor F induces a map σP : N(P op)
 → S∆1×∆1

, which carries each pair
(U,U ′) to the diagram

F(U ∪ U ′) ��

��

F(U)

��
F(U ′) �� F(U ∩ U ′)

and carries the cone point to σ. Since FU is a sheaf, each σP (U,U ′) is a
pullback diagram in C. Since filtered colimits in C are left exact, it will suffice
to show that σP is a colimit diagram. By Proposition 5.1.2.2, it suffices to
show that each of the four maps

N(P op)
 → S,



HIGHER TOPOS THEORY IN TOPOLOGY 767

given by evaluating σP at the four vertices of ∆1 ×∆1, is a colimit diagram.
We will treat the case of the final vertex; the other cases are handled in
the same way. Let Q = {U ∈ U(X) : K ∩ K ′ ⊆ U}. We are given a map
g : N(P op)
 → S which admits a factorization

N(P op)

g′′→ N(Qop)


g′→ N(U(X) ∪ K(X))op F→ C .

Since F is a left Kan extension of FU, the diagram F ◦g′′ is a colimit. It
therefore suffices to show that g′′ induces a cofinal map N(P )op → N(Q)op.
Using Theorem 4.1.3.1, it suffices to prove that for every U ′′ ∈ Q, the par-
tially ordered set PU ′′ = {(U,U ′) ∈ P : U ∩U ′ ⊆ U ′′} has contractible nerve.
It now suffices to observe that P opU ′′ is filtered (since PU ′′ is nonempty and
stable under intersections).

We next show that for any compact subset K ⊆ X, the map

N(KK�(X)op)
 → N(K(X) ∪ U(X))op F→ C

is a colimit diagram. Let V = U(X) ∪ KK�(X) and let V′ = V∪{K}. It
follows from Proposition 4.3.2.8 that F |N(V)op and F |N(V′)op are left Kan
extensions of F |N(U(X))op, so that F |N(V′)op is a left Kan extension of
F |N(V)op. Therefore the diagram

(N(KK�(X) ∪ {U ∈ U(X) : K ⊆ U})op)
 → N(K(X) ∪ U(X))op F→ C

is a colimit. It therefore suffices to show that the inclusion

N(KK�(X))op ⊆ N(KK�(X) ∪ {U ∈ U(X) : K ⊆ U})op
is cofinal. Using Theorem 4.1.3.1, we are reduced to showing that if

Y ∈ KK�(X) ∪ {U ∈ U(X) : K ⊆ U},
then the nerve of the partially ordered set R = {K ′ ∈ K(X) : K � K ′ ⊂ Y }
is weakly contractible. It now suffices to observe that Rop is filtered since R
is nonempty and stable under intersections. This completes the proof that
FK is a K-sheaf.

We now show that F is a right Kan extension of FK. Let U be an open
subset of X and for V ∈ U(X) write V � U if the closure V is compact
and contained in U . Let U�U (X) = {V ∈ U(X) : V � U} and consider the
diagram

N(U�U (X))op
f ��

��

N(U�U (X) ∪ K⊆U (X))op

��

N(K⊆U(X))op

��

f ′
��

N(U�U (X)op)	

φ

!"..
..

..
..

..
..

..
..

..
..

..
..

.
N(U�U (X) ∪ K⊆U (X))op)	

��

N(K⊆U (X)op)	

φ′

((///
//
//
//
//
//
//
//
//
//
//
//

N(K(X) ∪ U(X))op

F

��
C .
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We wish to prove that φ′ is a limit diagram. Since the sieve U�U (X) covers U
and FU is a sheaf, we conclude that φ is a limit diagram. It therefore suffices
to prove that fop and (f ′)op are cofinal maps of simplicial sets. According
to Theorem 4.1.3.1, it suffices to prove that if Y ∈ K⊆U (X)∪U�U (X), then
the partially ordered sets {V ∈ U(X) : Y ⊆ V � U} and {K ∈ K(X) : Y ⊆
K ⊆ U} have weakly contractible nerves. We now observe that both of these
partially ordered sets are filtered (since they are nonempty and stable under
unions). This completes the proof that F is a right Kan extension of FK.

Corollary 7.3.4.10. Let X be a locally compact topological space and C a
presentable ∞-category in which filtered colimits are left exact. Let

ShvKU(X; C) ⊆ Fun(N(K(X) ∪ U(X))op,C)

be the full subcategory spanned by those presheaves which satisfy the equiva-
lent conditions of Theorem 7.3.4.9. Then the restriction functors

Shv(X; C) ← ShvKU(X; C) → ShvK(X;C)

are equivalences of ∞-categories.

Corollary 7.3.4.11. Let X be a compact Hausdorff space. Then the global
sections functor Γ : Shv(X) → S is a proper morphism of ∞-topoi.

Proof. The existence of fiber products Shv(X) ×S Y in RTop follows from
Theorem 7.3.3.9. It will therefore suffice to prove that for any (homotopy)
Cartesian rectangle

X′′ ��

��

X′ ��

��

Shv(X)

��
Y′′ f∗ �� Y′ �� S,

the square on the left is left adjointable. Using Theorem 7.3.3.9, we can
identify the square on the left with

Shv(X; Y′′) ��

��

Shv(X; Y′)

��
Y′′ f∗ �� Y′,

where the vertical morphisms are given by taking global sections.
Choose a correspondence M from Y′ to Y′′ which is associated to the

functor f∗. Since f∗ admits a left adjoint f∗, the projection M → ∆1 is both
a Cartesian fibration and a coCartesian fibration. For every simplicial set K,
let MK = Fun(K,M)×Fun(K,∆1)∆1. Then MK determines a correspondence
from Fun(K,Y′) to Fun(K,Y′′). Using Proposition 3.1.2.1, we conclude that
MK → ∆1 is both a Cartesian and a coCartesian fibration, and that it is
associated to the functors given by composition with f∗ and f∗.

Before proceeding further, let us adopt the following convention for the
remainder of the proof: given a simplicial set Z with a map q : Z → ∆1, we
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will say that an edge of Z is Cartesian or coCartesian if it is q-Cartesian or
q-coCartesian, respectively. The map q to which we are referring should be
clear from the context.

Let MU denote the full subcategory of MN(U(X))op whose objects corre-
spond to sheaves on X (with values in either Y′ or Y′′). Since f∗ preserves
limits, composition with f∗ carries Shv(X;Y′′) into Shv(X;Y′). We conclude
that the projection MU → ∆1 is a Cartesian fibration and that the inclusion
MU ⊆ MN(U(X))op preserves Cartesian edges.

Similarly, we define MK to be the full subcategory of MN(K(X))op whose
objects correspond to K-sheaves on X (with values in either Y′ or Y′′). Since
f∗ preserves finite limits and filtered colimits, composition with f∗ carries
ShvK(X; Y′) into ShvK(X;Y′′). It follows that the projection MK → ∆1 is
a coCartesian fibration and that the inclusion MK ⊆ MN(U(X))op preserves
coCartesian edges.

Now let M′
KU = MN(K(X)∪U(X))op and let MKU be the full subcategory of

M′
KU spanned by the objects of ShvKU(X; Y′) and ShvKU(X; Y′′). We have

a commutative diagram

MKU

φU

���
��

��
��

�

φK+���
��
��
��

MU

ΓU

��*
**

**
**

* MK

ΓK+����
��
��
��

M,

where ΓU and ΓK denote the global sections functors (given by evaluation
at X ∈ U(X) ∩ K(X)). According to Remark 7.3.1.3, to complete the proof
it will suffice to show that MU → ∆1 is a coCartesian fibration and that ΓU

preserves both Cartesian and coCartesian edges. It is clear that ΓU preserves
Cartesian edges since it is a composition of maps

MU ⊆ MN(U(X))op → M

which preserve Cartesian edges. Similarly, we already know that MK →
∆1 is a coCartesian fibration and that ΓK preserves coCartesian edges. To
complete the proof, it will therefore suffice to show that φU and φK are
equivalences of ∞-categories. We will give the argument for φU; the proof in
the case of φK is identical and is left to the reader.

According to Corollary 7.3.4.10, the map φU induces equivalences

ShvKU(X; Y′) → Shv(X; Y′)

ShvKU(X; Y′′) → Shv(X; Y′′)

after passing to the fibers over either vertex of ∆1. We will complete the
proof by applying Corollary 2.4.4.4. In order to do so, we must verify that
p : MKU → ∆1 is a Cartesian fibration and that φU preserves Cartesian
edges.
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To show that p is a Cartesian fibration, we begin with an arbitrary F ∈
ShvKU(X;Y′′). Using Proposition 3.1.2.1, we conclude the existence of a
p′-Cartesian morphism α : F′ → F, where p′ denotes the projection M′

KU

and F′ = F ◦p∗ ∈ Fun(N(K(X) ∪ U(X))op,Y′). Since p∗ preserves limits, we
conclude that F′ |N(U(X))op is a sheaf on X with values in Y′; however, F′

is not necessarily a left Kan extension of F′ |N(U(X))op. Let C denote the
full subcategory of Fun(N(K(X) ∪ U(X))op,Y′) spanned by those functors
G : N(K(X) ∪ U(X))op which are left Kan extensions of G |N(U(X))op, and
let s a section of the trivial fibration C → (Y′)N(U(X))op

, so that s is a left
adjoint to the restriction map r : M′

KU → (Y′)N(U(X))op

. Let F′′ = (s ◦ r) F′

be a left Kan extension of F′ |N(U(X))op. Then F′′ is an initial object of the
fiber M′

KU ×Fun(N(U(X))op,Y′){F′ |N(U(X))op}, so that there exists a map
β : F′′ → F′ which induces the identity on F′′ |N(U(X))op = F′ |N(U(X))op.

Let σ : ∆2 → M′
KU classify a diagram

F′

α

���
��

��
��

F′′

β
��								 γ �� F,

so that γ is a composition of α and β. It is easy to see that φU(γ) is a
Cartesian edge of MU (since it is a composition of a Cartesian edge with an
equivalence in Shv(X; Y′)). We claim that γ is p-Cartesian. To prove this,
consider the diagram

ShvKU(X; Y′) ×M′
KU

(M′
KU)/σ

θ0

��

η′ �� (MKU)/γ

η

��

ShvKU(X;Y′)/β ×ShvKU(X;Y′)/ F′ (M′
KU)/α

θ1

��
ShvKU(X; Y′) ×M′

KU
(M′

KU)/α
θ2 �� Z,

where Z denotes the fiber product ShvKU(X; Y′)×MKU
(MKU)/F. We wish to

show that η is a trivial fibration. Since η is a right fibration, it suffices to show
that the fibers of η are contractible. The map η′ is a trivial fibration (since
the inclusion ∆{0,2} ⊆ ∆2 is right anodyne), so it will suffice to prove that
η◦η′ is a trivial fibration. In view of the commutativity of the diagram, it will
suffice to show that θ0, θ1, and θ2 are trivial fibrations. The triviality of θ0
follows from the fact that the horn inclusion Λ2

1 ⊆ ∆2 is right anodyne. The
triviality of θ2 follows from the fact that α is p′-Cartesian. Finally, we observe
that θ1 is a pullback of the map θ′1 : ShvKU(X; Y′)/β → ShvKU(X;Y′)/F′ .
Let C = (Y′)N(K(X)∪U(X))op

. To prove that θ′1 is a trivial fibration, we must
show that for every G ∈ ShvKU, composition with β induces a homotopy
equivalence

MapC(G,F′′) → MapC(G,F′).
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Without loss of generality, we may suppose that G = s(G′), where G′ ∈
Shv(X; Y′); now we simply invoke the adjointness of s with the restriction
functor r and the observation that r(β) is an equivalence.

Corollary 7.3.4.12. Let X be a compact Hausdorff space. The global sec-
tions functor Γ : Shv(X) → S preserves filtered colimits.

Proof. Applying Theorem 7.3.4.9, we can replace Shv(X) by ShvK(X). Now
observe that the full subcategory ShvK(X) ⊆ P(N(K(X))op) is stable under
filtered colimits. We thereby reduce to proving that the evaluation func-
tor P(N(K(X))op) → S commutes with filtered colimits, which follows from
Proposition 5.1.2.2. Alternatively, one can apply Corollary 7.3.4.10 and Re-
mark 7.3.1.5.

Remark 7.3.4.13. One can also deduce Corollary 7.3.4.12 using the geo-
metric model for Shv(X) introduced in §7.1. Using the characterization of
properness in terms of filtered colimits described in Remark 7.3.1.5, one can
formally deduce Corollary 7.3.4.11 from Corollary 7.3.4.12. This leads to an-
other proof of the proper base change theorem, which does not make use of
Theorem 7.3.4.9 or the other ideas of this section. However, this alternative
proof is considerably more difficult than the one described here since it re-
quires a rigorous justification of Remark 7.3.1.5. We also note that Theorem
7.3.4.9 and Corollary 7.3.4.10 are interesting in their own right and could
conceivably be applied in other contexts.

7.3.5 Sheaves on Coherent Spaces

Theorem 7.3.4.9 has an analogue in the setting of coherent topological spaces
which is somewhat easier to prove. First, we need the analogue of Lemma
7.3.4.8:

Lemma 7.3.5.1. Let X be a coherent topological space, let U0(X) denote
the collection of compact open subsets of X, and let F : N(U0(X))op → C be
a presheaf taking values in an ∞-category C having the following properties:

(1) The object F(∅) ∈ C is final.

(2) For every pair of compact open sets U, V ⊆ X, the diagram

F(U ∩ V ) ��

��

F(U)

��
F(V ) �� F(U ∪ V )

is a pullback.

Let W be a covering of X by compact open subsets and let U1(X) ⊆ U0(X)
be the collection of all compact open subsets of X which are contained in
some element of W. Then F is a right Kan extension of F |N(U1(X))op.
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Proof. The proof is similar to that of Lemma 7.3.4.8 but slightly easier. Let
us say that a covering W of a coherent topological space X by compact open
subsets is good if it satisfies the conclusions of the lemma. We observe that W

automatically has a finite subcover. We will prove, by induction on n ≥ 0,
that if W is a collection of open subsets of a locally coherent topological
space X such that there exist W1, · · · ,Wn ∈ W with W1 ∪ . . . ∪Wn = X,
then W is a good covering of X. If n = 0, then X = ∅. In this case, we must
prove that F(∅) is final, which is one of our assumptions.

Suppose that W ⊆ W′ are coverings of X by compact open sets and that
for every W ′ ∈ W′ the induced covering {W ∩ W ′ : W ∈ W} is a good
covering of W ′. It then follows from Proposition 4.3.2.8 that W′ is a good
covering of X if and only if W is a good covering of X.

Now suppose n > 0. Let V = W2 ∪ · · ·∪Wn, and let W′ = W∪{V }. Using
the above remark and the inductive hypothesis, it will suffice to show that
W′ is a good covering of X. Now W′ contains a pair of open sets W1 and
V which cover X. We thereby reduce to the case n = 2; using the above
remark, we can furthermore suppose that W = {W1,W2}.

We now wish to show that for every compact U ⊆ X, F exhibits F(U)
as the limit of F |N(U1(X)/U )op. Without loss of generality, we may re-
place X by U and thereby reduce to the case U = X. Let U2(X) =
{W1,W2,W1 ∩ W2} ⊆ U1(X). Using Theorem 4.1.3.1, we deduce that the
inclusion N(U2(X)) ⊆ N(U1(X)) is cofinal. Consequently, it suffices to prove
that F(X) is the limit of the diagram F |N(U2(X))op. In other words, we
must show that the diagram

F(X) ��

��

F(W1)

��
F(W2) �� F(W1 ∩W2)

is a pullback in C, which is true by assumption.

Theorem 7.3.5.2. Let X be a coherent topological space and let U0(X) ⊆
U(X) denote the collection of compact open subsets of X. Let C be an ∞-
category which admits small limits. The restriction map

Shv(X;C) → Fun(N(U0(X))op,C)
is fully faithful, and its essential image consists of precisely those functors
F0 : N(U0(X))op → C satisfying the following conditions:

(1) The object F0(∅) ∈ C is final.

(2) For every pair of compact open sets U, V ⊆ X, the diagram

F0(U ∩ V ) ��

��

F0(U)

��
F0(V ) �� F0(U ∪ V )

is a pullback.
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Proof. Let D ⊆ CN(U(X))op

be the full subcategory spanned by those pre-
sheaves F : N(U(X))op → C which are right Kan extensions of F0 =
F |N(U0(X))op and such that F0 satisfies conditions (1) and (2). Accord-
ing to Proposition 4.3.2.15, it will suffice to show that D coincides with
Shv(X; C).

Suppose that F : N(U(X))op → C is a sheaf. We first show that F is a
right Kan extension of F0 = F |N(U0(X))op. Let U be an open subset of
X, let U(X)(0)/U denote the collection of compact open subsets of U and let

U(X)(1)/U denote the sieve generated by U(X)(0)/U . Consider the diagram

N(U(X)(1)/U )


f ′

��6666
6666

6666
6666

6666
6666

6
�� N(U(X)/U )


%%++
+++

+++
+++

+
�� N(U(X))

F

��
N(U(X)(0)/U )


f ��

i

$$

Cop .

We wish to prove that f is a colimit diagram. Using Theorem 4.1.3.1, we
deduce that the inclusion N(U(X))(0)/U ⊆ N(U(X))(1)/U is cofinal. It therefore
suffices to prove that f ′ is a colimit diagram. Since F is a sheaf, it suffices
to prove that U(X)(1)/U is a covering sieve. In other words, we need to prove
that U is a union of compact open subsets of X, which follows immediately
from our assumption that X is coherent.

We next prove that F0 satisfies (1) and (2). To prove (1), we simply ob-
serve that the empty sieve is a cover of ∅ and apply the sheaf condition. To
prove (2), we may assume without loss of generality that neither U nor V is
contained in the other (otherwise the result is obvious). Let U(X)(0)/U∪V be

the full subcategory spanned by U , V , and U ∩V , and let U(X)(1)/U∪V be the

sieve on U ∪ V generated by U(X)(0)/U∪V . As above, we have a diagram

N(U(X)(1)/U∪V )


f ′

-�7777
77777

77777
77777

77777
7777

�� N(U(X)/U∪V )


%%--
---

---
---

--
�� N(U(X))

F

��
(N(U(X))(0)/U∪V )


f ��

i

$$

Cop,

and we wish to show that f is a colimit diagram. Theorem 4.1.3.1 implies
that the inclusion N(U(X))(0)/U∪V ⊆ N(U(X))(1)/U∪V is cofinal. It therefore
suffices to prove that f ′ is a colimit diagram, which follows from the sheaf
condition since U(X)(1)/U∪V is a covering sieve. This completes the proof that
Shv(X; C) ⊆ D.

It remains to prove that D ⊆ Shv(X; C). In other words, we must show
that if F is a right Kan extension of F0 = F |N(U0(X))op and F0 satisfies
conditions (1) and (2), then F is a sheaf. Let U be an open subset of X and
let U(X)(0)/U be a sieve which covers U . Let U0(X)/U denote the category
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of compact open subsets of U and U0(X)(0)/U the category of compact open

subsets of U which belong to the sieve U(X)(0)/U . We wish to prove that F(U)

is a limit of F |N(U(X)(0)/U )op. We will in fact prove the slightly stronger

assertion that F |N(U(X)/U )op is a right Kan extension of F |N(U(X)(0)/U )op.
We have a commutative diagram

U0(X)(0)/U ��

��

U0(X)/U

��
U(X)(0)/U �� U(X)/U .

By assumption, F is a right Kan extension of F0. It follows that the restric-
tion F |N(U(X)(0)/U )op is a right Kan extension of F |N(U0(X)(0)/U )op and that
F |N(U(X)/U )op is a right Kan extension of F |N(U0(X)/U )op. By the tran-
sitivity of Kan extensions (Proposition 4.3.2.8), it will suffice to prove that
F |N(U0(X)/U )op is a right Kan extension of F |N(U0(X)(0)/U )op. This follows
immediately from Lemma 7.3.5.1.

Corollary 7.3.5.3. Let X be a coherent topological space. Then the global
sections functor Γ : Shv(X) → S is a proper map of ∞-topoi.

Proof. The proof is identical to the proof of Corollary 7.3.4.11 (using Theo-
rem 7.3.5.2 in place of Corollary 7.3.4.10).

Corollary 7.3.5.4. Let X be a coherent topological space. Then the global
sections functor

Γ : Shv(X) → S

commutes with filtered colimits.

7.3.6 Cell-Like Maps

Recall that a topological space X is an absolute neighborhood retract if X is
metrizable and if for any closed immersion X ↪→ Y of X in a metric space
Y , there exists an open set U ⊆ Y containing the image of X, such that the
inclusion X ↪→ U has a left inverse (in other words, X is a retract of U).

Let p : X → Y be a continuous map between locally compact absolute
neighborhood retracts. The map p is said to be cell-like if p is proper and
each fiber Xy = X ×Y {y} has trivial shape (in the sense of Borsuk; see
[55] and §7.1.6). The theory of cell-like maps plays an important role in
geometric topology: we refer the reader to [18] for a discussion (and for
several equivalent formulations of the condition that a map be cell-like).

The purpose of this section is to describe a class of geometric morphisms
between ∞-topoi, which we will call cell-like morphisms. We will then com-
pare our theory of cell-like morphisms with the classical theory of cell-like
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maps. We will also give a “nonclassical” example which arises in the theory
of rigid analytic geometry.

Definition 7.3.6.1. Let p∗ : X → Y be a geometric morphism of ∞-topoi.
We will say that p∗ is cell-like if it is proper and if the right adjoint p∗ (which
is well-defined up to equivalence) is fully faithful.

Warning 7.3.6.2. Many authors refer to a map p : X → Y of arbi-
trary compact metric spaces as cell-like if each fiber Xy = X ×Y {y} has
trivial shape. This condition is generally weaker than the condition that
p∗ : Shv(X) → Shv(Y ) be cell-like in the sense of Definition 7.3.6.1. However,
the two definitions are equivalent provided that X and Y are sufficiently nice
(for example, if they are locally compact absolute neighborhood retracts).
Our departure from the classical terminology is perhaps justified by the fact
that the class of morphisms introduced in Definition 7.3.6.1 has good formal
properties: for example, stability under composition.

Remark 7.3.6.3. Let p∗ : X → Y be a cell-like geometric morphism between
∞-topoi. Then the unit map idY → p∗p∗ is an equivalence of functors. It
follows immediately that p∗ induces an equivalence of shapes Sh(X) → Sh(Y)
(see §7.1.6).

Proposition 7.3.6.4. Let p∗ : X → Y be a proper morphism of ∞-topoi.
Suppose that Y has enough points. Then p∗ is cell-like if and only if, for
every pullback diagram

X′ ��

��

X

p∗
��

S �� Y

in RTop, the ∞-topos X′ has trivial shape.

Proof. Suppose first that each fiber X′ has trivial shape. Let F ∈ Y. We wish
to show that the unit map u : F → p∗p∗ F is an equivalence. Since Y has
enough points, it suffices to show that for each point q∗ : S → Y, the map
q∗u is an equivalence in S, where q∗ denotes a left adjoint to q∗. Form a
pullback diagram of ∞-topoi

X′ ��

s∗
��

X

p∗
��

S
q∗ �� Y .

Since p∗ is proper, this diagram is left adjointable. Consequently, q∗u can be
identified with the unit map

K → s∗s∗K,

where K = q∗ F ∈ S. If X′ has trivial shape, then this map is an equivalence.
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Conversely, if p∗ is cell-like, then the above argument shows that for every
diagram

X′ ��

s∗
��

X

p∗
��

S
q∗ �� Y

as above and every F ∈ Y, the adjunction map

K → s∗s∗K

is an equivalence, where K = q∗ F. To prove that X′ has trivial shape, it
will suffice to show that q∗ is essentially surjective. For this, we observe
that since S is a final object in the ∞-category of ∞-topoi, there exists a
geometric morphism r∗ : Y → S such that r∗ ◦ q∗ is homotopic to idS. It
follows that q∗ ◦ r∗ � idS. Since idS is essentially surjective, we conclude
that q∗ is essentially surjective.

Corollary 7.3.6.5. Let p : X → Y be a map of paracompact topological
spaces. Assume that p∗ is proper and that Y has finite covering dimension.
Then p∗ : Shv(X) → Shv(Y ) is cell-like if and only if each fiber Xy =
X ×Y {y} has trivial shape.

Proof. Combine Proposition 7.3.6.4 with Corollary 7.2.1.17.

Proposition 7.3.6.6. Let p : X → Y be a proper map of locally compact
ANRs. The following conditions are equivalent:

(1) The geometric morphism p∗ : Shv(X) → Shv(Y ) is cell-like.

(2) For every open subset U ⊆ Y , the restriction map X ×Y U → U is a
homotopy equivalence.

(3) Each fiber Xy = X ×Y {y} has trivial shape.

Proof. It is easy to see that if p∗ is cell-like, then each of the restrictions p′ :
X ×Y U → U induces a cell-like geometric morphism. According to Remark
7.3.6.3, p′∗ is a shape equivalence and therefore a homotopy equivalence by
Proposition 7.1.6.8. Thus (1) ⇒ (2).

We next prove that (2) ⇒ (1). Let F ∈ Shv(Y ) and let u : F → p∗p∗ F

be a unit map; we wish to show that u is an equivalence. It will suffice to
show that the induced map F(U) → (p∗p∗ F)(U) is an equivalence in S for
each paracompact open subset U ⊆ Y . Replacing Y by u, we may reduce
to the problem of showing that the map F(Y ) → (p∗ F)(X) is a homotopy
equivalence. According to Corollary 7.1.4.4, we may assume that F is the
simplicial nerve of SingY Ỹ , where Ỹ is a fibrant-cofibrant object of Top/Y .
According to Proposition 7.1.5.1, we may identify p∗ F with SingX X̃, where
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X̃ = X×Y Ỹ . It therefore suffices to prove that the induced map of simplicial
function spaces

MapY (Y, Ỹ ) → MapX(X, X̃) � MapY (X, Ỹ )

is a homotopy equivalence, which follows immediately from (2).
The implication (1) ⇒ (3) follows from the proof of Proposition 7.3.6.6,

and the implication (3) ⇒ (2) is classical (see [37]).

Remark 7.3.6.7. It is possible to prove the following generalization of
Proposition 7.3.6.6: a proper geometric morphism p∗ : X → Y is cell-like
if and only if, for each object U ∈ Y, the associated geometric morphism
X/p∗U → Y/U is a shape equivalence (and, in fact, it is necessary to check
this only on a collection of objects U ∈ Y which generates Y under colimits).

Remark 7.3.6.8. Another useful property of the class of cell-like mor-
phisms, which we will not prove here, is stability under base change: given
a pullback diagram

X′

p′∗
��

�� X

p∗
��

Y′ �� Y,

where p∗ is cell-like, p′∗ is also cell-like.

If p∗ : X → Y is a cell-like morphism of ∞-topoi, then many properties of
Y are controlled by the analogous properties of X. For example:

Proposition 7.3.6.9. Let p∗ : X → Y be a cell-like morphism of ∞-topoi. If
X has homotopy dimension ≤ n, then Y also has homotopy dimension ≤ n.

Proof. Let 1Y be a final object of Y, U an n-connective object of Y, and
p∗ a left adjoint to p∗. We wish to prove that HomhY(1Y, U) is nonempty.
Since p∗ is fully faithful, it will suffice to prove that HomhX(p∗1Y, p

∗U). We
now observe that p∗1Y is a final object of X (since p is left exact), p∗U is
n-connective (Proposition 6.5.1.16), and X has homotopy dimension ≤ n, so
that HomhX(p∗1Y, p

∗U) is nonempty, as desired.

We conclude with a different example of a class of cell-like maps. We will
assume in the following discussion that the reader is familiar with the basic
ideas of rigid analytic geometry; for an account of this theory we refer the
reader to [29]. Let K be a field which is complete with respect to a non-
Archimedean absolute value ||K : K → R. Let A be an affinoid algebra over
K: that is, a quotient of an algebra of convergent power series (in several
variables) with values in K. Let X be the rigid space associated to A. One
can associate to X two different “underlying” topological spaces:

(ZR1) The category C of rational open subsets of X has a Grothendieck topol-
ogy given by admissible affine covers. The topos of sheaves of sets on C
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is localic, and the underlying locale has enough points: it is therefore
isomorphic to the locale of open subsets of a (canonically determined)
topological space XZR, the Zariski-Riemann space of X.

(ZR2) In the case where K is a discretely valued field with ring of integers R,
one may define XZR to be the inverse limit of the underlying spaces
of all formal schemes X̂ → Spf R which have generic fiber X.

(ZR3) Concretely, XZR can be identified with the set of all isomorphism
classes of continuous multiplicative seminorms ||A : A → M ∪ {∞},
where M is an ordered abelian group containing the value group

|K∗|K ⊆ R∗

and the restriction of ||A to K coincides with ||K .

(B1) The category of sheaves of sets on C contains a full subcategory, con-
sisting of overconvergent sheaves. This category is also a localic topos,
and the underyling locale is isomorphic to the lattice of open subsets of
a (canonically determined) topological space XB , the Berkovich space
of X. The category of overconvergent sheaves is a localization of the
category of all sheaves on C, and there is an associated map of topo-
logical spaces p : XZR → XB.

(B2) Concretely, XB can be identified with the set of all continuous mul-
tiplicative seminorms ||A : A → R∪{∞} which extend ||K . It is
equipped with the topology of pointwise convergence and is a com-
pact Hausdorff space.

The relationship between the Zariski-Riemann space XZR and the Berk-
ovich space XB (or more conceptually, the relationship between the category
of all sheaves onX and the category of overconvergent sheaves onX) is neatly
summarized by the following result.

Proposition 7.3.6.10. Let K be a field which is complete with respect to a
non-Archimedean absolute value ||K , let A be an affinoid algebra over K, let
X be the associated rigid space, and let p : XZR → XB be the natural map.
Then p induces a cell-like morphism of ∞-topoi p∗ : Shv(XZR) → Shv(XB).

Before giving the proof, we need an easy lemma. Recall that a topological
space X is irreducible if every finite collection of nonempty open subsets of
X has nonempty intersections.

Lemma 7.3.6.11. Let X be an irreducible topological space. Then Shv(X)
has trivial shape.

Proof. Let π : X → ∗ be the projection from X to a point and letπ∗ :
Shv(X) → Shv(∗) be the induced geometric morphism. We will construct a
left adjoint π∗ to π∗ such that the unit map id → π∗π∗ is an equivalence.
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We begin by defining G : P(X) → P(∗) to be the functor given by com-
position with π−1, so that G| Shv(X) = π∗. Let

i : N(U(X))op → N(U(∗))op
be defined so that

i(U) =

{
∅ if U = ∅
{∗} if U �= ∅

and let F : P(∗) → P(U) be given by composition with i. We observe that
F is a left Kan extension functor, so that the identity map

idP(∗) → G ◦ F
exhibits F as a left adjoint to G. We will show that F (Shv(∗)) ⊆ Shv(X).
Setting π∗ = F |Shv(∗), we conclude that the identity map

idShv(∗) → π∗π∗

is the unit of an adjunction between π∗ and π∗, which will complete the
proof.

Let U ⊆ U(X) be a sieve which covers the open set U ⊆ X. We wish to
prove that the diagram

p : N(Uop)	 → N(U(X))op i→ N(U(∗))op F→ S

is a limit. Let U0 = {V ∈ U : V �= ∅}. Since F(∅) is a final object of S, p is a
limit if and only if p|N(Uop0 )	 is a limit diagram. If U = ∅, then this follows
from the fact that F(∅) is final in S. If U �= ∅, then p|N(Uop0 )	 is a constant
diagram, so it will suffice to prove that the simplicial set N(U0)op is weakly
contractible. This follows from the observation that U

op
0 is a filtered par-

tially ordered set since U0 is nonempty and stable under finite intersections
(because X is irreducible).

Proof of Proposition 7.3.6.10. We first show that p∗ is a proper map of ∞-
topoi. We note that p factors as a composition

XZR
p′→ XZR ×XB

p′′→ XB .

The map p′ is a pullback of the diagonal map XB → XB ×XB. Since XB is
Hausdorff, p′ is a closed immersion. It follows that p′∗ is a closed immersion
of ∞-topoi (Corollary 7.3.2.9) and therefore a proper morphism (Proposition
7.3.2.12). It therefore suffices to prove that p′′ is a proper map of ∞-topoi.
We note the existence of a commutative diagram

Shv(XZR ×XB)

p′′∗
��

�� Shv(XZR)

g∗
��

Shv(XB) �� Shv(∗).
Using Proposition 7.3.1.11, we deduce that this is a homotopy Cartesian
diagram of ∞-topoi. It therefore suffices to show that the global sections
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functor g∗ : Shv(XZR) → Shv(∗) is proper, which follows from Corollary
7.3.5.3.

We now observe that the topological space XB is paracompact and has
finite covering dimension ([5], Corollary 3.2.8), so that Shv(XB) has enough
points (Corollary 7.2.1.17). According to Proposition 7.3.6.4, it suffices to
show that for every fiber diagram

X′ ��

��

Shv(XZR)

��
Shv(∗) q∗ �� Shv(XB),

the ∞-topos X′ has trivial shape. Using Lemma 6.4.5.6, we conclude that q∗
is necessarily induced by a homomorphism of locales U(XB) → U(∗), which
corresponds to an irreducible closed subset of XB . Since XB is Hausdorff,
this subset consists of a single (closed) point x. Using Proposition 7.3.2.12
and Corollary 7.3.2.9, we can identify X′ with the ∞-topos Shv(Y ), where
Y = XZR×XB

{x}. We now observe that the topological space Y is coherent
and irreducible (it contains a unique “generic” point), so that Shv(Y ) has
trivial shape by Lemma 7.3.6.11.

Remark 7.3.6.12. Let p∗ : Shv(XZR) → Shv(XB) be as in Proposition
7.3.6.10. Then p∗ has a fully faithful left adjoint p∗. We might say that an
object of Shv(XZR) is overconvergent if it belongs to the essential image of
p∗; for sheaves of sets, this agrees with the classical terminology.

Remark 7.3.6.13. One can generalize Proposition 7.3.6.10 to rigid spaces
which are not affinoid; we leave the details to the reader.
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This appendix is comprised of three parts. In §A.1, we will review some
ideas from classical category theory, such as monoidal structures, enriched
categories, and Quillen’s small object argument. We give a brief overview of
the theory of model categories in §A.2. The main result here is Proposition
A.2.6.13, which will allow us to establish the existence of model category
structures in a variety of situations with a minimal amount of effort. In §A.3,
we will use this result to make a detailed study of the theory of simplicial
categories. Our exposition is rather dense; for a more leisurely account of
the theory of model categories, we refer the reader to one of the standard
texts (such as [40]).

A.1 CATEGORY THEORY

Familiarity with classical category theory is the main prerequisite for reading
this book. In this section, we will fix some of the notation that we use when
discussing categories and summarize (generally without proofs) some of the
concepts employed in the body of the text.

If C is a category, we let Ob(C) denote the set of objects of C. We will write
X ∈ C to mean that X is an object of C. For X,Y ∈ C, we write HomC(X,Y )
for the set of morphisms from X to Y in C. We also write idX for the identity
automorphism of X ∈ C (regarded as an element of HomC(X,X)).

If Z is an object in a category C, then the overcategory C/Z of objects over
Z is defined as follows: the objects of C/Z are diagrams X → Z in C. A
morphism from f : X → Z to g : Y → Z is a commutative triangle

X ��

f ��













 Y

g
��		
		
		
	

Z.

Dually, we have an undercategory CZ/ = ((Cop)/Z)op of objects under Z.
If f : X → Z and g : Y → Z are objects in C/Z , then we will often write

HomZ(X,Y ) rather than HomC/Z
(f, g).

We let Set denote the category of sets and Cat the category of (small)
categories (where the morphisms are given by functors).

If κ is a regular cardinal, we will say that a set S is κ-small if it has
cardinality less than κ. We will also use this terminology when discussing
mathematical objects other than sets, which are built out of sets. For exam-
ple, we will say that a category C is κ-small if the set of all objects of C is
κ-small and the set of all morphisms in C is likewise κ-small.
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We will need to discuss categories which are not small. In order to mini-
mize the effort spent dealing with set-theoretic complications, we will adopt
the usual device of Grothendieck universes. We fix a strongly inaccessible
cardinal κ and refer to a mathematical object (such as a set or category)
as small if it is κ-small, and large otherwise. It should be emphasized that
this is primarily a linguistic device and that none of our results depend in
an essential way on the existence of a strongly inaccessible cardinal κ.

Throughout this book, the word “topos” will always mean Grothendieck
topos. Strictly speaking, a knowledge of classical topos theory is not required
to read this book: all of the relevant classical concepts will be introduced
(though sometimes in a hurried fashion) in the course of our search for
suitable ∞-categorical analogues.

A.1.1 Compactness and Presentability

Let κ be a regular cardinal.

Definition A.1.1.1. A partially ordered set I is κ-filtered if, for any subset
I0 ⊆ I having cardinality < κ, there exists an upper bound for I0 in I.

Let C be a category which admits (small) colimits and let X be an object
of C. Suppose we are given a κ-filtered partially ordered set I and a diagram
{Yα}α∈I in C indexed by I. Let Y denote a colimit of this diagram. Then
there is an associated map of sets

ψ : lim−→HomC(X,Yα) → HomC(X,Y ).
We say that X is κ-compact if ψ is bijective for every κ-filtered partially
ordered set I and every diagram {Yα} indexed by I. We say that X is small
if it is κ-compact for some (small) regular cardinal κ. In this case, X is
κ-compact for all sufficiently large regular cardinals κ.

Definition A.1.1.2. A category C is presentable if it satisfies the following
conditions:

(1) The category C admits all (small) colimits.

(2) There exists a (small) set S of objects of C which generates C under
colimits; in other words, every object of C may be obtained as the
colimit of a (small) diagram taking values in S.

(3) Every object in C is small. (Assuming (2), this is equivalent to the
assertion that every object which belongs to S is small.)

(4) For any pair of objects X,Y ∈ C, the set HomC(X,Y ) is small.

Remark A.1.1.3. In §5.5, we describe an ∞-categorical generalization of
Definition A.1.1.2.

Remark A.1.1.4. For more details of the theory of presentable categories,
we refer the reader to [1]. Note that our terminology differs slightly from
that of [1], in which our presentable categories are called locally presentable
categories.
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A.1.2 Lifting Problems and the Small Object Argument

Let C be a category and let p : A → B and q : X → Y be morphisms in C.
Recall that p is said to have the left lifting property with respect to q, and q
the right lifting property with respect to p, if given any diagram

A

p

��

�� X

q

��
B

���
�

�
�

�� Y

there exists a dotted arrow as indicated, rendering the diagram commutative.

Remark A.1.2.1. In the case where Y is a final object of C, we will instead
say that X has the extension property with respect to p : A → B.

Let S be any collection of morphisms in C. We define ⊥S to be the class
of all morphisms which have the right lifting property with respect to all
morphisms in S, and S⊥ to be the class of all morphisms which have the left
lifting property with respect to all morphisms in S. We observe that

S ⊆ (⊥S)⊥.

The class of morphisms (⊥S)⊥ enjoys several stability properties which
we axiomatize in the following definition.

Definition A.1.2.2. Let C be a category with all (small) colimits and let
S be a class of morphisms of C. We will say that S is weakly saturated if it
has the following properties:

(1) (Closure under the formation of pushouts) Given a pushout diagram

C
f ��

��

D

��
C ′ f ′

�� D′

such that f belongs to S, the morphism f ′ also belongs to S.

(2) (Closure under transfinite composition) Let C ∈ C be an object, let α
be an ordinal, and let {Dβ}β<α be a system of objects of CC/ indexed
by α: in other words, for each β < α, we are supplied with a morphism
C → Dβ , and for each γ ≤ β < α a commutative diagram

Dγ

φγ,β

��

C

��								

��















Dβ
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satisfying φγ,δ ◦φβ,γ = φβ,δ. For β ≤ α, we let D<β be a colimit of the
system {Dγ}γ<β taken in the category CC/.

Suppose that, for each β < α, the natural map D<β → Dβ belongs to
S. Then the induced map C → D<α belongs to S.

(3) (Closure under the formation of retracts) Given a commutative dia-
gram

C

f

��

�� C′

g

��

�� C

f

��
D �� D′ �� D

in which both horizontal compositions are the identity, if g belongs to
S, then so does f .

It is worth noting that saturation has the following consequences:

Proposition A.1.2.3. Let C be a category which admits all (small) colimits
and let S be a weakly saturated class of morphism in C. Then

(1) Every isomorphism belongs to S.

(2) The class S is stable under composition: if f : X → Y and g : Y → Z
belong to S, then so does g ◦ f .

Proof. Assertion (1) is equivalent to the closure of S under transfinite com-
position in the special case where α = 0; (2) is equivalent to the special case
where α = 2.

Remark A.1.2.4. A reader who is ill at ease with the style of the preced-
ing argument should feel free to take the asserted properties as part of the
definition of a weakly saturated class of morphisms.

The intersection of any collection of weakly saturated classes of morphisms
is itself weakly saturated. Consequently, for any category C which admits
small colimits, and any collection A of morphisms of C, there exists a small-
est weakly saturated class of morphisms containing A: we will call this the
weakly saturated class of morphisms generated by A. We note that (⊥A)⊥
is weakly saturated. Under appropriate set-theoretic assumptions, Quillen’s
“small object argument” can be used to establish that (⊥A)⊥ is the weakly
saturated class generated by A:

Proposition A.1.2.5 (Small Object Argument). Let C be a presentable
category and A0 = {φi : Ci → Di}i∈I a collection of morphisms in C indexed
by a (small) set I. For each n ≥ 0, let C[n] denote the category of functors
from the linearly ordered set [n] = {0, . . . , n} into C. There exists a functor
T : C[1] → C[2] with the following properties:



APPENDIX 785

(1) The functor T carries a morphism f : X → Z to a diagram

Y
f ′′

���
��

��
��

X

f ′
��������� f �� Z

where f ′ belongs to the weakly saturated class of morphisms generated
by A0 and f ′′ has the right lifting property with respect to each mor-
phism in A0.

(2) If κ is a regular cardinal such that each of the objects Ci, Di is κ-
compact, then T commutes with κ-filtered colimits.

Proof. Fix a regular cardinal κ as in (2) and fix a morphism f : X → Z in
C. We will give a functorial construction of the desired diagram

Y
f ′′

��












X

f ′
��������� f �� Z.

We define a transfinite sequence of objects

Y0 → Y1 → · · ·
in C/Z indexed by ordinals smaller than κ. Let Y0 = X and let Yλ =
lim−→α<λ

Yα when λ is a nonzero limit ordinal. For i ∈ I, let Fi : C/Z → Set
be the functor

(T → Z) �→ HomC(Di, Z) ×HomC(Ci,Z) HomC(Ci, T ).

Supposing that Yα has been defined, we define Yα+1 by the following pushout
diagram ∐

i∈I,η∈Fi(Yα) Ci ��

��

Yα

��∐
i∈I,η∈Fi(Yα)Di �� Yα+1.

We conclude by defining Y to be lim−→α<κ
Yα. It is easy to check that this

construction has the desired properties.

Remark A.1.2.6. If C is enriched, tensored, and cotensored over another
presentable monoidal category S (see §A.1.4), then a similar construction
shows that we can choose T to be an S-enriched functor.

Corollary A.1.2.7. Let C be a presentable category and let A be a set
of morphisms of C. Then (⊥A)⊥ is the smallest weakly saturated class of
morphisms containing A.



786 APPENDIX

Proof. Let A be the smallest weakly saturated class of morphisms containing
A, so that A ⊆ (⊥A)⊥. For the reverse inclusion, let us suppose that f :
X → Z belongs to (⊥A)⊥. Proposition A.1.2.5 implies the existence of a
factorization

X
f ′
→ Y

f ′′
→ Z,

where f ′ ∈ A and f ′′ belongs to ⊥A. It follows that f has the left lifting
property with respect to f ′′, so that f is a retract of f ′ and therefore belongs
to A.

Remark A.1.2.8. Let C be a presentable category, let S be a (small) set
of morphisms in C, and suppose that f : X → Y belongs to the weakly
saturated class of morphisms generated by S. The proofs of Proposition
A.1.2.5 and Corollary A.1.2.7 show that there exists a transfinite sequence

Y0 → Y1 → · · ·
of objects of CX/, indexed by a set of ordinals {β|β < α}, with the following
properties:

(i) For each β < α, there is a pushout diagram

C
g ��

��

D

��
lim−→γ<β

Yγ �� Yβ ,

where the colimit is formed in CX/ and g ∈ S.

(ii) The object Y is a retract of lim−→γ<α
Yγ in the category CX/.

A.1.3 Monoidal Categories

A monoidal category is a category C equipped with a (coherently) associative
“product” functor ⊗ : C×C → C and a unit object 1. The associativity is
expressed by demanding isomorphisms

ηA,B,C : (A⊗B) ⊗ C → A⊗ (B ⊗ C),

and the requirement that 1 be unital is expressed by demanding isomor-
phisms

αA : A⊗ 1 → A

βA : 1 ⊗A → A.

We do not merely require the existence of these isomorphisms: they are part
of the structure of a monoidal category. Moreover, these isomorphisms are
required to satisfy the following conditions:
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• The isomorphism ηA,B,C depends functorially on the triple (A,B,C);
in other words, η may be regarded as a natural isomorphism between
the functors

C×C×C → C

(A,B,C) �→ (A⊗B) ⊗ C

(A,B,C) �→ A⊗ (B ⊗ C).

Similarly, αA and βA depend functorially on A.

• Given any quadruple (A,B,C,D) of objects of C, the MacLane pen-
tagon

((A⊗B) ⊗ C) ⊗D

ηA,B,C⊗idD

.,���
���

���
��� ηA⊗B,C,D

��$$
$$$

$$$
$$$

$

(A⊗ (B ⊗ C)) ⊗D

ηA,B⊗C,D

��

(A⊗B) ⊗ (C ⊗D)

ηA,B,C⊗D

��
A⊗ ((B ⊗ C) ⊗D)

idA ⊗ηB,C,D �� A⊗ (B ⊗ (C ⊗D))

is commutative.

• For any pair (A,B) of objects of C, the triangle

(A⊗ 1) ⊗B
ηA,1,B ��

αA⊗idB

%%--
---

---
---

A⊗ (1 ⊗B)

idA ⊗βB,+





A⊗B

is commutative.

MacLane’s coherence theorem asserts that the commutativity of this pair
of diagrams implies the commutativity of all diagrams that can be writ-
ten using only the isomorphisms ηA,B,C , αA, and βA. More precisely, any
monoidal category is equivalent (as a monoidal category) to a strict monoidal
category: that is, a monoidal category in which ⊗ is literally associative, 1
is literally a unit with respect to ⊗, and the isomorphisms ηA,B,C , αA, βA
are the identity maps.

Example A.1.3.1. Let C be a category which admits finite products. Then
C admits the structure of a monoidal category where the operation ⊗ is given
by Cartesian product

A⊗B � A×B

and the isomorphisms ηA,B,C are induced from the evident associativity of
the Cartesian product. The identity 1 is defined to be the final object of C,
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and the isomorphisms αA and βA are determined in the obvious way. We
refer to this monoidal structure on C as the Cartesian monoidal structure.

We remark that the Cartesian product A × B is well-defined only up to
(unique) isomorphism (as is the final object 1), so that strictly speaking the
Cartesian monoidal structure on C depends on various choices; however, all
such choices lead to (canonically) equivalent monoidal categories.

Remark A.1.3.2. Let (C,⊗,1, η, α, β) be a monoidal category. We will
generally abuse notation by simply saying that C is a monoidal category,
that (C,⊗) is a monoidal category, or that ⊗ is a monoidal structure on C;
the other structure is implicitly understood to be present as well.

Remark A.1.3.3. Let C be a category equipped with a monoidal structure
⊗. Then we may define a new monoidal structure on C by setting A⊗opB =
B⊗A. We refer to this monoidal structure ⊗op as the opposite of the monoidal
structure ⊗.

Definition A.1.3.4. A monoidal category (C,⊗) is said to be left-closed if,
for each A ∈ C, the functor

N �→ A⊗N

admits a right adjoint
Y �→ AY.

We say that (C,⊗) is right-closed if the opposite monoidal structure (C,⊗op)
is left-closed; in other words, if every functor

N �→ N ⊗A

has a right adjoint
Y �→ Y A.

Finally, we say that (C,⊗) is closed if it is both right-closed and left-closed.

In the setting of monoidal categories, it is appropriate to consider only
those functors which are compatible with the monoidal structures in the
following sense:

Definition A.1.3.5. Let (C,⊗) and (D,⊗) be monoidal categories. A right-
lax monoidal functor from C to D consists of the following data:

• A functor G : C → D.

• A natural transformation γA,B : G(A) ⊗G(B) → G(A⊗B) rendering
commutative the diagram

(G(A) ⊗G(B)) ⊗G(C)

γA,B

��

�� G(A) ⊗ (G(B) ⊗G(C))

γB,C

��
G(A⊗B) ⊗G(C)

γA⊗B,C

��

G(A) ⊗G(B ⊗ C)

γA,B⊗C

��
G((A⊗B) ⊗ C)

G(ηA,B,C) �� G(A⊗ (B ⊗ C)).
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• A map e : 1D → G(1C) rendering commutative the diagrams

G(A) ⊗ 1D
id⊗e��
αG(A)

����
���

���
���

�
G(A) ⊗G(1C)

γA,1C �� G(A⊗ 1C)

G(αA)##���
���

���
���

G(A)

1D ⊗G(B)
e⊗id ��

βG(B)

����
���

���
���

�
G(1C) ⊗G(B)

γ1C,A �� G(1C ⊗B)

G(αB)##���
���

���
���

G(B)

.

A natural transformation between right-lax monoidal functors is monoidal
if it commutes with the maps γA,B , e.

Dually, a left-lax monoidal functor from C to D consists of a right-lax
monoidal functor from Cop to Dop; it is determined by giving a functor F :
C → D together with a map e′ : F (1C) → 1D and a natural transformation

γ′A,B : F (A⊗B) → F (A) ⊗ F (B)

satisfying the appropriate analogues of the conditions listed above.
If F is a right-lax monoidal functor via isomorphisms

e : 1D → F (1C)

γA,B : F (A) ⊗ F (B) → F (A⊗B),

then F may be regarded as a left-lax monoidal functor by setting e′ = e−1,
γ′A,B = γ−1

A,B. In this case, we simply say that F is a monoidal functor.

Remark A.1.3.6. Let

C
F �� D
G

��

be an adjunction between categories C and D. Suppose that C and D are
equipped with monoidal structures. Then endowing G with the structure of
a right-lax monoidal functor is equivalent to endowing F with the structure
of a left-lax monoidal functor.

Example A.1.3.7. Let C and D be categories which admit finite products
and let F : C → D be a functor between them. If we regard C and D

as endowed with the Cartesian monoidal structure, then F acquires the
structure of a left-lax monoidal functor in a canonical way via the maps
F (A×B) → F (A)×F (B) induced from the functoriality of F . In this case,
F is a monoidal functor if and only if it commutes with finite products.
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A.1.4 Enriched Category Theory

One frequently encounters categories D in which the collections of morphisms
HomD(X,Y ) between two objects X,Y ∈ D have additional structure: for
example, a topology, a group structure, or the structure of a vector space.
These situations may all be efficiently described using the language of en-
riched category theory, which we now introduce.

Let (C,⊗) be a monoidal category. A C-enriched category D consists of
the following data:

(1) A collection of objects.

(2) For every pair of objects X,Y ∈ D, a mapping object MapD(X,Y ) of
C.

(3) For every triple of objects X,Y, Z ∈ D, a composition map

MapD(Y,Z) ⊗ MapD(X,Y ) → MapD(X,Z).

Composition is required to be associative in the sense that for any
W,X, Y, Z ∈ C, the diagram

MapD(Z, Y ) ⊗ MapD(Y,X) ⊗ MapD(X,W )

����
���

���
���

##���
���

���
��

MapD(Z, Y ) ⊗ MapD(Y,W )

����
���

���
���

MapD(Z,X) ⊗ MapD(X,W )

##���
���

���
��

MapD(Z,W )

is commutative.

(4) For every object X ∈ D, a unit map 1 → MapD(X,X) rendering
commutative the diagrams

1 ⊗ MapD(Y,X) ��

%%��
���

���
���

MapD(X,X) ⊗ MapD(Y,X)

,+&&&
&&&

&&&
&&

MapD(Y,X)

MapD(X,Y ) ⊗ 1 ��

%%��
���

���
���

MapD(X,Y ) ⊗ MapD(X,X)

,+&&&
&&&

&&&
&&

MapD(X,Y ).

Example A.1.4.1. Suppose that (C,⊗) is a right-closed monoidal category.
Then C is enriched over itself in a natural way if one defines MapC(X,Y ) =
Y X .
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Example A.1.4.2. Let C be the category of sets endowed with the Cartesian
monoidal structure. Then a C-enriched category is simply a category in the
usual sense.

Remark A.1.4.3. Let G : C → C′ be a right-lax monoidal functor between
monoidal categories. Suppose that D is a category enriched over C. We may
define a category G(D) enriched over C′ as follows:

(1) The objects of G(D) are the objects of D.

(2) Given objects X,Y ∈ D, we set

MapG(D)(X,Y ) = G(MapD(X,Y )).

(3) The composition in G(D) is given by the composite map

G(MapD(Y,Z)) ⊗G(MapD(X,Y ))→G(MapD(Y,Z) ⊗ MapD(X,Y ))
→G(MapD(X,Z)).

Here the first map is determined by the right-lax monoidal structure
on the functor G, and the second is obtained by applying G to the
composition law in the category D.

(4) For every object X ∈ D, the associated unit G(D) is given by the
composition

1C′ → G(1C) → G(MapD(X,X)).

Remark A.1.4.4. If D and D′ are categories which are enriched over the
same monoidal category C, then one can define a category of C-enriched
functors from D to D′ in the evident way. Namely, an enriched functor
F : D → D′ consists of a map from the objects of D to the objects of D′

and a collection of morphisms

ηX,Y : MapD(X,Y ) → MapD′(FX,FY )

with the following properties:

(i) For each object X ∈ D, the composition

1C → MapD(X,X)
ηX.X→ MapD′(FX,FX)

coincides with the unit map for FX ∈ D′.

(ii) For every triple of objects X,Y, Z ∈ D, the diagram

MapD(X,Y ) ⊗ MapD(Y, Z) ��

��

MapD(X,Z)

��
MapD′(FX,FY ) ⊗ MapD(FY, FZ) �� MapD(FX,FZ)

is commutative.



792 APPENDIX

If F and F ′ are enriched functors, an enriched natural transformation α
from F to F ′ consists of specifying, for each object X ∈ D, a morphism
αX ∈ HomD′(FX,F ′X) which renders commutative the diagram

MapD(X,Y ) ��

��

MapD′(FX,FY )

αY

��
MapD′(F ′X,F ′Y )

αX �� MapD′(FX,F ′Y ).

Suppose that C is any monoidal category. Consider the functor C → Set
given by

X �→ HomC(1, X).

This is a right-lax monoidal functor from (C,⊗) to Set, where the latter is
equipped with the Cartesian monoidal structure. By the above remarks, we
see that we may equip any C-enriched category D with the structure of an
ordinary category by setting

HomD(X,Y ) = HomC(1,MapD(X,Y )).

We will generally not distinguish notationally between D as a C-enriched
category and this (underlying) category having the same objects. However, to
avoid confusion, we use different notations for the morphisms: MapD(X,Y )
is an object of C, while HomD(X,Y ) is a set.

Let C be a right-closed monoidal category and let D be a category enriched
over C. Fix objects C ∈ C, X ∈ D, and consider the functor

D → C

Y �→ MapD(X,Y )C .

This functor may or may not be corepresentable in the sense that there exists
an object Z ∈ D and an isomorphism of functors

η : MapD(X, •)C � MapD(Z, •).
If such an object Z exists, we will denote it by X ⊗C. The natural isomor-
phism η is determined by specifying a single map η(X) : C → MapD(X,X⊗
C). By general nonsense, the map η(X) determines X ⊗ C up to (unique)
isomorphism provided that X⊗C exists. If the object X⊗C exists for every
C ∈ C, X ∈ D, then we say that D is tensored over C. In this case, we may
regard

(X,C) �→ X ⊗ C

as determining a functor D⊗C → D. Moreover, one has canonical isomor-
phisms

X ⊗ (C ⊗D) � (X ⊗ C) ⊗D,
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which express the idea that D may be regarded as equipped with an “action”
of C. Here we imagine C as a kind of generalized monoid (via its monoidal
structure).

Dually, if C is right-closed, then an object of D which represents the functor

Y �→CMapD(Y,X)

will be denoted by CX; the object CX (if it exists) is determined up to
(unique) isomorphism by a map C → MapD(CX,X). If this object exists for
all C ∈ C, X ∈ D, then we say that D is cotensored over C.

Example A.1.4.5. Let C be a right-closed monoidal category. Then C may
be regarded as enriched over itself in a natural way. It is automatically
tensored over itself; it is cotensored over itself if and only if it is left-closed.

A.1.5 Trees

Let C be a presentable category and S a small collection of morphisms in C.
According to Remark A.1.2.8, the smallest weakly saturated class of mor-
phisms S containing S can be obtained from S using pushouts, retracts, and
transfinite composition. It is natural to ask if the formation of retracts is
necessary: that is, does the weakly saturated class of morphisms generated
by S coincide with the class of morphisms which generated by transfinite
compositions of pushouts of morphisms of S? Our goal for the remainder of
this section is to give an affirmative answer, at least after S has been suit-
ably enlarged (Proposition A.1.5.12). This result is of a somewhat technical
nature and will be needed only during our discussion of combinatorial model
categories in §A.2.6.

We begin by introducing a generalization of the notion of a transfinite
chain of morphisms.

Definition A.1.5.1. Let C be a presentable category and let S be a collec-
tion of morphisms in C. An S-tree in C consists of the following data:

(1) An object X ∈ C called the root of the S-tree.

(2) A partially ordered setA which is well-founded (so that every nonempty
subset of P has a minimal element).

(3) A diagram A → CX/, which we will denote by α �→ Yα.

(4) For each α ∈ A, a pushout diagram

C
f ��

��

D

��
lim−→β<α

Xβ �� Xα,

where f ∈ S.
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Let κ be a regular cardinal. We will say that an S-tree in C is κ-good if each
of the objects C and D appearing above is κ-compact, and if for each α ∈ A,
the set {β ∈ A : β < α} is κ-small.

Notation A.1.5.2. Let C be a presentable category and S a collection of
morphisms in C. We will indicate an S-tree by writing {Yα}α∈A. Here the
root X ∈ C and the relevant pushout diagrams are understood implicitly to
be part of the data.

Suppose we are given an S-tree {Yα}α∈A and a subset B ⊆ A which is
downward-closed in the following sense: if α ∈ B and β ≤ α, then β ∈ B.
Then {Yα}α∈B is an S-tree. We let YB denote the colimit lim−→α∈B Yα formed
in the category CX/. In particular, we have a canonical isomorphism Y∅ � X.
If B = {α ∈ A|α ≤ β}, then YB � Yα.

Remark A.1.5.3. Let C be a presentable category, S a collection of mor-
phisms in C, and {Yα}α∈A an S-tree in C with root X. Given a map f : X →
X ′, we can form an associated S-tree {Yα

∐
X X

′}α∈A having root X ′.

Example A.1.5.4. Let C be a presentable category, S a collection of mor-
phisms in C, and {Yα}α∈A an S-tree in C with root X. If A is linearly or-
dered, then we may identify {Yα}α∈A with a (possibly transfinite) sequence
of morphisms belonging to S,

X → Y0 → Y1 → · · · ,
as in the statement of (2) in Definition A.1.2.2.

Remark A.1.5.5. Let C be a presentable category, S a collection of mor-
phisms in C, and {Yα}α∈A an S-tree in C. Let B ⊆ A be downward-closed.
For α ∈ A − B, let Bα = B ∪ {β ∈ A : β ≤ α} and let Zα = YBα

. Then
{Zα}α∈A−B is an S-tree in C with root YB.

Lemma A.1.5.6. Let C be a presentable category and let S be a collection
of morphisms in C. Let {Yα}α∈A be an S-tree in C and let A′′ ⊆ A′ ⊆ A
be subsets which are downward-closed in A. Then the induced map YA′′ →
YA′ belongs to the weakly saturated class of morphisms generated by S. In
particular, the canonical map Y∅ → YA belongs to the weakly saturated class
of morphisms generated by S.

Proof. Using Remarks A.1.5.5 and A.1.5.3, we can assume without loss of
generality that A′′ = ∅ and A′ = A. Using the assumption that A is well-
founded, we can write A as the union of a transfinite sequence (downward-
closed) subsets {B(γ) ⊆ A}γ<β with the following property:

(∗) For each γ < β, the set B(γ) is obtained from B′(γ) =
⋃
γ′<γ B(γ′) by

adjoining a minimal element αγ of A−B′(γ).

For γ < β, let Zγ = YB(γ). We now observe that YA � lim−→γ<β
Zγ and that
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for each γ < β there is a pushout diagram

lim−→α<αγ
Yα ��

��

Yαγ

��
lim−→γ′<γ

Zγ′ f �� Zγ ,

so that f is the pushout of a morphism belonging to S.

Lemma A.1.5.7. Let C be a presentable category, let κ be a regular cardinal,
and let S = {fs : Cs → Ds} be a collection of morphisms in C, where each of
the objects Cs and Ds is κ-compact. Suppose that {Yα}α∈A is an S-tree in
C indexed by a partially ordered set (A,≤). Then there exists the following:

(1) A new ordering � on A which refines ≤ in the following sense: if
α � β, then α ≤ β. Let A′ denote the partially ordered set A with this
new partial ordering.

(2) A κ-good S-tree {Y ′
α}α∈A′ having the same root X as {Yα}α∈A.

(3) A collection of maps fα : Y ′
α → Yα which form a commutative diagram

Y ′
α′ ��

fα′
��

Y ′
α

fα

��
Yα′ �� Yα

when α′ � α.

(4) For every subset B ⊆ A which is downward-closed with respect to �,
the induced map fB : Y ′

B → YB is an isomorphism.

Proof. Choose a transfinite sequence of downward-closed subsets {A(γ) ⊆
A}γ≤β so that the following conditions are satisfied:

(i) If γ′ ≤ γ ≤ β, then A(γ′) ⊆ A(γ).

(ii) If λ ≤ β is a limit ordinal (possibly zero), then A(λ) =
⋃
γ<λA(γ).

(iii) If γ + 1 ≤ β, then A(γ + 1) = A(γ) ∪ {αγ}, where αγ is a minimal
element of A−A(γ).

(iv) The subset A(β) coincides with A.

We will construct a compatible family of orderings A′(γ) = (A(γ),�),
S-trees {Y ′

α}α∈A′(γ), and collections of morphisms {Y ′
α → Yα}α∈A(γ) by in-

duction on γ, so that the analogues of conditions (1) through (4) are satisfied.
If γ is a limit ordinal, there is nothing to do; let us assume therefore that
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γ < β and that the data (A′(γ), {Y ′
α}α∈A′(γ), {fα}α∈A(γ)) has already been

constructed. Let B = {α ∈ A : α < αγ}, so that we have a pushout diagram

C
f ��

i

��

D

��
YB �� Yα,

where f ∈ S. By the inductive hypothesis, we may identify YB with Y ′
B.

Since C is κ-compact, the map i admits a factorization

C
i′→ Y ′

B′
i′′→ Y ′

B,

where B′ is κ-small. Enlarging B′ if necessary, we may suppose that B′ is
downward-closed under �. We now extend the partial ordering � to A′(γ +
1) = A′(γ)∪ {αγ} by declaring that α ≤ αγ if and only if α ∈ B′. We define
Y ′
αγ

by forming a pushout diagram

C
f ��

i′

��

D

��
Y ′
B′ �� Y ′

αγ
,

and we define fαγ
: Y ′

αγ
→ Yαγ

to be the map induced by i′′. It is readily
verified that these data satisfy the desired conditions.

Lemma A.1.5.8. Let C be a presentable category, κ an uncountable regular
cardinal, and S a collection of morphisms in C. Let {Yα}α∈A be a κ-good
S-tree with root X and let TA : YA → YA be an idempotent endomorphism
of YA in the category CX/. Let B0 be an arbitrary κ-small subset of A. Then
there exists a κ-small subset B ⊆ A which is downward-closed and contains
B0 and an idempotent endomorphism TB : YB → YB such that the following
diagram commutes:

X ��

=

��

YB

TB

��

�� YA

TA

����
X �� YB �� YA.

Proof. Enlarging B0 if necessary, we may assume that B0 is downward-
closed. For every pair of downward-closed subsets A′′ ⊆ A′ ⊆ A, let iA′′,A′

denote the canonical map from YA′′ to YA′ . Note that because {Yα}α∈A is a
κ-good S-tree, if A′ ⊆ A is downward-closed and κ-small, YA′ is κ-compact
when viewed as an object of CX/. In particular, YB0 is a κ-compact object
of CX/. It follows that the composition

YB0

iB0,A→ YA
TA→ YA
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can also be factored as a composition

YB0

T0→ YB1

iB1,A→ YA,

where B1 ⊆ A is downward-closed and κ-small. Enlarging B1 if necessary,
we may suppose that B1 contains B0.

We now proceed to define a sequence of κ-small downward-closed subsets
B0 ⊆ B1 ⊆ B2 ⊆ · · ·

of A and maps Ti : YBi
→ YBi+1 . Suppose that i > 0 and that Bi and Ti−1

have already been constructed. By compactness again, we conclude that the
composite map

YBi

iBi,A→ YA
TA→ YA

can be factored as

YBi

Ti→ YBi+1

iBi+1,A→ YA,

where Bi+1 is κ-small. Enlarging Bi+1 if necessary, we may assume that
Bi+1 contains Bi and that the following diagrams commute:

YBi−1

Ti−1 ��

iBi−1,Bi

��

YBi

iBi,Bi+1

��

YBi−1

Ti−1 ��

Ti−1

��

YBi

Ti

��
YBi

Ti �� YBi+1 YBi

iBi,Bi+1�� YBi+1 .

Let B =
⋃
Bi; then B is κ-small by virtue of our assumption that κ is

uncountable. The collection of maps {Ti} assemble to a map TB : YB → YB
with the desired properties.

Lemma A.1.5.9. Let C be a presentable category, κ an uncountable regular
cardinal, and S a collection of morphisms in C. Let {Yα}α∈A be a κ-good
S-tree with root X, let B ⊆ A be downward-closed, and suppose we are given
a commutative diagram

YB ��

TB

��

�� YA

TA

��
YB �� YA

in CX/, where TA and TB are idempotent. Let C0 ⊆ A be a κ-small subset.
Then there exists a downward-closed κ-small subset C ⊆ A containing C0

and a pair of idempotent maps
TC : YC → YC

TB∩C : YB∩C → YB∩C
such that the following diagram commutes (in CX/):

YB

TB

��

YB∩C�� ��

TB∩C

��

YC

TC

��

�� YA

TA

��
YB YB∩C�� �� YC �� YA.
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Proof. Enlarging C0 if necessary, we may suppose that C0 is downward-
closed. We will define sequences of κ-small downward-closed subsets

C0 ⊆ C1 ⊆ · · · ⊆ A

D1 ⊆ D2 ⊆ · · · ⊆ B

and idempotent maps {TCi
: YCi

→ YCi
}i≥1, {TDi

: YDi
→ YDi

}i≥1. More-
over, we will guarantee that the following conditions are satisfied:

(i) For each i > 0, the set Di contains the intersection B ∩ Ci−1.

(ii) For each i > 0, the set Ci contains Di.

(iii) For each i > 0, the diagrams

YDi
��

TDi

��

YB

TB

��

YCi

TCi

��

�� YA

TA

��
YDi

�� YB YCi
�� YA

are commutative.

(iv) For each i > 2, the diagrams

YDi−2

TDi−2

��

�� YDi−1

TDi−1

��

YCi−2

TCi−2

��

�� YCi−1

TCi−1

��
YDi−2

��

YDi−1

��

YCi−2

��

YCi−1

��
YDi

= �� YDi
YCi

= �� YCi

commute.

(v) For each i > 1, the diagram

YDi−1
��

TDi−1

��

YCi−1

TCi−1

��
YDi−1

��

YCi−1

��
YDi

�� YCi

is commutative.

The construction proceeds by induction on i. Using a compactness argu-
ment, we see that conditions (iv) and (v) are satisfied provided that we
choose Ci and Di to be sufficiently large. The existence of the desired idem-
potent maps satisfying (iii) then follows from Lemma A.1.5.8 applied to
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the roots {Yα}α∈A and {Yα}α∈B . We now take C =
⋃
Ci. Conditions (i)

and (ii) guarantee that B ∩ C =
⋃
Di. Using (iv), it follows that the maps

{TCi
} and {TDi

} glue to give idempotent endomorphisms TC : YC → YC ,
TB∩C : YB∩C → YB∩C . Using (iii) and (v), we deduce that all of the desired
diagrams are commutative.

Lemma A.1.5.10. Let C be a presentable category, let κ be a regular cardi-
nal, and suppose that C is κ-accessible: that is, C is generated under κ-filtered
colimits by κ-compact objects (Definition 5.4.2.1). Let f : C → D be a mor-
phism between κ-compact objects of C, let g : X → Y be a pushout of f (so
that Y � X

∐
C D), and let g′ : X ′ → Y ′ be a retract of g in the category

of morphisms of C. Then there exists a morphism f ′ : C ′ → D′ with the
following properties:

(1) The objects C′, D′ ∈ C are κ-compact.

(2) The morphism g′ is a pushout of f ′.

(3) The morphism f ′ belongs to the weakly saturated class of morphisms
generated by f .

Proof. Since g′ is a retract of g, there exists a commutative diagram

X ′ ��

g′

��

X

g

��

�� X ′

g′

��
Y ′ �� Y �� Y ′.

Replacing g by the induced map X ′ → X ′ ∐
X Y , we can reduce to the case

where X = X ′ and Y ′ is a retract of Y in CX/. Then Y ′ can be identified
with the image of some idempotent i : Y → Y .

Since C is κ-accessible, we can writeX as the colimit of a κ-filtered diagram
{Xλ}. The object C is κ-compact by assumption. Refining our diagram if
necessary, we may assume that it takes values in CC/ and that Y is given as
the colimit of the κ-filtered diagram {Xλ

∐
C D}.

Because D is κ-compact, the composition D → Y
i→ Y admits a factor-

ization

D
j→ Xλ

∐
C

D → Y.

The κ-compactness of C implies that, after enlarging λ if necessary, we may
suppose that the composition j ◦ f coincides with the canonical map from
C to Xλ

∐
C D. Consequently, j and the idXλ

determine a map i′ from
Yλ = Xλ

∐
C D to itself. Enlarging λ once more, we may suppose that i′ is

idempotent and that the diagram

Yλ

i′

��

�� Y

i

��
Yλ �� Y
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is commutative. Let Y ′
λ be the image of the idempotent i′ and let f ′ : Xλ →

Y ′
λ be the canonical map. Then f ′ is a retract of the map Xλ → Yλ, which

is a pushout of f . This proves (3). The objects Xλ and Y ′
λ are κ-compact by

construction, so that (1) is satisfied. We now observe that the diagram

Xλ
��

��

Y ′
λ

��
X �� Y ′

is a retract of the pushout diagram

Xλ
��

��

Yλ

��
X �� Y

and therefore itself a pushout diagram. This proves (2) and completes the
proof.

Lemma A.1.5.11. Let C be a presentable category, κ a regular cardinal such
that C is κ-accessible, and S = {fs : Cs → Ds} a collection of morphisms
C such that each Cs is κ-compact. Let {Yα}α∈A be an S-tree in C with root
X and suppose that A is κ-small. Then there exists a map X ′ → X, where
X is κ-compact, an S-tree {Y ′

α}α∈A with root X ′, and an isomorphism of
S-trees

{Y ′
α

∐
X′
X}α∈A � {Yα}α∈A

(see Remark A.1.5.3).

Proof. Since C is κ-accessible, we can write X as the colimit of diagram
{Xi}i∈I indexed by a κ-filtered partially ordered set I, where each Xi is κ-
compact. Choose a transfinite sequence of downward-closed subsets {A(γ) ⊆
A}γ≤β so that the following conditions are satisfied:

(i) If γ′ ≤ γ ≤ β, then A(γ′) ⊆ A(γ).

(ii) If λ ≤ β is a limit ordinal (possibly zero), then A(λ) =
⋃
γ<λA(γ).

(iii) If γ + 1 ≤ β, then A(γ + 1) = A(γ) ∪ {αγ}, where αγ is a minimal
element of A−A(γ).

(iv) The subset A(β) coincides with A.

Note that, since A is κ-small, we have β < κ.
We will construct:

(a) A transfinite sequence of elements {iγ ∈ I}γ≤β such that iγ ≤ iγ′ for
γ ≤ γ′.
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(b) A sequence of S-trees {Y γα }α∈A(γ)} having roots Xiγ .

(c) A collection of isomorphisms of S-trees

{Y γα
∐
Xiγ

Xiγ′}α∈A(γ) � {Y γ′
α }α∈A(γ)

{Y γα
∐
Xiγ

X}α∈A(γ) � {Yα}α∈A(γ)

which are compatible with one another in the obvious sense.

If γ is a limit ordinal (or zero), we simply choose iγ to be any upper bound
for {iγ′}γ′<γ in I. The rest of the data is uniquely determined. The existence
of such an upper bound is guaranteed by our assumption that I is κ-filtered
since γ ≤ β < κ. Let us therefore suppose that the above data has been
constructed for all ordinals ≤ γ, and proceed to define iγ+1. Let i = iγ , let
α = αγ , and let B = {β ∈ A : β < α}. Then we have canonical isomorphisms

YB � Y γB
∐
Xi

X � lim−→{Y γB
∐
Xi

Xj}j≥i

and a pushout diagram

Cs
fs ��

g

��

Ds

��
YB �� Yα.

The κ-compactness of Cs implies that g factors as a composition

Cs
g′→ Y γB

∐
Xi

Xj

for some j ≥ i. We now define iγ+1 = j, and Y γ+1
α by forming a pushout

diagram

Cs

gs

��

�� Ds

��
Y γB

∐
Xi
Xj �� Y γ+1

α .

Proposition A.1.5.12. Let C be a presentable ∞-category, κ a regular car-
dinal, and S a weakly saturated class of morphisms in C. Let S ⊆ S be the
subset consisting of those morphisms f : X → Y in S such that X and Y
are κ-compact. Assume that

(i) The regular cardinal κ is uncountable, and C is κ-accessible.
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(ii) The set S generates S as a weakly saturated class of morphisms.

Then, for every morphism f : X → Y belonging to S, there exists a transfi-
nite sequence of objects {Yγ}γ<β of CX/ with the following properties:

(1) For every ordinal γ < β, the natural map lim−→γ′<γ
Zγ′ → Zγ is the

pushout of a morphism in S.

(2) The colimit lim−→γ<β
Zγ is isomorphic to Y (as objects of CX/).

Proof. Remark A.1.2.8 implies the existence of a transfinite sequence of ob-
jects

Y0 → Y1 → · · ·
in CX/ indexed by a set of ordinals A = {α|α < λ}, satisfying condition (1),
such that Y is a retract of lim−→α<λ

Yα in CX/. We may view the sequence
{Yα}α∈A as an S-tree in C having root X. According to Lemma A.1.5.7, we
can choose a new S-tree {Y ′

α}α∈A′ which is κ-good, where Y ′
A′ � YA, so that

Y is a retract of Y ′
A′ . Choose an idempotent map TA′ : Y ′

A′ → Y ′
A′ in CX/

whose image is isomorphic to Y .
We now define a transfinite sequence

B(0) ⊆ B(1) ⊆ B(2) ⊆ · · · ,
indexed by ordinals γ < β, and a compatible system of idempotent maps
TB(γ) : Y ′

Bγ
→ Y ′

Bγ
. Fix an ordinal γ and suppose that B(γ′) and TB(γ′)

have been defined for γ′ < γ. Let B′(γ) =
⋃
γ′<γ B(γ′) and let TB′(γ) be the

result of amalgamating the maps {TB(γ′)}γ′<γ . If B′(γ) = A′, we set β = γ
and conclude the construction; otherwise, we choose a minimal element a ∈
A′−B′(γ). Applying Lemma A.1.5.9, we deduce the existence of a downward-
closed subset C(γ) ⊆ A′ and a compatible collection of idempotent maps

TC(γ) : Y ′
C(γ) → Y ′

C(γ)

TC(γ)∩B′(γ) : Y ′
C(γ)∩B′(γ) → Y ′

C(γ)∩B′(γ).

We then define B(γ) = B′(γ) ∪ C(γ) and define TB(γ) to be the result of
amalgamating TB′(γ) and TC(γ).

For every ordinal γ, there is a κ-good S-tree {Y ′′
α }α∈B(γ)−B′(γ) with root

Y ′
B(γ) such that Y ′′

B(γ)−B′(γ) � Y ′
B(γ) (Remark A.1.5.5). Combining Lemma

A.1.5.11 with the observation that B(γ) −B′(γ) is κ-small, we deduce that
the map

Y ′
B′(γ) → Y ′

B(γ)

is the pushout of a morphism in S.
For each ordinal γ < β, let Zγ denote the image of the idempotent map

TB(γ). Then lim−→γ<β
Zγ � Y , so that (2) is satisfied. Condition (1) follows

from Lemma A.1.5.10.

Corollary A.1.5.13. Under the hypotheses of Proposition A.1.5.12, there
exists a κ-good S-tree {Yα}α∈A such that YA � Y in CX/.

Proof. Combine Proposition A.1.5.12 with Lemma A.1.5.7.
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A.2 MODEL CATEGORIES

One of the oldest and most successful approaches to the study of higher-
categorical phenomena is Quillen’s theory of model categories. In this book,
Quillen’s theory will play two (related) roles:

(1) The structures that we use to describe higher categories are naturally
organized into model categories. For example, ∞-categories are pre-
cisely those simplicial sets which are fibrant with respect to the Joyal
model structure (Theorem 2.4.6.1). The theory of model categories
provides a convenient framework for phrasing certain results and for
comparing different models of higher category theory (see, for example,
§2.2.5).

(2) The theory of model categories can itself be regarded as an approach
to higher category theory. If A is a simplicial model category, then the
subcategory A◦ ⊆ A of fibrant-cofibrant objects forms a fibrant sim-
plicial category. Proposition 1.1.5.10 implies that the simplicial nerve
N(A◦) is an ∞-category. We will refer to N(A◦) as the underlying
∞-category of A. Of course, not every ∞-category arises in this way,
even up to equivalence: for example, the existence of homotopy limits
and homotopy colimits in A implies the existence of various limits and
colimits in N(A◦) (Corollary 4.2.4.8). Nevertheless, we can often use
the theory of model categories to prove theorems about general ∞-
categories by reducing to the situation of ∞-categories which arise via
the above construction (every ∞-category C admits a fully faithful em-
bedding into N(A◦) for an appropriately chosen simplicial model cat-
egory A). For example, our proof of the ∞-categorical Yoneda lemma
(Proposition 5.1.3.1) uses this strategy.

The purpose of this section is to review the theory of model categories
with an eye toward the sort of applications described above. Our exposition
is somewhat terse, and we will omit many proofs. For a more detailed ac-
count, we refer the reader to [40] (or any other text on the theory of model
categories).

A.2.1 The Model Category Axioms

Definition A.2.1.1. A model category is a category C which is equipped
with three distinguished classes of morphisms in C, called cofibrations, fibra-
tions, and weak equivalences, in which the following axioms are satisfied:

(1) The category C admits (small) limits and colimits.

(2) Given a composable pair of maps X
f→ Y

g→ Z, if any two of g ◦ f , f ,
and g are weak equivalences, then so is the third.
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(3) Suppose f : X → Y is a retract of g : X ′ → Y ′: that is, suppose there
exists a commutative diagram

X
i ��

f

��

X ′

g

��

r �� X

f

��
Y

i′ �� Y ′ r′ �� Y,

where r ◦ i = idX and r′ ◦ i′ = idY . Then

(i) If g is a fibration, so is f .
(ii) If g is a cofibration, then so is f .

(iii) If g is a weak equivalence, then so is f .

(4) Given a diagram

A

i

��

�� X

p

��
B ��

���
�

�
�

Y,

a dotted arrow can be found rendering the diagram commutative if
either

(i) The map i is a cofibration, and the map p is both a fibration and
a weak equivalence.

(ii) The map i is both a cofibration and a weak equivalence, and the
map p is a fibration.

(5) Any map X → Z in C admits factorizations

X
f→ Y

g→ Z

X
f ′
→ Y ′ g′→ Z,

where f is a cofibration, g is a fibration and a weak equivalence, f ′ is
a cofibration and a weak equivalence, and g′ is a fibration.

A map f in a model category C is called a trivial cofibration if it is both
a cofibration and a weak equivalence; similarly, f is called a trivial fibration
if it is both a fibration and a weak equivalence. By axiom (1), any model
category C has an initial object ∅ and a final object ∗. An object X ∈ C is
said to be fibrant if the unique map X → ∗ is a fibration and cofibrant if the
unique map ∅ → X is a cofibration.

Example A.2.1.2. Let C be any category which admits small limits and
colimits. Then C can be endowed with the trivial model structure:

(W ) The weak equivalences in C are the isomorphisms.

(C) Every morphism in C is a cofibration.

(F ) Every morphism in C is a fibration.
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A.2.2 The Homotopy Category of a Model Category

Let C be a model category containing an object X. A cylinder object for
X is an object C together with a diagram X

∐
X

i→ C
j→ X where i is a

cofibration, j is a weak equivalence, and the composition j ◦ i is the “fold
map” X

∐
X → X. Dually, a path object for Y ∈ C is an object P together

with a diagram

Y
q→ P

p→ Y × Y

such that q is a weak equivalence, p is a fibration, and p ◦ q is the diagonal
map Y → Y ×Y . The existence of cylinder and path objects follows from the
factorization axiom (5) of Definition A.2.1.1 (factor the fold map X

∐
X →

X as a cofibration followed by a trivial fibration and the diagonal map Y →
Y × Y as a trivial cofibration followed by a fibration).

Proposition A.2.2.1. Let C be a model category. Let X be a cofibrant object
of C, Y a fibrant object of C, and f, g : X → Y two maps. The following
conditions are equivalent:

(1) For every cylinder object X
∐
X

j→ C, there exists a commutative
diagram

X
∐
X

j ��

(f,g)

��*
**

**
**

**
C

����
��
��
��

Y.

(2) There exists a cylinder object X
∐
X

j→ C and a commutative diagram

X
∐
X

j ��

(f,g)

��*
**

**
**

**
C

����
��
��
��

Y.

(3) For every path object P
p→ Y × Y , there exists a commutative diagram

X ��

(f,g)

���
��

��
��

�� P

p
+���
��
��
��
�

Y × Y.

(4) There exists a path object P
p→ Y × Y and a commutative diagram

X ��

(f,g)

���
��

��
��

�� P

p
+���
��
��
��
�

Y × Y.
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If C is a model category containing a cofibrant object X and a fibrant
object Y , we say two maps f, g : X → Y are homotopic if the hypotheses
of Proposition A.2.2.1 are satisfied and write f � g. The relation � is an
equivalence relation on HomC(X,Y ). The homotopy category hC may be
defined as follows:

• The objects of hC are the fibrant-cofibrant objects of C.

• For X,Y ∈ hC, the set HomhC(X,Y ) is the set of �-equivalence classes
of HomC(X,Y ).

Composition is well-defined in hC by virtue of the fact that if f � g, then
f ◦ h � g ◦ h (this is clear from characterization (2) of Proposition A.2.2.1)
and h′ ◦ f � h′ ◦ g (this is clear from characterization (4) of Proposition
A.2.2.1) for any maps h, h′ such that the compositions are defined in C.

There is another way of defining hC (or, at least, a category equivalent
to hC): one begins with all of C and formally adjoins inverses to all weak
equivalences. Let H(C) denote the category so obtained. If X ∈ C is cofibrant
and Y ∈ C is fibrant, then homotopic maps f, g : X → Y have the same
image in H(C); consequently, we obtain a functor hC → H (C) which can be
shown to be an equivalence. We will generally ignore the distinction between
these two categories, employing whichever description is more useful for the
problem at hand.

Remark A.2.2.2. Since C is (generally) not a small category, it is not
immediately clear that H(C) has small morphism sets; however, this follows
from the equivalence between H(C) and hC.

A.2.3 A Lifting Criterion

The following basic principle will be used many times throughout this book:

Proposition A.2.3.1. Let C be a model category containing cofibrant objects
A and B and a fibrant object X. Suppose we are given a cofibration i : A → B
and any map f : A → X. Suppose moreover that there exists a commutative
diagram

A

[i]

��

[f ]

���
��

��
��

�

X

B

g
���������
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in the homotopy category hC. Then there exists a commutative diagram

A

i

��

f

���
��

��
��

�

X

B

g
���������

in C, with [g] = g. (Here we let [p] denote the homotopy class in hC of a
morphism p in C.)

Proof. Choose a map g′ : B → X representing the homotopy class g. Choose
a cylinder object

A
∐

A → C(A) → A

and a factorization
C(A)

∐
A

‘
A

(B
∐

B) → C(B) → B,

where the first map is a cofibration and the second is a trivial fibration. We
observe that C(B) is a cylinder object for B.

Since g′ ◦ i is homotopic to f , there exists a map h0 : C(A)
∐
AB → X

with h0|B = g′ and h0|A = f . The inclusion C(A)
∐
AB → C(B) is a trivial

cofibration, so h0 extends to a map h : C(B) → X. We may regard h as a
homotopy from g′ to g, where g ◦ i = f .

Proposition A.2.3.1 will often be applied in the following way. Suppose we
are given a diagram

A′ ��

��

A

i

��

f

���
��

��
��

�

X

B′ �� B

���
�

�
�

which we would like to extend as indicated by the dotted arrow. If X is
fibrant, i is a cofibration between cofibrant objects, and the horizontal arrows
are weak equivalences, then it suffices to solve the (frequently easier) problem
of constructing the dotted arrow in the diagram

A′

��

����
���

���
���

��

X

B′.

��&&&&&&&

.
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A.2.4 Left Properness and Homotopy Pushout Squares

Definition A.2.4.1. A model category C is left proper if, for any pushout
square

A
i ��

j

��

B

j′

��
A′ i′ �� B′

in which i is a cofibration and j is a weak equivalence, the map j′ is also a
weak equivalence. Dually, C is right proper if, for any pullback square

X ′ p′ ��

q′

��

Y ′

q

��
X

p �� Y

in which p is a fibration and q is a weak equivalence, the map q′ is also a
weak equivalence.

In this book, we will deal almost exclusively with left proper model cate-
gories. The following provides a useful criterion for establishing left proper-
ness.

Proposition A.2.4.2. Let C be a model category in which every object is
cofibrant. Then C is left proper.

Proposition A.2.4.2 is an immediate consequence of the following basic
lemma:

Lemma A.2.4.3. Let C be a model category containing a pushout diagram

A
i ��

j

��

B

j′

��
A′ i′ �� B′.

Suppose that A and A′ are cofibrant, i is a cofibration, and j is a weak
equivalence. Then j′ is a weak equivalence.

Proof. We wish to show that j′ is an isomorphism in the homotopy category
hC. In other words, we need to show that for every fibrant object Z of C,
composition with j′ induces a bijection HomhC(B′, Z) → HomhC(B,Z).

We first show that composition with j′ is surjective on homotopy classes.
Suppose we are given a map f : B → Z. Since j is a weak equivalence, the
composition f ◦ i is homotopic to g ◦ j for some g : A′ → B. According to
Proposition A.2.3.1, there is a map f ′ : B → Z such that f ′ ◦ i = g ◦ j and
such that f ′ is homotopic to f . The amalgamation of f ′ and g determines a
map B′ → Z which lifts f ′.
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We now show that j′ is injective on homotopy classes. Suppose we are
given a pair of maps s, s′ : B′ → Z. Let P be a path object for Z. If s ◦ j′
and s′ ◦ j′ are homotopic, then there exists a commutative diagram

B
h ��

j′

��

P

��
B′ s×s′�� Z × Z.

We now replace C by C/Z×Z and apply the surjectivity statement above to
deduce that there is a map h′ : B′ → P such that h is homotopic to h′ ◦ j′.
The existence of h′ shows that s and s′ are homotopic, as desired.

Suppose we are given a diagram

A0 ← A → A1

in a model category C. In general, the pushout A0

∐
AA1 is poorly behaved

in the sense that a map of diagrams

A0

��

A�� ��

��

A1

��
B0 B�� �� B1

need not induce a weak equivalence A0

∐
AA1 → B0

∐
B B1, even if each

of the vertical arrows in the diagram is individually a weak equivalence. To
correct this difficulty, it is convenient to introduce the left derived functor
of “pushout”. The homotopy pushout of the diagram

A0 A�� �� A1

is defined to be the pushout A′
0

∐
A′ A′

1, where we have chosen a commutative
diagram

A′
0

��

A′

��

i ��j�� A′
1

��
A0 A�� �� A1

in which the top row is a cofibrant diagram in the sense that A′ is cofibrant
and the maps i and j are both cofibrations. One can show that such a diagram
exists and that the pushout A′

0

∐
A′ A′

1 depends on the choice of diagram only
up to weak equivalence. (For a more systematic approach which includes a
definition of “cofibrant” for more complicated diagrams, we refer the reader
to §A.3.3.)
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More generally, we will say that a diagram

A

���
��

��
��

�

����
��
��
��

A0

���
��

��
��

� A1

����
��
��
��

M

is a homotopy pushout square if the composite map

A′
0

∐
A′
A′

1 → A0

∐
A

A1 → M

is a weak equivalence. In this case we will also say that M is a homotopy
pushout of A0 and A1 over A. One can show that this condition is indepen-
dent of the choice of a “cofibrant resolution”

A′
0 A′�� �� A′

1

of the original diagram. In particular, we note that if the diagram

A0 A ���� A1

is already cofibrant, then the ordinary pushout A0

∐
AA1 is a homotopy

pushout. However, the condition that the diagram be cofibrant is quite
strong; in good situations we can get away with quite a bit less:

Proposition A.2.4.4. Let C be a model category and let

A

i((///
///

///
//

j

!"..
...

...
...

A0

 !)
))

))
))

))
A1

))��
��
��
��
�

A0

∐
AA1

be a pushout square in C. This diagram is also a homotopy pushout square
if either of the following conditions is satisfied:

(i) The objects A and A0 are cofibrant, and j is a cofibration.

(ii) The map j is a cofibration, and C is left proper.

Remark A.2.4.5. The above discussion of homotopy pushouts can be du-
alized; one obtains the notion of homotopy pullbacks, and the analogue of
Proposition A.2.4.4 requires either that C be a right proper model category
or that the objects in the diagram be fibrant.
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A.2.5 Quillen Adjunctions and Quillen Equivalences

Let C and D be model categories and suppose we are given a pair of adjoint
functors

C
F �� D
G

��

(here F is the left adjoint andG is the right adjoint). The following conditions
are equivalent:

(1) The functor F preserves cofibrations and trivial cofibrations.

(2) The functor G preserves fibrations and trivial fibrations.

(3) The functor F preserves cofibrations, and the functor G preserves fi-
brations.

(4) The functor F preserves trivial cofibrations, and the functor G pre-
serves trivial fibrations.

If any of these equivalent conditions is satisfied, then we say that the pair
(F,G) is a Quillen adjunction between C and D. We also say that F is a left
Quillen functor and that G is a right Quillen functor. In this case, one can
show that F preserves weak equivalences between cofibrant objects and G
preserves weak equivalences between fibrant objects.

Suppose that C
F �� D
G

�� is a Quillen adjunction. We may view the homo-

topy category hC as obtained from C by first passing to the full subcategory
consisting of cofibrant objects and then inverting all weak equivalences. Ap-
plying a similar procedure with D, we see that because F preserves weak
equivalence between cofibrant objects, it induces a functor hC → hD; this
functor is called the left derived functor of F and denoted LF . Similarly, one
may define the right derived functor RG of G. One can show that LF and
RG determine an adjunction between the homotopy categories hC and hD.

Proposition A.2.5.1. Let C and D be model categories and let

C
F �� D
G

��

be a Quillen adjunction. The following are equivalent:

(1) The left derived functor LF : hC → hD is an equivalence of categories.

(2) The right derived functor RG : hD → hC is an equivalence of cate-
gories.

(3) For every cofibrant object C ∈ C and every fibrant object D ∈ D, a
map C → G(D) is a weak equivalence in C if and only if the adjoint
map F (C) → D is a weak equivalence in D.
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Proof. Since the derived functors LF and RG are adjoint to one another, it
is clear that (1) is equivalent to (2). Moreover, (1) and (2) are equivalent to
the assertion that the unit and counit of the adjunction

u : idC → RG ◦ LF
v : LF ◦RG → idD

are weak equivalences. Let us consider the unit u. Choose a fibrant object
C of C. The composite functor (RG ◦ LF )(C) is defined to be G(D), where
F (C) → D is a weak equivalence in D and D is a fibrant object of D. Thus
u is a weak equivalence when evaluated on C if and only if for any weak
equivalence F (C) → D, the adjoint map C → G(D) is a weak equivalence.
Similarly, the counit v is a weak equivalence if and only if the converse holds.
Thus (1) and (2) are equivalent to (3).

If the equivalent conditions of Proposition A.2.5.1 are satisfied, then we
say that the adjunction (F,G) gives a Quillen equivalence between the model
categories C and D.

A.2.6 Combinatorial Model Categories

In this section, we give an overview of Jeff Smith’s theory of combinatorial
model categories. Our main goal is to prove Proposition A.2.6.13, which
allows us to construct model structures on a category C by specifying the
class of weak equivalences together with a small amount of additional data.

Definition A.2.6.1 (Smith). Let A be model category. We say that A is
combinatorial if the following conditions are satisfied:

(1) The category A is presentable.

(2) There exists a set I of generating cofibrations such that the collection of
all cofibrations in A is the smallest weakly saturated class of morphisms
containing I (see Definition A.1.2.2).

(3) There exists a set J of generating trivial cofibrations such that the
collection of all trivial cofibrations in A is the smallest weakly saturated
class of morphisms containing J .

If C is a combinatorial model category, then the model structure on C is
uniquely determined by the generating cofibrations and generating trivial
cofibrations. However, in practice these generators might be difficult to find.
Our goal in this section is to reformulate Definition A.2.6.1 in a manner
which puts more emphasis on the category of weak equivalences in A.

In practice, it is often easier to describe the class of all weak equivalences
than it is to describe a class of generating trivial cofibrations.

Definition A.2.6.2. Let C be a presentable category and κ a regular cardi-
nal. We will say that a full subcategory C0 ⊆ C is a κ-accessible subcategory
of C if the following conditions are satisfied:
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(1) The full subcategory C0 ⊆ C is stable under κ-filtered colimits.

(2) There exists a (small) set of objects of C0 which generates C0 under
κ-filtered colimits.

We will say that C0 ⊆ C is an accessible subcategory if C0 is a κ-accessible
subcategory of C for some regular cardinal κ.

Condition (2) of Definition A.2.6.2 admits the following reformulation:

Proposition A.2.6.3. Let κ be a regular cardinal, C a presentable category,
and C0 ⊆ C a full subcategory which is stable under κ-filtered colimits. Then
C0 satisfies condition (2) of Definition A.2.6.2 if and only if the following
condition is satisfied for all sufficiently large regular cardinals τ � κ:

(2′τ ) Let A be a τ -filtered partially ordered set and {Xα}α∈A a diagram of τ -
compact objects of C indexed by A. For every κ-filtered subset B ⊆ A,
we let XB denote the (κ-filtered) colimit of the diagram {Xα}α∈B.
Suppose that XA belongs to C0. Then for every τ -small subset C ⊆ A,
there exists a τ -small κ-filtered subset B ⊆ A which contains C, such
that XB belongs to C0.

First, we need the following preliminary result:

Lemma A.2.6.4. Let τ � κ be regular cardinals such that τ > κ, let D

be a presentable ∞-category, and let {Ca}a∈A and {Db}b∈B be families of
τ -compact objects in D indexed by τ -filtered partially ordered sets A and B,
such that

lim−→a∈ACa � lim−→b∈B Db.

Then, for every pair of τ -small subsets A0 ⊆ A, B0 ⊆ B, there exist τ -
small κ-filtered subsets A′ ⊆ A, B′ ⊆ B such that A0 ⊆ A′, B0 ⊆ B′, and
lim−→a∈A′ Ca � lim−→b∈B′ Db.

Proof. Let A be the partially ordered set of all τ -small κ-filtered subsets
of A which contain A0, let B be the partially ordered set of all τ -small κ-
filtered subsets of B which contain B0, let X ∈ D be the common colimit
lim−→a∈A Ca � lim−→b∈B Db, and let C be the full subcategory of D/X spanned by
those morphisms Y → X, where Y is a τ -compact object of D. Let f : A → C

and g : B → C be the functors described by the formulas

f(A′) = (lim−→a∈A′ Ca → lim−→a∈ACa)

g(B′) = (lim−→b∈B′ Db → lim−→b∈B Db).

The desired result now follows by applying Lemma 5.4.6.3 to the associated
diagram

N(A) → N(C) ← N(B).
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Proof of Proposition A.2.6.3. First suppose that (2′τ ) is satisfied for all suf-
ficiently large τ � κ. Choose τ � κ large enough that C is generated under
colimits by its full subcategory Cτ of τ -compact objects and such that (2′τ ) is
satisfied. Let D = Cτ ∩C0, so that D is essentially small. We will show that
D generates C0 under τ -filtered colimits. By assumption, every object X ∈ C

can be obtained as a τ -filtered colimit of τ -compact objects {Xα}α∈A. Let
A′ denote the collection of all τ -small κ-filtered subsets B ⊆ A such that
XB ∈ C0. We regard A′ as partially ordered via inclusions. Invoking con-
dition (2′τ ), we deduce that XA is the colimit of the τ -filtered collection of
objects {XA′}A′∈B. We now observe that each XA′ belongs to D.

Now suppose that condition (2) is satisfied, so that C0 is generated under
κ-filtered colimits by a small subcategory D ⊆ C0. Choose τ � κ large
enough that every object of D is τ -compact. Enlarging τ if necessary, we
may suppose that τ > κ. We claim that (2′τ ) is satisfied. To prove this, we
consider any system of morphisms {X}α∈A satisfying the hypotheses of (2′τ ).
In particular, XA belongs to C0, so that XA may be obtained in some other
way as a κ-filtered colimit of a system {Yβ}β∈B , where each of the objects
Yβ belongs to D and is therefore τ -compact. Let C ′ denote the family of
all τ -small κ-filtered subsets B0 ⊆ B. Replacing B by B′ and the family
{Yβ}β∈B by {YB0}B0∈B′ , we may assume that B is τ -filtered.

Let A0 ⊆ A be a τ -small subset. Applying Lemma A.2.6.4 to the diagram
category C, we deduce that A0 ⊆ A′, where A′ is a τ -small, κ-filtered subset
of A and there is an isomorphism XA′ � YB′ ; here B′ is a κ-filtered subset
of B, so that YB′ ∈ C0 by virtue of our assumption that C0 is stable under
κ-filtered colimits.

Corollary A.2.6.5. Let f : C → D be a functor between presentable cate-
gories which preserves κ-filtered colimits and let D0 ⊆ D be a κ-accessible
subcategory. Then f−1 D0 ⊆ C is a κ-accessible subcategory.

Corollary A.2.6.6 (Smith). Let A be a combinatorial model category, let
A[1] be the category of morphisms in A, let W ⊆ A[1] be the full subcategory
spanned by the weak equivalences, and let F ⊆ A[1] be the full subcategory
spanned by the fibrations. Then F , W , and F∩W are accessible subcategories
of A[1].

Proof. For every morphism i : A → B, let Fi : A[1] → Set[1] be the functor
which carries a morphism f : X → Y to the induced map of sets

HomA(B,X) → HomA(B, Y ) ×HomA(A,Y ) HomA(A,X).

We observe that if A and B are κ-compact objects of A, then Fi preserves
κ-filtered colimits.

Let C0 be the full subcategory of Set[1] spanned by the collection of sur-
jective maps between sets. It is easy to see that C0 is an accessible category
of Set[1]. It follows that the full subcategories R(i) = F−1

i C0 ⊆ A[1] are
accessible subcategories of A[1] (Corollary A.2.6.5).
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Let I be a set of generating cofibrations for A and let J be a set of
generating trivial cofibrations. Then Proposition 5.4.7.10 implies that the
subcategories

F =
⋂
j∈J

R(j)

W ∩ F =
⋂
i∈I

R(i)

are accessible subcategories of A[1].
Applying Proposition A.1.2.5, we deduce that there exists a pair of func-

tors T ′, T ′′ : A[1] → A[1], which carry an arbitrary morphism f : X → Z to
a factorization

X
T ′(f)→ Y

T ′′(f)→ Z,

where T ′(f) is a trivial cofibration and T ′′(f) is a fibration. Moreover, the
functor T ′′ can be chosen to commute with κ-filtered colimits for a sufficiently
large regular cardinal κ. We now observe thatW is the inverse image of F∩W
under the functor T ′′ : A[1] → A[1] and is therefore an accessible subcategory
of A[1] by Corollary A.2.6.5.

Our next goal is to prove a converse to Corollary A.2.6.6, which will allow
us to construct examples of combinatorial model categories. First, we need
the following preliminary result.

Lemma A.2.6.7. Let A be a presentable category. Suppose W and C are
collections of morphisms of A with the following properties:

(1) The collection C is a weakly saturated class of morphisms of A, and
there exists a (small) subset C0 ⊆ C which generates C as a weakly
saturated class of morphisms.

(2) The intersection C∩W is a weakly saturated class of morphisms of A.

(3) The full subcategory W ⊆ A[1] is an accessible subcategory of A[1].

(4) The class W has the two-out-of-three property.

Then C ∩ W is generated, as a weakly saturated class of morphisms, by a
(small) subset S ⊆ C ∩W .

Proof. Let κ be a regular cardinal such that W is κ-accessible. Choose a
regular cardinal τ � κ such that W satisfies condition (2′τ ) of Proposition
A.2.6.3. Enlarging τ if necessary, we may assume that τ > κ (so that τ is
uncountable), that C is τ -accessible, and that the source and target of every
morphism in C0 is τ -compact. Enlarging C0 if necessary, we may suppose
that C0 consists of all morphisms f : X → Y in C such that X and Y are
τ -compact. Let S = C0 ∩ W . We will show that S generates C ∩ W as a
weakly saturated class of morphisms.
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Let S be the weakly saturated class of morphisms generated by S and let
f : X → Y be a morphism which belongs to C ∩W . We wish to show that
f ∈ S. Corollary A.1.5.13 implies that there exists a τ -good C0-tree {Yα}α∈A
with root X, such that Y is isomorphic to YA as objects of CX/. Let us say
that a subset B ⊆ A is good if it is downward-closed and the canonical map
i : X → YB belongs to W (we note that i automatically belongs to C, by
virtue of Lemma A.1.5.6).

We now make the following observations:

(i) Given an increasing transfinite sequence of good subsets {Aγ}γ<β , the
union

⋃
Aγ is good. This follows from the assumption that C ∩W is

weakly saturated.

(ii) Let B ⊆ A be good and let B0 ⊆ B be τ -small. Then there exists a τ -
small subset B′ ⊆ B containing B0. This follows from our assumption
that W satisfies condition (2′τ ) of Proposition A.2.6.3.

(iii) Suppose that B,B′ ⊆ A are such that B, B′, and B ∩ B′ are good.
Then B ∪B′ is good. To prove this, we consider the pushout diagram

YB∩B′ ��

��

YB

��
YB′ �� YB∪B′ .

Every morphism in this diagram belongs to C (Lemma A.1.5.6), and
the upper horizontal map belongs to W by virtue of assumption (4).
Since C∩W is stable under pushouts, we conclude that the lower verti-
cal map belongs to W . Assumption (4) now implies that the composite
map X → YB′ → YB∪B′ belongs to W , as desired.

The next step is to prove the following claim:

(∗) Let A′ be a good subset of A and let B0 ⊆ A be τ -small. Then there
exists a τ -small subset B ⊆ A such that B0 ⊆ B, B is good and B∩A′

is good.

To prove (∗), we begin by setting B′
0 = A′ ∩B0. We now define sequences

of τ -small subsets

B0 ⊆ B1 ⊆ B2 ⊆ · · ·
B′

0 ⊆ B′
1 ⊆ B′

2 ⊆ · · ·
as follows. Suppose that Bi and B′

i have been defined. Applying (ii), we
choose Bi+1 to be any τ -small good subset of A which contains Bi ∪ B′

i.
Applying (ii) again, we select B′

i+1 to be any τ -small good subset of A′

which contains A′ ∩ Bi+1. Let B =
⋃
Bi. It follows from (i) that B and

A′ ∩B =
⋃
iB

′
i are both good.

We now choose a transfinite sequence of good subsets {A(γ) ⊆ A}γ<β .
Suppose that A(γ′) has been defined for γ′ < γ and let A′(γ) =

⋃
γ′<γ A(γ′).
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It follows from (i) that A′(γ) is good. If A′(γ) = A, we set β = γ and conclude
the construction. Otherwise, we choose a minimal element a ∈ A − A′(γ).
Applying (∗), we deduce that there exists a τ -small good subset B(γ) ⊆ A
containing a, such that A′(γ) ∩ B(γ) is good. Let A(γ) = A′(γ) ∪ B(γ). It
follows from (iii) that A(γ) is good.

We observe that {YA(γ)}γ<β is a transfinite sequence of objects of CX/

having colimit Y . To prove that f : X → Y belongs to S, it will suffice to
show that for each γ < β, the map g : YA′(γ) → YA(γ) belongs to S. Remark
A.1.5.5 implies the existence of a C0-tree {Zα}α∈A(γ)−A′(γ) with root YA′(γ)
and colimit YA(γ). Since A(γ) − A′(γ) is τ -small, Lemma A.1.5.11 implies
the existence of a pushout diagram

M ��

��

N

��
YA′(γ) �� YA(γ)

where g ∈ C0.
Since C is τ -accessible, we can write YA′(γ) as the colimit of a family of

τ -compact objects {Zλ}λ∈P indexed by a τ -filtered partially ordered set P .
Since M is τ -compact, we can assume (reindexing the colimit if necessary)
that we have a compatible family of maps {M → Zλ}. For each λ, let
gλ : Zλ → Zλ

∐
M N be the induced map. Then g is the filtered colimit of

the family {gλ}λ∈P . Since W satisfies condition (2′τ ) of Proposition A.2.6.3,
we conclude that there exists a τ -small κ-filtered subset P0 ⊆ P , such that
g′ = lim−→λ∈P0

gλ belongs to W . We now observe that g′ ∈ S and that g is a

pushout of g′, so that g ∈ S, as desired.

Proposition A.2.6.8. Let A be a presentable category and let W and C be
classes of morphisms in A with the following properties:

(1) The collection C is a weakly saturated class of morphisms of A, and
there exists a (small) subset C0 ⊆ C which generates C as a weakly
saturated class of morphisms.

(2) The intersection C∩W is a weakly saturated class of morphisms of A.

(3) The full subcategory W ⊆ A[1] is an accessible subcategory of A[1].

(4) The class W has the two-out-of-three property.

(5) If f is a morphism in A which has the right lifting property with respect
to each element of C, then f ∈ W .

Then A admits a combinatorial model structure, which may be described as
follows:

(C) The cofibrations in A are the elements of C.

(W ) The weak equivalences in A are the elements of W .
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(F ) A morphism in A is a fibration if it has the right lifting property with
respect to every morphism in C ∩W .

Proof. The category A has all (small) limits and colimits since it is present-
able. The two-out-three property for W is among our assumptions, and the
stability of W under retracts follows from the accessibility of W ⊆ A[1]

(Corollary 4.4.5.16). The class of cofibrations is stable under retracts by (1),
and the class of fibrations is stable under retracts by definition. The classes
of fibrations and cofibrations are stable under retracts by definition.

We next establish the factorization axioms. By the small object argument,
any morphism X → Z admits a factorization

X
f→ Y

g→ Z,

where f ∈ C and g has the right lifting property with respect to every
morphism in C. In particular, g has the right lifting property with respect
to every morphism in C ∩W , so that g is a fibration; assumption (5) then
implies that g is a trivial fibration. Similarly, using Lemma A.2.6.7, we may
choose a factorization as above, where f ∈ C ∩W and g has the right lifting
property with respect to C ∩W ; g is then a fibration by definition.

To complete the proof, it suffices to show that cofibrations have the left
lifting property with respect to trivial fibrations, and trivial cofibrations
have the left lifting property with respect to fibrations. The second of these
statements is clear (it is the definition of a fibration). For the first statement,
let us consider an arbitrary trivial fibration p : X → Z. By the small object
argument, there exists a factorization of p

X
q→ Y

r→ Z,

where q is a cofibration and r has the right lifting property with respect to
all cofibrations. Then r is a weak equivalence by (3), so that q is a weak
equivalence by the two-out-of-three property. Considering the diagram

X

q

��

X

p

��
Y

r ��

���
�

�
�

Z,

we deduce the existence of the dotted arrow from the fact that p is a fibration
and q is a trivial cofibration. It follows that p is a retract of r, and therefore
p also has the right lifting property with respect to all cofibrations. This
completes the proof that A is a model category. The assertion that A is
combinatorial follows immediately from (1) and from Lemma A.2.6.7.

Corollary A.2.6.9. Let A be a presentable category equipped with a model
structure. Suppose that there exists a (small) set which generates the collec-
tion of cofibrations in A (as a weakly saturated class of morphisms). Then
the following are equivalent:
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(1) The model category A is combinatorial; in other words, there exists a
(small) set which generates the collection of trivial cofibrations in A
(as a weakly saturated class of morphisms).

(2) The collection of weak equivalences in A determines an accessible sub-
category of A[1].

Proof. The implication (1) ⇒ (2) follows from Corollary A.2.6.6, and the
reverse implication follows from Proposition A.2.6.8.

Our next goal is to prove a weaker version of Proposition A.2.6.8 which is
somewhat easier to apply in practice.

Definition A.2.6.10. Let A be a presentable category. A class W of mor-
phisms in C is perfect if it satisfies the following conditions:

(1) Every isomorphism belongs to W .

(2) Given a pair of composable morphisms X f→ Y
g→ Z, if any two of the

morphisms f , g, and g ◦ f belong to W , then so does the third.

(3) The class W is stable under filtered colimits. More precisely, suppose
we are given a family of morphisms {fα : Xα → Yα} which is indexed
by a filtered partially ordered set. Let X denote a colimit of {Xα}, Y
a colimit of {Yα}, and f : X → Y the induced map. If each fα belongs
to W , then so does f .

(4) There exists a (small) subset W0 ⊆ W such that every morphism
belonging to W can be obtained as a filtered colimit of morphisms
belonging to W0.

Example A.2.6.11. If C is a presentable category, then the class W con-
sisting of all isomorphisms in C is perfect.

The following is an immediate consequence of Corollary A.2.6.5:

Corollary A.2.6.12. Let F : C → C′ be a functor between presentable
categories which preserves filtered colimits and let WC′ be a perfect class of
morphisms in C′. Then WC = F−1WC′ is a perfect class of morphisms in C.

Proposition A.2.6.13. Let A be a presentable category. Suppose we are
given a class W of morphisms of C, which we will call weak equivalences, and
a (small) set C0 of morphisms of C, which we will call generating cofibrations.
Suppose furthermore that the following assumptions are satisfied:

(1) The class W of weak equivalences is perfect (Definition A.2.6.10).
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(2) For any diagram

X
f ��

��

Y

��
X ′ ��

g

��

Y ′

g′

��
X ′′ �� Y ′′

in which both squares are coCartesian, f belongs to C0, and g belongs
to W , the map g′ also belongs to W .

(3) If g : X → Y is a morphism in A which has the right lifting property
with respect to every morphism in C0, then g belongs to W .

Then there exists a left proper combinatorial model structure on C which
may be described as follows:

(C) A morphism f : X → Y in A is a cofibration if it belongs to the weakly
saturated class of morphisms generated by C0.

(W ) A morphism f : X → Y in C is a weak equivalence if it belongs to W .

(F ) A morphism f : X → Y in C is a fibration if it has the right lifting
property with respect to every map which is both a cofibration and a
weak equivalence.

Proof. We first show that the class of weak equivalences is stable under
pushouts by cofibrations. Let P denote the collection of all morphisms f in
A with the following property: for coCartesian diagram

X
f ��

��

Y

��
X ′ ��

g

��

Y ′

g′

��
X ′′ �� Y ′′,

where g belongs toW , the map g′ also belongs toW . By assumption, C0 ⊆ P .
It is easy to see that P is weakly saturated (using the stability of W under
filtered colimits), so that every cofibration belongs to P .

It remains only to show that A is a model category. In view of Proposi-
tion A.2.6.8, it will suffice to show that C ∩W is a weakly saturated class
of morphisms. It is clear that C ∩W is stable under retracts. It will there-
fore suffice to verify the stability of C ∩W under pushouts and transfinite
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composition. The case of transfinite composition is easy: C is stable under
transfinite composition because C is weakly saturated, and W is stable un-
der transfinite composition because it is stable under finite composition and
filtered colimits.

It remains to show that C ∩W is stable under pushouts. Suppose we are
given a coCartesian diagram

X

f

��

�� X ′′

f ′′

��
Y �� Y ′′

in which f belongs to C∩W ; we wish to show that f ′′ also belongs to C∩W .
Since C is weakly saturated, it will suffice to show that f ′′ belongs to W .
Using the small object argument, we can factor the top horizontal map to
produce a coCartesian rectangle

X

f

��

g �� X ′

f ′

��

h �� X ′′

f ′′

��
Y �� Y ′ h′

�� Y ′′

in which g is a cofibration and h has the right lifting property with respect to
all the morphisms in C0. Since W is stable under the formation of pushouts
by cofibrations, we deduce that f ′ belongs to W . Moreover, by assumption
(3), h belongs to W . Since h′ is a pushout of h by the cofibration f ′, we
deduce that h′ belongs to W as well. Applying the two-out-of-three property
(twice), we deduce that f ′′ belongs to W .

Remark A.2.6.14. Let A be a model category. Then A arises via the
construction of Proposition A.2.6.13 if and only if it is combinatorial and
left proper and the collection of weak equivalences in A is stable under
filtered colimits.

A.2.7 Simplicial Sets

The formalism of simplicial sets plays a prominent role throughout this book.
In this section, we will review the definition of a simplicial set and establish
some notation.

For each n ≥ 0, we let [n] denote the linearly ordered set {0, . . . , n}. We
let ∆ denote the category of combinatorial simplices: the objects of ∆ are
the linearly ordered sets [n], and morphisms in ∆ are given by (nonstrictly)
order-preserving maps.

If C is any category, a simplicial object of C is a functor ∆op → C. Dually,
a cosimplicial object of C is a functor ∆ → C. A simplicial set is a simplicial
object in the category of sets. More explicitly, a simplicial set S is determined
by the following data:

• A set Sn for each n ≥ 0 (the value of S on the object [n] ∈ ∆).
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• A map p∗ : Sn → Sm for each order-preserving map [m] → [n], the
formation of which is compatible with composition (including empty
composition, so that (id[n])∗ = idSn

).

Let us recall a bit of standard notation for working with a simplicial set
S. For each 0 ≤ j ≤ n, the face map dj : Sn → Sn−1 is defined to be the
pullback p∗, where p : [n− 1] → [n] is given by

p(i) =

{
i if i < j

i+ 1 if i ≥ j.

Similarly, the degeneracy map sj : Sn → Sn+1 is defined to be the pullback
q∗, where q : [n+ 1] → [n] is defined by the formula

q(i) =

{
i if i ≤ j

i− 1 if i > j.

Because every order-preserving map from [n] to [m] can be factored as a
composition of face and degeneracy maps, the structure of a simplicial set
S is completely determined by the sets Sn for n ≥ 0 together with the face
and degeneracy operations defined above. These operations are required to
satisfy certain identities, which we will not make explicit here.

Remark A.2.7.1. The category ∆ is equivalent to the (larger) category of
all finite nonempty linearly ordered sets. We will sometimes abuse notation
by identifying ∆ with this larger subcategory and by regarding simplicial
sets (or more general simplicial objects) as functors which are defined on all
nonempty linearly ordered sets.

Notation A.2.7.2. The category of simplicial sets will be denoted by Set∆.
If J is a linearly ordered set, we let ∆J ∈ Set∆ denote the representable
functor [n] �→ Hom([n], J), where the morphisms are taken in the category
of linearly ordered sets. For each n ≥ 0, we will write ∆n in place of ∆[n].
We observe that, for any simplicial set S, there is a natural identification of
sets Sn � HomSet∆(∆n, S).

Example A.2.7.3. For 0 ≤ j ≤ n, we let Λnj ⊂ ∆n denote the “jth horn.”
It is determined by the following property: an element of (Λnj )m is given
by an order-preserving map p : [m] → [n] satisfying the condition that
{j} ∪ p([m]) �= [n]. Geometrically, Λnj corresponds to the subset of an n-
simplex ∆n in which the jth face and the interior have been removed.

More generally, if J is any finite linearly ordered set containing an element
j, we let ΛJj denote the simplicial subset of ∆J obtained by removing the
interior and the face opposite the vertex j.

The category Set∆ of simplicial sets has a (combinatorial, left proper,
and right proper) model structure, which we will refer to as the Kan model
structure. It may be described as follows:
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• A map of simplicial sets f : X → Y is a cofibration if it is a monomor-
phism; that is, if the induced map Xn → Yn is injective for all n ≥ 0.

• A map of simplicial sets f : X → Y is a fibration if it is a Kan fibration:
that is, if for any diagram

Λni� �

��

�� X

f

��
∆n ��

��	
	

	
	

Y,

it is possible to supply the dotted arrow rendering the diagram com-
mutative.

• A map of simplicial sets f : X → Y is a weak equivalence if the induced
map of geometric realizations |X| → |Y | is a homotopy equivalence of
topological spaces.

To prove this, we observe that the class of all cofibrations is generated by
the collection of all inclusions ∂∆n ⊆ ∆n; it is then easy to see that the
conditions of Proposition A.2.6.13 are satisfied. The nontrivial point is to
verify that the fibrations for the resulting model structure are precisely the
Kan fibrations and that Set∆ is right proper; these facts ultimately rely on
a delicate analysis due to Quillen (see [32]).

Remark A.2.7.4. In §2.2.5, we introduce another model structure on Set∆,
the Joyal model structure. This model structure has the same class of cofibra-
tions, but the fibrations and the weak equivalences differ from those defined
in this section. To avoid confusion, we will refer to the fibrations and weak
equivalences for the usual model structure on simplicial sets as Kan fibrations
and weak homotopy equivalences, respectively.

A.2.8 Diagram Categories and Homotopy (Co)limits

Let A be a combinatorial model category and C a small category. We let
Fun(C,A) denote the category of all functors from C to A. In this section, we
will see that Fun(C,A) again admits the structure of a combinatorial model
category: in fact, it admits two such structures. Moreover, by considering
the functoriality of this construction in the category C, we will obtain the
theory of homotopy limits and homotopy colimits.

Definition A.2.8.1. Let C be a small category and let A be a model cat-
egory. We will say that a natural transformation α : F → G in Fun(C,A)
is:

• an injective cofibration if the induced map F (C) → G(C) is a cofibra-
tion in A for each C ∈ C.

• a projective fibration if the induced map F (C) → G(C) is a fibration
in A for each C ∈ C.
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• a weak equivalence if the induced map F (C) → G(C) is a weak equiv-
alence in A for each C ∈ C.

• an injective fibration if it has the right lifting property with respect
to every morphism β in Fun(C,A) which is simultaneously a weak
equivalence and a injective cofibration.

• a projective cofibration if it has the left lifting property with respect
to every morphism β in Fun(C,A) which is simultaneously a weak
equivalence and a projective fibration.

Proposition A.2.8.2. Let A be a combinatorial model category and let C

be a small category. Then there exist two combinatorial model structures on
Fun(C,A):

• The projective model structure determined by the projective cofibra-
tions, weak equivalences, and projective fibrations.

• The injective model structure determined by the injective cofibrations,
weak equivalences, and injective fibrations.

The following is the key step in the proof of Proposition A.2.8.2:

Lemma A.2.8.3. Let A be a presentable category and let C be a small
category. Let S0 be a (small) set of morphisms of A and let S0 be the weakly
saturated class of morphisms generated by S0. Let S̃ be the collection of
all morphisms F → G in Fun(C,A) with the following property: for every
C ∈ C, the map F (C) → G(C) belongs to S0. Then there exists a (small) set
of morphisms S of Fun(C,A) which generates S̃ as a weakly saturated class
of morphisms.

We prove a generalization of Lemma A.2.8.3 in §A.3.3 (Lemma A.3.3.3).

Proof of Proposition A.2.8.2. We first treat the case of the projective model
structure. For each object C ∈ C and each A ∈ A, we define

FCA : C → A

by the formula

FCA(C ′) =
∐

α∈MapC(C,C′)

A.

We note that if i : A → A′ is a (trivial) cofibration in A, then the induced
map FCA → FCA′ is a strong (trivial) cofibration in Fun(C,A).

Let I0 be a set of generating cofibrations i : A → B for A and let I
be the set of all induced maps FCA → FCB (where C ranges over C). Let J0

be a set of generating trivial cofibrations for A and define J likewise. It
follows immediately from the definitions that a morphism in Fun(C,A) is a
projective fibration if and only if it has the right lifting property with respect
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to every morphism in J , and a weak trivial fibration if and only if it has the
right lifting property with respect to every morphism in I. Let I and J be
the weakly saturated classes of morphisms of Fun(C,A) generated by I and
J , respectively. Using the small object argument, we deduce the following:

(i) Every morphism f : X → Z in Fun(C,A) admits a factorization

X
f ′
→ Y

f ′′
→ Z,

where f ′ ∈ I and f ′′ is a weak trivial fibration.

(ii) Every morphism f : X → Z in Fun(C,A) admits a factorization

X
f ′
→ Y

f ′′
→ Z,

where f ′ ∈ J and f ′′ is a projective fibration.

(iii) The class I coincides with the class of projective cofibrations in A.

Furthermore, since the class of trivial projective cofibrations in Fun(C,A) is
weakly saturated and contains J , it contains J . This proves that Fun(C,A)
satisfies the factorization axioms. The only other nontrivial point to check
is that Fun(C,A) satisfies the lifting axioms. Consider a diagram

A

i

��

�� X

p

��
C ��

���
�

�
�

Y

in Fun(C,A), where i is a projective cofibration and p is a projective fibra-
tion. We wish to show that there exists a dotted arrow as indicated provided
that either i or p is a weak equivalence. If p is a weak equivalence, then this
follows immediately from the definition of a injective fibration. Suppose in-
stead that i is a trivial projective cofibration. We wish to show that i has the
left lifting property with respect to every projective fibration. It will suffice
to show that every trivial injective fibration belongs to J (this will also show
that J is a set of generating trivial cofibrations for Fun(C,A), which will
show that the projective model structure on Fun(C,A) is combinatorial).
Suppose then that i is a trivial weak coibration and choose a factorization

A
i′→ B

i′′→ C,

where i′ ∈ J and i′′ is a projective fibration. Then i′ is a weak equivalence,
so that i′′ is a weak equivalence by the two-out-of-three property. Consider
the diagram

A

i

��

i′ �� B

i′′

��
C

= ��

��	
	

	
	

C.
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Since i is a cofibration, there exists a dotted arrow as indicated. This proves
that i is a retract of i′ and therefore belongs to J , as desired.

We now prove the existence of the injective model structure on Fun(C,A).
Here it is difficult to proceed directly, so we will instead apply Proposition
A.2.6.8. It will suffice to check each of the hypotheses in turn:

(1) The collection of injective cofibrations in Fun(C,A) is generated (as a
weakly saturated class) by some small set of morphisms. This follows
from Lemma A.3.3.3.

(2) The collection of trivial injective cofibrations in Fun(C,A) is weakly
saturated: this follows immediately from the fact that the class of in-
jective cofibrations in A is weakly saturated.

(3) The collection of weak equivalences in Fun(C,A) is an accessible sub-
category of Fun(C,A)[1]: this follows from the proof of Proposition
5.4.4.3 since the collection of weak equivalences in A form an accessi-
ble subcategory of A[1].

(4) The collection of weak equivalences in Fun(C,A) satisfy the two-out-
of-three property: this follows immediately from the fact that the weak
equivalences in A satisfy the two-out-of-three property.

(5) Let f : X → Y be a morphism in A which has the right lifting property
with respect to every injective cofibration. In particular, f has the
right lifting property with respect to each of the morphisms in the
class I defined above, so that f is a trivial projective fibration and, in
particular, a weak equivalence.

Remark A.2.8.4. In the situation of Proposition A.2.8.2, if A is assumed
to be right or left proper, then Fun(C,A) is likewise right or left proper (with
respect to either the projective or the injective model structures).

Remark A.2.8.5. It follows from the proof of Proposition A.2.8.2 that
the class of projective cofibrations is generated (as a weakly saturated class
of morphisms) by the maps j : FCA → FCA′ , where C ∈ C and A → A′ is a
cofibration in A. We observe that j is an injective cofibration. It follows that
every projective cofibration is a injective cofibration; dually, every injective
fibration is a projective fibration.

Remark A.2.8.6. The construction of Proposition A.2.8.2 is functorial in
the following sense: given a Quillen adjunction of combinatorial model cate-

gories A
F ��B
G

�� and a small category C, composition with F and G deter-

mines a Quillen adjunction

Fun(C,A)
FC

�� Fun(C,B)
GC

��
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(with respect to either the injective or the projective model structures).
Moreover, if (F,G) is a Quillen equivalence, then so is (FC, GC).

Because the projective and injective model structures on Fun(C,A) have
the same weak equivalences, the identity functor idFun(C,A) is a Quillen equiv-
alence between them. However, it is important to distinguish between these
two model structures because they have different variance properties, as we
now explain.

Let f : C → C′ be a functor between small categories. Then composition
with f yields a pullback functor f∗ : Fun(C′,A) → Fun(C,A). Since A
admits small limits and colimits, f∗ has a right adjoint, which we will denote
by f∗, and a left adjoint, which we shall denote by f!.

Proposition A.2.8.7. Let A be a combinatorial model category and let
f : C → C′ be a functor between small categories. Then

(1) The pair (f!, f∗) determines a Quillen adjunction between the projec-
tive model structures on Fun(C,A) and Fun(C′,A).

(2) The pair (f∗, f∗) determines a Quillen adjunction between the injective
model structures on Fun(C,A) and Fun(C′,A).

Proof. This follows immediately from the simple observation that f∗ pre-
serves weak equivalences, projective fibrations, and weak cofibrations.

We now review the theory of homotopy limits and colimits in a combi-
natorial model category A. For simplicity, we will discuss homotopy limits
and leave the analogous theory of homotopy colimits to the reader. Let A
be a combinatorial model category and let f : C → C′ be a functor betweeen
(small) categories. We wish to consider the right derived functor Rf∗ of the
right Kan extension f∗ : Fun(C,A) → Fun(C′,A). This derived functor is
called the homotopy right Kan extension functor. The usual way of defining it
involves choosing a fibrant replacement functor Q : Fun(C,A) → Fun(C,A)
and setting Rf∗ = f∗◦Q. The assumption that A is combinatorial guarantees
that such a fibrant replacement functor exists. However, for our purposes it
is more convenient to address the indeterminacy in the definition of Rf∗ in
another way.

Let F ∈ Fun(C,A), let G ∈ Fun(C′,A), and let η : G → f∗F be a map
in Fun(C′,A). We will say that η exhibits G as the homotopy right Kan ex-
tension of F if, for some weak equivalence F → F ′ where F ′ is injectively
fibrant in Fun(C,A), the composite map G → f∗F → f∗F ′ is a weak equiva-
lence in Fun(C′,A). Since f∗ preserves weak equivalences between injectively
fibrant objects, this condition is independent of the choice of F ′.

Remark A.2.8.8. Given an object F ∈ Fun(C,A), it is not necessarily the
case that there exists a map η : G → f∗F which exhibits G as a homotopy
right Kan extension of F . However, such a map can always be found after
replacing F by a weakly equivalent object; for example, if F is injectively
fibrant, we may take G = f∗F and η to be the identity map.
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Let [0] denote the final object of Cat: that is, the category with one object
and only the identity morphism. For any category C, there is a unique functor
f : C → [0]. If A is a combinatorial model category, F : C → A is a
functor, and A ∈ A � Fun([0],A) is an object, then we will say that a
natural transformation α : f∗A → F exhibits A as a homotopy limit of F
if it exhibits A as a homotopy right Kan extension of F . Note that we can
identify α with a map A → limC∈C F (C) in the model category A.

The theory of homotopy right Kan extensions in general can be reduced
to the theory of homotopy limits in view of the following result:

Proposition A.2.8.9. Let A be a combinatorial model category, let f :
C → D be a functor between small categories, and let F : C → A and
G : D → A be diagrams. A natural transformation α : f∗G → F exhibits G
as a homotopy right Kan extension of F if and only if for each object D ∈ D,
α exhibits G(D) as a homotopy limit of the composite diagram

FD/ : C×D DD/ → C
F→ A.

To prove Proposition A.2.8.9, we can immediately reduce to the case where
F is a injectively fibrant diagram. In this case, α exhibits G as a homotopy
right Kan extension of F if and only if it induces a weak homotopy equiva-
lence G(D) → limFD/ for each D ∈ D. It will therefore suffice to prove the
following result (in the case C′ = C×D DD/):

Lemma A.2.8.10. Let A be a combinatorial model category and let g :
C′ → C be a functor which exhibits C′ as cofibered in sets over C. Then the
pullback functor g∗ : Fun(C,A) → Fun(C′,A) preserves injective fibrations.

Proof. It will suffice to show that the left adjoint g! preserves weak trivial
cofibrations. Let α : F → F ′ be a map in Fun(C′,A). We observe that for
each object C ∈ C, the map (q!α)(C) : (q!F )(C) → (q!F ′)(C) can be identi-
fied with the coproduct of the maps {α(C ′) : F (C′) → F ′(C ′)}C′∈g−1{C}. If
α is a weak trivial cofibration, then each of these maps is a trivial cofibration
in A, so that q!α is again a weak trivial cofibration, as desired.

Remark A.2.8.11. In the preceding discussion, we considered injective
model structures, Rf∗, and homotopy limits. An entirely dual discussion
may be carried out with projective model structures and Lf!; one obtains
a notion of homotopy colimit which is the dual of the notion of homotopy
limit.

Example A.2.8.12. Let A be a combinatorial model category and consider
a diagram

X ′ f← X
g→ X ′′.

This diagram is projectively cofibrant if and only if the object X is cofibrant
and the maps f and g are both cofibrations. Consequently, the definition
of homotopy colimits given above recovers, as a special case, the theory of
homotopy pushouts presented in §A.2.4.
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A.2.9 Reedy Model Structures

Let A be a combinatorial model category and J a small category. In §A.2.8,
we saw that the diagram category Fun(J,A) can again be regarded as a
combinatorial model category via either the projective or the injective model
structure of Proposition A.2.8.2. In the special case where J is a Reedy cate-
gory (see Definition A.2.9.1), it is often useful to consider still another model
structure on Fun(J,A): the Reedy model structure. We will sketch the defi-
nition and some of the basic properties of Reedy model categories below; we
refer the reader to [38] for a more detailed treatment.

Definition A.2.9.1. A Reedy category is a small category J equipped with
a factorization system JL, JR ⊆ J satisfying the following conditions:

(1) Every isomorphism in J is an identity map.

(2) Given a pair of objects X,Y ∈ J, let us write X �0 Y if either there
exists a morphism f : X → Y belonging to JR or there exists a mor-
phism g : Y → X belonging to JL. We will write X ≺0 Y if X �0 Y
and X �= Y . Then there are no infinite descending chains

· · · ≺0 X2 ≺0 X1 ≺0 X0.

Remark A.2.9.2. Let J be a category equipped with a factorization system
(JL, JR) and let �0 be the relation described in Definition A.2.9.1. This
relation is generally not transitive. We will denote its transitive closure by
�. Then condition (2) of Definition A.2.9.1 guarantees that � is a well-
founded partial ordering on the set of objects of J. In other words, every
nonempty set S of objects of J contains a �-minimal element.

Remark A.2.9.3. In the situation of Definition A.2.9.1, we will often abuse
terminology and simply refer to J as a Reedy category, implicitly assuming
that a factorization system on J has been specified as well.

Warning A.2.9.4. Condition (1) of Definition A.2.9.1 is not stable under
equivalence of categories. Suppose that J is equivalent to a Reedy category.
Then J can itself be regarded as a Reedy category if and only if every iso-
morphism class of objects in J contains a unique representative. (Definition
A.2.9.1 can easily be modified so as to be invariant under equivalence, but
it is slightly more convenient not to do so.)

Example A.2.9.5. The category ∆ of combinatorial simplices is a Reedy
category with respect to the factorization system (∆L,∆R); here a mor-
phism f : [m] → [n] belongs to ∆L if and only if f is surjective, and to ∆R

if and only if f is injective.

Example A.2.9.6. Let J be a Reedy category with respect to the factor-
ization system (JL, JR). Then Jop is a Reedy category with respect to the
factorization system ((JR)op, (JL)op).
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Notation A.2.9.7. Let J be a Reedy category, C a category which admits
small limits and colimits, and X : J → C a functor. For every object J ∈ J,
we define the latching object LJ (X) to be the colimit

lim−→
J′∈JR

/J
,J′ 
=J

X(J ′).

Similarly, we define the matching object to be the limit

lim←−
J ′∈JL

J/
,J′ 
=J

X(J ′).

We then have canonical maps LJ(X) → X(J) → MJ(X).

Example A.2.9.8. LetX : ∆op → Set be a simplicial set and regard ∆op as
a Reedy category using Examples A.2.9.5 and A.2.9.6. For every nonnegative
integer n, the latching object L[n]X can be identified with the collection of
all degenerate simplices of X. In particular, the map L[n](X) → X([n]) is
always a monomorphism.

More generally, we observe that a map of simplicial sets f : X → Y is a
monomorphism if and only if, for every n ≥ 0, the map

L[n](Y )
∐

L[n](X)

X([n]) → Y ([n])

is a monomorphism of sets. The “if” direction is obvious. For the converse, let
us suppose that f is a monomorphism; we must show that if σ is an n-simplex
of X such that f(σ) is degenerate, then σ is already degenerate. If f(σ) is
degenerate, then f(σ) = α∗f(σ) = f(α∗σ), where α : [n] → [n] is a map of
linearly ordered sets other than the identity. Since f is a monomorphism, we
deduce that σ = α∗σ, so that σ is degenerate, as desired.

Remark A.2.9.9. Let X : J → C be as in Notation A.2.9.7. Then the Jth
matching object MJ (X) can be identified with the Jth latching object of
the induced functor Xop : Jop → Cop.

Remark A.2.9.10. Let X : J → C be as in Notation A.2.9.7. Then the Jth
matching object MJ (X) can also be identified with the colimit

lim−→
(f :J ′→J)∈S

X(J ′),

where S is any full subcategory of J/J with the following properties:

(1) Every morphism f : J ′ → J which belongs to JR and is not an isomor-
phism also belongs to S.

(2) If f : J ′ → J belongs to S, then J � J ′.

This follows from a cofinality argument since every morphism f : J ′ → J in
S admits a canonical factorization

J ′ f ′
→ J ′′ f ′′

→ J,
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where f ′ belongs to JL and f ′′ belongs to JR. Assumption (2) guarantees
that the map f ′′ is not an isomorphism.

Similarly, when convenient, we can replace the limit lim←−f :J→J ′ X(J ′) defin-
ing the matching object MJ(X) by a limit over a slightly larger category.

Notation A.2.9.11. Let J be a Reedy category. A good filtration of J is a
transfinite sequence

{Jβ}β<α
of full subcategories of J with the following properties:

(a) The filtration is exhaustive in the following sense: every object of J

belongs to Jβ for sufficiently large β < α.

(b) For each ordinal β < α, the category Jβ is obtained from the subcat-
egory J<β =

⋃
γ<β Jγ by adjoining a single new object Jβ satisfying

the following condition: if J ∈ J satisfies J ≺ Jβ , then J ∈ J<β .

Remark A.2.9.12. Let J be a Reedy category. Then there exists a good
filtration of J. In fact, the existence of a good filtration is equivalent to the
second assumption of Definition A.2.9.1.

Remark A.2.9.13. Let J be a Reedy category with respect to the fac-
torization system (JL, JR) and let {Jβ}β<α be a good filtration of J. Then
each Jβ admits a factorization system (JL ∩ Jβ , J

R ∩ Jβ). In other words, if
f : I → K is a morphism in Jβ which admits a factorization

I
f ′
→ J

f ′′
→ K,

where f ′ belongs to JL and f ′′ belongs to JR, then the object J also belongs
to Jβ . This is clear: either f ′′ is an isomorphism, in which case J = K ∈ Jβ ,
or f ′′ is not an isomorphism, so that J ≺ K implies that J ∈ J<β.

The following result summarizes the essential features of a good filtration:

Proposition A.2.9.14. Let J be a Reedy category with a good filtration
{Jβ}β<α and let β < α be an ordinal, so that Jβ is obtained from J<β by
adjoining a single new object J . Then we have a homotopy pushout square
(with respect to the Joyal model structure):

N(J<β)/J N(J<β)J/� �

��

�� N(J<β)� �

��
N(J<β)/J  {J} N(J<β)J/ �� N(Jβ).

Corollary A.2.9.15. Let J be a Reedy category equipped with a good filtra-
tion {Jβ}β<α and let let β < α be an ordinal, so that Jβ is obtained from
J<β by adjoining a single new object J . Let C be a category which admits
small limits and colimits, let X : J<β → C be a functor, and let the latching
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and matching objects LJ (X) and MJ (X) be defined as in Notation A.2.9.7
(note that this does not require that the functor X be defined on the object
J), so that we have a canonical map α : LJ(X) → MJ (X). The following
data are equivalent:

(1) A functor X : Jβ → C extending X.

(2) A commutative diagram

C

��*
**

**
**

**

LJ (X)

		��������
α �� MJ(X)

in the category C.

The equivalence carries a functor X to the evident diagram with C = X(J).

Proof. Using Proposition A.2.9.14, we see that giving an extension X : Jβ →
C of X is equivalent to giving an extension Y : (J<β)/J  {J}  (J<β)J/ → C

of the composite functor

Y : (J<β)/J  (J<β)J/ → J<β
X→ C .

This, in turn, is equivalent to giving a commutative diagram

C

%%++
+++

+++
+++

lim−→Y |(J<β)/J

� (((((((((((
α′

�� lim←−Y |(J<β)J/),

where α′ is the map induced by the diagram Y . The equivalence of this with
the data (2) follows immediately from Remark A.2.9.10.

Remark A.2.9.16. The proof of Corollary A.2.9.15 carries over without
essential change to the case where C is an ∞-category which admits small
limits and colimits. In this case, to extend a functor X : N(J<β) → C to a
functor X defined on the whole of Jβ, it will suffice to specify the object

X(J) ∈ CX|(J<β)/J/X|(J<β)J/
� CLJ (X)/ /MJ (X),

where the latching and matching objects LJ (X),MJ (X) ∈ C are defined in
the obvious way.

The proof of Proposition A.2.9.14 will require a few preliminaries.

Lemma A.2.9.17. Let J be a Reedy category equipped with a good filtration
{Jβ}β<α. Fix β < α and let Jβ be obtained from J<β by adjoining the object
J . Let f : J → J be a map which is not the identity, let I denote the category
(JJ/)/f � (J/J)f/ of factorizations of the morphism f , and let I0 = I×J J<β.
Then the nerve N I0 is weakly contractible.
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Proof. Let I1 denote the full subcategory of I0 spanned by those diagrams

I
f ′′

���
��

��
��

J
f ��

f ′
/-1111111

J,

where I ∈ J<β and f ′′ is a morphism in JR. The inclusion I1 ⊆ I0 admits
a left adjoint, so that N I1 is a deformation retract of N I0. It will there-
fore suffice to show that N I1 is weakly contractible. Let I2 denote the full
subcategory of I1 spanned by those diagrams as above where, in addition,
the morphism f ′ belongs to JL. Then the inclusion I2 ⊆ I1 admits a right
adjoint, so that N I2 is a deformation retract of N I1. It will therefore suffice
to show that N I2 is weakly contractible. This is clear since the category I2

consists of a single object (with no nontrivial endomorphisms).

Lemma A.2.9.18. Let n ≥ 1 and suppose we are given a sequence of weakly
contractible simplicial sets {Ai}1≤i≤n. Let L denote the iterated join

{J0}  A1  {J1}  A2  · · ·  An  {Jn}
and let K denote the simplicial subset of L spanned by those simplices which
do not contain all of the vertices {Ji}0≤i≤n. Then the inclusion K ⊆ L is a
categorical equivalence of simplicial sets.

Proof. If n = 1, then this follows immediately from Lemma 5.4.5.10. Suppose
that n > 1. Let X denote the iterated join A1  {J1} A2  · · ·  {Jn−1} An.
For every subset S ⊆ {1, . . . , n − 1}, let X(S) denote the simplicial subset
of X spanned by those simplices which do not contain any vertex Ji for
i ∈ S. Let X ′ =

⋃
S 
=∅X(S) ⊆ X(∅) = X. Then X ′ is the homotopy colimit

of the diagram of simplicial sets {X(S)}S 
=∅. Each X(S) is a join of weakly
contractible simplicial sets, and is therefore weakly contractible. Since n > 1,
the partially ordered set {S ⊆ {1, . . . , n− 1} : S �= ∅} has a largest element
and is therefore weakly contractible. It follows that the simplicial set X ′ is
weakly contractible.

The assertion that the inclusion K ⊆ L is a categorical equivalence is
equivalent to the assertion that the diagram

({J0}  X ′)
∐
X′(X ′  {Jn})

��

� � �� ({J0}  X)
∐
X(X  {J0})

��
{J0}  X ′  {Jn} � � �� {J0}  X  {Jn}

is a homotopy pushout square (with respect to the Joyal model structure). To
prove this, it suffices to observe that the vertical maps are both categorical
equivalences (Lemma 5.4.5.10).

Proof of Proposition A.2.9.14. Let S denote the collection of all composable
chains of morphisms

f : J
f1→ J

f2→ · · · fn→ J.
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where n ≥ 1 and each fi �= idJ . For every subset S′ ⊆ S, let X(S′) denote
the simplicial subset of N(Jβ) spanned by those simplices σ satisfying the
following condition:

(∗) For every nondegenerate face τ of σ of positive dimension, if every
vertex of τ coincides with J , then τ belongs to S′.

Note that X(S) coincides with N(Jβ), while X(∅) coincides with the pushout

(N(J<β)/J  {J} N(J<β)J/)
∐

N(J<β)/J�N(J<β)J/

N(J<β).

It will therefore suffice to show that the inclusion X(∅) ⊆ X(S) is a cate-
gorical equivalence of simplicial sets.

Choose a well-ordering

S = {f0 < f1 < f2 < · · · }
with the following property: if f has length shorter than g (when regarded as
a chain of morphisms), then f < g. For every ordinal α, let Sα = {fβ}β<α.
We will prove that for every ordinal α, the inclusion X(∅) ⊆ X(Sα) is a
categorical equivalence. The proof proceeds by induction on α. If α = 0,
there is nothing to prove, and if α is a limit ordinal, then the desired result
follows from the inductive hypothesis and the fact that the class of categor-
ical equivalences is stable under filtered colimits. We may therefore assume
that α = β + 1 is a successor ordinal. The inductive hypothesis guarantees
that X(∅) ⊆ X(Sβ) is a categorical equivalence. It will therefore suffice to
show that the inclusion j : X(Sβ) ⊆ X(Sα) is a categorical equivalence. We
may also suppose that β is smaller than the order type of S, so that fβ is
well-defined (otherwise, the inclusion j is an isomorphism and the result is
obvious).

Let f = fβ be the composable chain of morphisms

f : J
f1→ J

f2→ · · · fn→ J.

For 1 ≤ i ≤ n, let Ai denote the nerve of the category

J<β ×J(JJ/)/fi
� J<β ×J(J/J )fi/.

Let K denote the simplicial subset of

{J0}  A1  {J1}  A2  · · ·  An  {Jn}
spanned by those simplices which do not contain every vertex Jn. We then
have a homotopy pushout diagram

N(J<β)/J  K N(J<β)J/� �

��

�� X(Sβ)

��
N(J<β)/J  {J0}  A1  · · ·  An  {Jn} N(J<β)J/ �� X(Sα).
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It will therefore suffice to prove that the left vertical map is a categorical
equivalence. In view of Corollary 4.2.1.3, it will suffice to show that the
inclusion

K ⊆ {J0}  A1  {J1}  A2  · · ·  An  {Jn}
is a categorical equivalence. Since each Ai is weakly contractible (Lemma
A.2.9.17), this follows immediately from Lemma A.2.9.18.

Proposition A.2.9.19. Let J be a Reedy category and let A be a model
category. Then there exists a model structure on the category of functors
Fun(J,A) with the following properties:

(C) A morphism X → Y in Fun(J,A) is a Reedy cofibration if and only if,
for every object J ∈ J, the induced map X(J)

∐
LJ (X) LJ (Y ) → Y (J)

is a cofibration in A.

(F ) A morphism X → Y in Fun(J,A) is a Reedy fibration if and only if,
for every object J ∈ J, the induced map X(J) → Y (J) ×MJ (Y )MJ (X)
is a fibration in A.

(W ) A morphism X → Y in Fun(J,A) is a weak equivalence if and only if,
for every J ∈ J, the map X(J) → Y (J) is a weak equivalence.

Moreover, a morphism f : X → Y in Fun(J,A) is a trivial cofibration if and
only if the following condition is satisfied:

(WC) For every object J ∈ J, the map X(J)
∐
LJ (X) LJ(Y ) → Y (J) is a

trivial cofibration in A.

Similarly, f is a fibration if and only if it satisfies the dual condition:

(WF ) For every object J ∈ J, the map X(J) → Y (J) ×MJ (Y ) MJ(X) is a
trivial fibration in A.

The model structure of Proposition A.2.9.19 is called the Reedy model
structure on Fun(J,A). Note that Proposition A.2.9.19 does not require the
model category A to be combinatorial.

Lemma A.2.9.20. Let J be a Reedy category containing an object J , let
A be a model category, and let f : F → G be a natural transformation in
Fun(J,A). Let I ⊆ JR/J be a sieve: that is, I is a full subcategory of JR/J with
the property that if I → I ′ is a morphism in JR/J such that I ′ ∈ I, then I ∈ I.
Let I′ ⊆ I be another sieve. Then

(a) If the map f satisfies condition (C) of Proposition A.2.9.19 for every
object I ∈ I, then the induced map

χI′,I : lim−→(F | I)
∐

lim−→(F | I′)

lim−→(G| I′) → lim−→(G| I)

is a cofibration in A.
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(b) If the map f satisfies condition (WC) of Proposition A.2.9.19 for every
object I ∈ I, then the map χI′,I is a trivial cofibration in A.

Proof. We will prove (a); the proof of (b) is identical. Choose a transfinite
sequence of sieves {Iβ ⊆ I}β<α with the following properties:

(i) The union
⋃
β<α Iβ coincides with I.

(ii) For each β < α, the sieve Iβ is obtained from I<β = I′ ∪(
⋃
γ<β Iγ) by

adjoining a single new object Jβ ∈ JR/J .

For every triple δ ≤ γ ≤ β ≤ α, let χδ,γ,β denote the induced map

lim−→(F | I<β)
∐

lim−→(F | I<δ)

lim−→(G| I<δ) → lim−→(F | I<β)
∐

lim−→(F | I<γ)

lim−→(G| I<γ).

We wish to prove that χ0,α,α is a cofibration. We will prove more generally
that χδ,γ,β is an equivalence for every δ ≤ γ ≤ β ≤ α. The proof uses induc-
tion on γ. If γ is a limit ordinal, then we can write χδ,γ,β as the transfinite
composition of the maps {χε,ε+1,β}δ≤ε<γ , which are cofibrations by the in-
ductive hypothesis. We may therefore assume that γ = γ0 + 1 is a successor
ordinal. If δ = γ, then χδ,γ,β is an isomorphism; otherwise, we have δ ≤ γ0.
In this case, we have

χδ,γ,β = χγ0,γ,β ◦ χδ,γ0,β.
Using the inductive hypothesis, we can reduce to the case δ = γ0. The
map χγ0,γ,β is a pushout of the map χγ0,γ,γ . We are therefore reduced to
proving that χγ0,γ,γ is a cofibration. But χγ0,γ,γ is a pushout of the map
LI(G)

∐
LI(F ) F (I) → G(I) for I = Jγ0 . This map is a cofibration by virtue

of our assumption that f satisfies (C).

Proof of Proposition A.2.9.19. Let f : X → Z be a morphism in Fun(J,A).
We will prove that f admits a factorization

X
f ′
→ Y

f ′′
→ Z,

where

(i) The map f ′′ is a fibration, and f ′ satisfies (WC).

(ii) The map f ′ is a cofibration, and f ′′ satisfies (WF ).

By symmetry, it will suffice to consider case (i). Choose a good filtration
{Jβ}β<α of J. For β < α, let Xβ = X| Jβ , let Zβ = Z| Jβ , and let fβ :
Xβ → Zβ be the restriction of f . We will construct a compatible family of
factorizations of fβ as a composition

Xβ

f ′
β→ Yβ

f ′′
β→ Zβ .

Suppose that Jβ is obtained from J<β by adjoining a single new object
J . Assuming that (f ′γ , f

′′
γ ) has been constructed for all γ < β, we note that
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constructing (f ′β , f
′′
β ) is equivalent (by virtue of Corollary A.2.9.15) to giving

a commutative diagram

LJ(X)

��

�� LJ(Y<β)

��
X(J) �� Yβ(J) ��

��

Z(J)

��
MJ (Y<β) �� MJ (Z).

In other words, we must factor a certain map

g : LJ (Y<β)
∐

LJ (X)

X(J) → MJ(Y<β) ×MJ (Z) Z(J)

as a composition

LJ (Y<β)
∐

LJ (X)

X(J)
g′→ Yβ(J)

g′′→ MJ (Y<β) ×MJ (Z) Z(J).

Using the fact that A is a model category, we can choose a factorization
where g′ is a trivial cofibration and g′′ a fibration. It is readily verified that
this construction has the desired properties.

We now prove the following:

(i′) A morphism f : X → Y in Fun(J,A) satisfies (WC) if and only if f is
both a fibration and a weak equivalence.

(ii′) A morphism f : X → Y in Fun(J,A) satisfies (WF ) if and only if f is
both a cofibration and a weak equivalence.

By symmetry, it will suffice to prove (i′). The “only if” direction follows
from Lemma A.2.9.20. For the “if” direction, it will suffice to show that for
each β < α, the induced transformation fβ : Xβ → Yβ satisfies (WC) when
regarded as a morphism of Fun(Jβ ,A). Suppose that Jβ is obtained from
J<β by adjoining a single new element J . We have a commutative diagram

LJ(Y )
∐
LJ (X)X(J)

q

����
���

���
���

�

X(J)

p
��������������

r �� Y (J).

We wish to prove that q is a trivial cofibration in A. Since f is a cofibration
in Fun(J,A), the map q is a cofibration in A. It will therefore suffice to
show that q is a weak equivalence. By the two-out-of-three property, it will
suffice to show that p and r are weak equivalences. For r, this follows from our
assumption that f is a weak equivalence in Fun(J,A). The map p is a pushout
of the map of latching objects LJ (X) → LJ (Y ), which is a cofibration in A
by virtue of the inductive hypothesis and Lemma A.2.9.20.
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Combining (i) and (i′) (and the analogous assertions (ii) and (ii′)), we
deduce that Fun(J,A) satisfies the factorization axioms for a model category.
To complete the proof, it will suffice to verify the lifting axioms:

(i′′) Every fibration in Fun(J,A) has the right lifting property with respect
to morphisms in Fun(J,A) which satisfy (WC).

(ii′′) Every cofibration in Fun(J,A) has the left lifting property with respect
to morphisms in Fun(J,A) which satisfy (WF ).

Again, by symmetry it will suffice to prove (i′′). Consider a diagram

A ��

f

��

X

g

��
B ��

h

���
�

�
�

Y,

where f satisfies (WC) and g satisfies (F ); we wish to prove that there
exists a dotted arrow h as indicated, rendering the diagram commutative. To
prove this, we will construct a compatible family of natural transformations
{hβ : B| Jβ → X| Jβ}β<α which render the diagram

A| Jβ ��

��

X| Jβ
g

��
B| Jβ ��

hβ

����������
Y | Jβ

commutative. Suppose that Jβ is obtained from J<β by adjoining a single new
object J . Assume that the maps {hγ}γ<β have already been constructed and
can be amalgamated into a single natural transformation h<β : B| J<β →
X| J<β . Using Corollary A.2.9.15, we see that extending h<β to a map hβ
with the desired properties is equivalent to solving a lifting problem of the
kind depicted in the following diagram:

LJ (B)
∐
LJ (A)A(J)

f ′

��

�� X(J)

g′

��
B(J)



���������� �� Y (J) ×MJ (Y ) MJ(X).

Since our assumptions guarantee that f ′ is a trivial cofibration and that g′

is a fibration, this lifting problem has a solution, as desired.

Example A.2.9.21. Let A be the category of bisimplicial sets, which we will
identify with Fun(∆op, Set∆) and endow with the Reedy model structure. It
follows from Example A.2.9.8 that a morphism f : X → Y of bisimplicial
sets is a Reedy cofibration if and only if it is a monomorphism. Consequently,
the Reedy model structure on A coincides with the injective model structure
on A.
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Example A.2.9.22. Let J be a Reedy category with JL = J and let A be
a model category. Then the weak equivalences and cofibrations of the Reedy
model structure (Proposition A.2.9.19) are the injective cofibrations and the
weak equivalences appearing in Definition A.2.8.1. It follows that the Reedy
model structure on Fun(J,A) coincides with the injective model structure
of Proposition A.2.8.2 (in particular, the injective model structure is well-
defined in this case even without the assumption that A is combinatorial).
Similarly, if JR = J, then we can identify the Reedy model structure on
Fun(J,A) with the projective model structure of Proposition A.2.8.2.

In the general case, we can regard the Reedy model structure on Fun(J,A)
as a mixture of the projective and injective model structures. More precisely,
we have the following:

(i) A natural transformation F → G in Fun(J,A) satisfies condition (C) of
Proposition A.2.9.19 if and only if the induced transformation F | JR →
G| JR is a projective cofibration in Fun(JR,A).

(ii) A natural transformation F → G in Fun(J,A) satisfies condition (F ) of
Proposition A.2.9.19 if and only if the induced transformation F | JL →
G| JL is a injective fibration in Fun(JL,A).

(iii) A natural transformation F → G in Fun(J,A) satisfies condition
(WC) of Proposition A.2.9.19 if and only if the induced transformation
F | JR → G| JR is a trivial projective cofibration in Fun(JR,A).

(iv) A natural transformation F → G in Fun(J,A) satisfies condition
(WF ) of Proposition A.2.9.19 if and only if the induced transformation
F | JL → G| JL is a trivial injective fibration in Fun(JL,A).

Remark A.2.9.23. Let J be a Reedy category and A a combinatorial model
category, so that the injective and projective model structures on Fun(J,A)
are well-defined. The identity functor from Fun(J,A) to itself can be re-
garded as a left Quillen equivalence from the projective model structure
to the Reedy model structure and from the Reedy model structure to the
injective model structure.

Corollary A.2.9.24. Let C be a small category. Suppose that there exists
a well-ordering ≤ on the collection of objects of C satisfying the following
condition: for every pair of objects X,Y ∈ C, we have

HomC(X,Y ) =

{
∅ if X ¿ Y
{idX} if X = Y.

Let A be a model category. Then

(i) A natural transformation F → G in Fun(C,A) is a (trivial) projective
cofibration if and only if, for every object C ∈ C, the induced map

F (C)
∐

lim−→D→C,D �=C
F (D)

lim−→
D→C,D 
=C

G(D) → G(C)

is a (trivial) cofibration in A.
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(ii) A natural transformation F → G in Fun(Cop,A) is a (trivial) injective
fibration if and only if, for every object C ∈ C, the induced map

F (C) → G(C) ×lim←−D→C,D �=C
G(D) lim←−

D→C,D 
=C
F (D)

is a (trivial) fibration in A.

Proof. Combine Example A.2.9.22 with Proposition A.2.9.19.

Corollary A.2.9.25. Let A be a model category, let α be an ordinal, and
let (α) denote the linearly ordered set {β < α} regarded as a category. Then

(1) Let F → F ′ be a natural transformation of diagrams (α) → A. Suppose
that, for each β < α, the maps

lim−→γ<β
F (γ) → F (β)

lim−→γ<β
F ′(γ) → F ′(β)

are cofibrations, while the map F (β) → F ′(β) is a weak equivalence.
Then the induced map

lim−→γ<α
F (γ) → lim−→γ<α

F ′(γ)

is a weak equivalence.

(2) Let G → G′ be a natural transformation of diagrams (α)op → A.
Suppose that, for each β < α, the maps

G(β) → lim
γ<β

G(γ)

G′(β) → lim
γ<β

G′(γ)

are fibrations, while the map G(β) → G′(β) is a weak equivalence.
Then the induced map

lim
γ<α

G(γ) → lim
γ<α

G′(γ)

is a weak equivalence.

Proof. We will prove (1); (2) follows by the same argument. Let p : (α) → ∗
be the unique map, let p∗ : A → A(α) be the diagonal map, and let p! :
A(α) → A be a left adjoint to p∗. Then p! can be identified with the functor
F �→ lim−→γ<α

F (γ). We observe that (p!, p
∗) is a Quillen adjunction (where

A(α) is endowed with the projective model structure) so that p! preserves
weak equivalence between projectively cofibrant objects. The desired result
now follows from Corollary A.2.9.24.
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Suppose that we are given a bifunctor

⊗ : A × B → C,

where C is a category which admits small limits. For any small category J,
we define the coend functor

∫
J

: Fun(J,A) × Fun(Jop,B) → C so that the
integral

∫
J
(F,G) is defined to be the coequalizer of the diagram∐

J→J ′ F (J) ⊗G(J ′) �� ��
∐
J F (J) ⊗G(J) .

We then have the following result:

Proposition A.2.9.26. Let ⊗ : A×B → C be a left Quillen bifunctor (see
Proposition A.3.1.1) and let J be a Reedy category. Then the coend functor∫

J

: Fun(J,A) × Fun(Jop,B) → C

is also a left Quillen bifunctor, where we regard Fun(J,A) and Fun(Jop,B)
as endowed with the Reedy model structure.

Proof. Let f : F → F ′ be a Reedy cofibration in Fun(J,A) and g : G → G′ a
Reedy cofibration in Fun(Jop,B). Set C =

∫
J
(F,G′)

∐R
J
(F,G)

∫
J
(F ′, G) ∈ C

and C ′ =
∫

J
(F ′, G′). We wish to show that the induced map C → ∫

J
(F ′, G′)

is a cofibration, which is trivial if either f or g is trivial.
Choose a good filtration {Jβ}β<α of J. For β ≤ α, we define

Cβ =
∫

Jβ

(F | J<β , G′| J<β)
∐

R
Jβ(F | J<β ,G| J<beta)

∫
Jβ

(F ′| J<β , G| J<β)

C ′
β =

∫
Jβ

(F ′| J<β , G′| J<β).

We wish to show that the map

Cα � Cα
∐
C0

C′
0 → Cα

∐
Cα

C′
α

is a cofibration (which is trivial if either f or g is trivial). We will prove more
generally that for δ ≤ γ ≤ β ≤ α, the map

ηδ,γ,β : Cβ
∐
Cδ

C′
δ → Cβ

∐
Cγ

C′
γ

is a cofibration (trivial if either f or g is trivial). The proof proceeds by
induction on γ. If γ is a limit ordinal, then ηδ,γ,β can be obtained as a
transfinite composition of the maps {ηε,ε+1,β}δ≤ε<γ , and the result follows
from the inductive hypothesis. We may therefore assume that γ = γ0 + 1 is
a successor ordinal. Since ηδ,γ,β = ηγ0,γ,β ◦ ηδ,γ0,β , we can use the inductive
hypothesis to reduce to the case where δ = γ0. Since ηδ,γ,β is a pushout of
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ηδ,γ,γ , we can also assume that β = γ. In other words, we are reduced to
proving that the map

h : Cγ0+1

∐
Cγ0

C′
γ0 → C ′

γ0

is a cofibration, which is trivial if either f or g is trivial. Let J be the object
of Jγ0 which does not belong to J<γ0 . Form a pushout diagram

(F (J)
∐
LJ (F ) LJ (F ′)) ⊗ (G(J)

∐
LJ (G) LJ (G′))

##���
���

���
��

����
���

���
���

(F (J)
∐
LJ (F ) LJ(F ′)) ⊗G′(J)

����
���

���
���

��
(F ′(J) ⊗G(J)

∐
LJ (G) LJ (G′))

##���
���

���
���

�

X.

We have an evident map h′ : X → F ′(J) ⊗ G′(J) which is a cofibration
(trivial if either f or g is trivial) by virtue of our assumptions on f and g
(together with the fact that ⊗ is a left Quillen bifunctor). We conclude by
observing that h is a pushout of h′.

Remark A.2.9.27. Proposition A.2.9.26 has an analogue for the model
structures introduced in Proposition A.2.8.2. That is, suppose that A and B
are combinatorial model categories and let J be an arbitrary small category.
Then any left Quillen bifunctor ⊗ : A × B → C induces a left Quillen
bifunctor ∫

J

: Fun(J,A) × Fun(Jop,B) → C,

where we regard Fun(J,A) as endowed with the projective model structure
and Fun(Jop,B) with the injective model structure. To see this, we must
show that for any projective cofibration f : F → F ′ in Fun(J,A) and any
injective cofibration g : G → G′ in Fun(Jop,B), the induced map

h :
∫

J

(F,G′)
∐

R
J
(F,G)

∫
J

(F ′, G) →
∫

J

(F ′, G′)

is a cofibration in C which is trivial if either f or g is trivial. Without loss
of generality, we may suppose that f is a generating projective cofibration
of the form FJA → FJA′ associated to an object J ∈ J and a cofibration
i : A → A′ in A, which is trivial if f is trivial (see the proof of Proposition
A.2.8.2 for an explanation of this notation). Unwinding the definitions, we
can identify h with the map

(A⊗G′(J))
∐

A⊗G(J)

(A′ ⊗G(J)) → A′ ⊗G′(J).

Since i is a cofibration in A and the map G(J) → G′(J) is a cofibration in
B, we deduce that h is a cofibration in C (since ⊗ is a left Quillen bifunctor)
which is trivial if either i or h is trivial.
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Example A.2.9.28. Let A be a simplicial model category, so that we have
a left Quillen bifunctor

⊗ : A × Set∆ → A.

The coend construction determines a left Quillen bifunctor∫
∆

: Fun(∆,A) × Fun(∆op, Set∆) → A.

where Fun(∆,A) and Fun(∆op, Set∆) are both endowed with the Reedy
model structure. In particular, if we fix a cosimplicial objectX• ∈ Fun(∆,A)
which is Reedy cofibrant, then forming the coend against X• determines a
left Quillen functor from the category of bisimplicial sets (with the Reedy
model structure, which coincides with the injective model structure by Ex-
ample A.2.9.21) to A.

Example A.2.9.29. Let A be a simplicial model category, so that we have
a left Quillen bifunctor

⊗ : A × Set∆ → A,

and consider the coend functor∫
∆op

Fun(∆op,A) × Fun(∆, Set∆) → A.

Let ∆• ∈ Fun(∆, Set∆) denote the standard simplex (that is, the functor
[n] �→ ∆n) and let 1 denote the final object of Fun(∆, Set∆) (that is, the
constant functor given by [n] �→ ∆0). The unique map ∆• → 1 is a weak
equivalence, and ∆• is Reedy cofibrant: we may therefore regard ∆• as a
cofibrant replacement for the constant functor 1.

The functor X• �→ ∫
∆op(X•,1) can be identified with the colimit functor

Fun(∆op,A) → A. This is a left Quillen functor if Fun(∆op,A) is endowed
with the projective model structure but not the Reedy model structure.
However, the geometric realization functor X• �→ |X•| =

∫
∆op(X•,∆•) is a

left Quillen functor with respect to the Reedy model structure.

Corollary A.2.9.30. Let A be a combinatorial simplicial model category
and let X• be a simplicial object of A. There is a canonical map

γ : hocolimX• → |X•|
in the homotopy category of A. This map is an equivalence if X• is Reedy
cofibrant.

Proof. Let ∆• and ∗ be the cosimplicial objects of Set∆ described in Example
A.2.9.29. Choose a weak equivalence of simplicial objects X ′

• → X•, where
X ′

• is projectively cofibrant. We then have a diagram

hocolimX• � lim−→X ′
• �

∫
∆op

(X ′
•, ∗) α←

∫
∆op

(X ′
•,∆

•)
β→

∫
∆op

(X•,∆•).

Since X ′
• is projectively cofibrant, Remark A.2.9.27 implies that the coend

functor
∫
∆op(X ′

•, •) preserves weak equivalences between injectively cofi-
brant cosimplicial objects of Set∆; in particular, α is a weak equivalence in A.
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This gives the desired map γ. Proposition A.2.9.26 implies that
∫
∆op(•,∆•)

preserves weak equivalences between Reedy cofibrant simplicial objects of
A, which proves that γ is an isomorphism if X• is Reedy cofibrant.

Example A.2.9.31. If A is the category of simplicial sets, then the map γ
of Corollary A.2.9.30 is always an isomorphism; this follows from Example
A.2.9.21. In other words, if X•,• is a bisimplicial set, then we can identify
the diagonal simplicial set [n] �→ Xn,n with the homotopy colimit of corre-
sponding diagram ∆op → Set∆.

A.3 SIMPLICIAL CATEGORIES

Among the many different models for higher category theory, the theory of
simplicial categories is perhaps the most rigid. This can be either a curse or
a blessing, depending on the situation. For the most part, we have chosen to
use the less rigid theory of ∞-categories (see §1.1.2) throughout this book.
However, some arguments are substantially easier to carry out in the setting
of simplicial categories. For this reason, we have devoted the final section of
this appendix to a review of the theory of simplicial categories.

There exists a model structure on the category Cat∆ of (small) simplicial
categories, which was constructed by Bergner ([7]). In §A.3.2, we will describe
an analogous model structure on the category CatS of S-enriched categories,
where S is a suitable model category. To formulate this generalization, we
will need to employ the language of monoidal model categories, which we
review in §A.3.1. Under mild assumptions on S, one can show that an S-
enriched category C is fibrant if and only if each of the mapping objects
MapC(X,Y ) is a fibrant object of S.

In §A.3.3, we will study the category AC of diagrams C → A, where C

is a small category and A is a model category, both enriched over some
fixed model category S. In the enriched setting we can again endow AC

with projective and injective model structures, which can be used to define
homotopy limits and colimits.

Putting aside set-theoretic technicalities, every S-enriched model category
A gives rise to a fibrant object of CatS: namely, the full subcategory A◦ ⊆ A
spanned by the fibrant-cofibrant objects. In §A.3.4, we will introduce a path
object for A◦, which will enable us to perform some calculations in the
homotopy category of CatS.

In §A.3.5, we will consider the problem of constructing homotopy colimits
in the category CatS of S-enriched categories. Our main result, Theorem
A.3.5.15, asserts that the formation of homotopy colimits in CatS is com-
patible with the formation of (tensor) products in CatS. We will apply this
result in §A.3.6 to study the homotopy theory of internal mapping objects
in CatS.

We conclude this section with §A.3.7, where we discuss localizations of
(simplicial) model categories.
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A.3.1 Enriched and Monoidal Model Categories

Many of the model categories which arise naturally are enriched over the
category of simplicial sets. Our goal in this section to study enrichments of
one model category over another.

Definition A.3.1.1. Let A, B, and C be model categories. We will say
that a functor F : A × B → C is a left Quillen bifunctor if the following
conditions are satisfied:

(a) Let i : A → A′ and j : B → B′ be cofibrations in A and B, respectively.
Then the induced map

i ∧ j : F (A′, B)
∐

F (A,B)

F (A,B′) → F (A′, B′)

is a cofibration in C. Moreover, if either i or j is a trivial cofibration,
then i ∧ j is also a trivial cofibration.

(b) The functor F preserves small colimits separately in each variable.

Definition A.3.1.2. A monoidal model category is a monoidal category S
equipped with a model structure, which satisfies the following conditions:

(i) The tensor product functor ⊗ : S × S → S is a left Quillen bifunctor.

(ii) The unit object 1 ∈ S is cofibrant.

(iii) The monoidal structure on S is closed.

Remark A.3.1.3. Some authors demand only a weakened form of axiom
(ii) in the preceding definition.

Example A.3.1.4. The category of simplicial sets Set∆ is a monoidal model
category with respect to the Cartesian product and the Kan model structure
defined in §A.2.7.

Definition A.3.1.5. Let S be a monoidal model category. A S-enriched
model category is an S-enriched category A equipped with a model structure
satisfying the following conditions:

(1) The category A is tensored and cotensored over S.

(2) The tensor product ⊗ : A × S → A is a left Quillen bifunctor.

In the special case where S is the category of simplicial sets (regarded as a
monoidal model category as in Example A.3.1.4), we will simply refer to A
as a simplicial model category.

Remark A.3.1.6. An easy formal argument shows that condition (2) is
equivalent to either of the following statements:
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(2′) Given any cofibration i : D → D′ in A and any fibration j : X → Y
in A, the induced map

k : MapA(D′, X) → MapA(D,X) ×MapA(D,Y ) MapA(D′, Y )

is a fibration in S, which is trivial if either i or j is a weak equivalence.

(2′′) Given any cofibration i : C → C ′ in S and any fibration j : X → Y in
A, the induced map

k : XC′ → XC ×Y C Y C
′

is a fibration in A, which is trivial if either i or j is trivial.

The following provides a criterion for detecting simplicial model structures:

Proposition A.3.1.7. Let C be a simplicial category that is equipped with a
model structure (not assumed to be compatible with the simplicial structure
on C). Suppose that every object of C is cofibrant and that the collection of
weak equivalences in C is stable under filtered colimits. Then C is a simplicial
model category if and only if the following conditions are satisfied:

(1) As a simplicial category, C is both tensored and cotensored over Set∆.

(2) Given a cofibration i : A → B and a fibration p : X → Y in C, the
induced map of simplicial sets

q : MapC(B,X) → MapC(A,X) ×MapC(A,Y ) MapC(B, Y )

is a Kan fibration.

(3) For every n ≥ 0 and every object C in C, the natural map

C ⊗ ∆n → C ⊗ ∆0 � C

is a weak equivalence in C.

Proof. Suppose first that C is a simplicial model category. It is clear that (1)
and (2) are satisfied. To prove (3), we note that the projection ∆n → ∆0

admits a section s : ∆0 → ∆n which is a trivial cofibration. If C is a simplicial
model category, then since C is cofibrant, it follows that C⊗∆0 → C⊗∆n is a
trivial cofibration and, in particular, a weak equivalence. Thus the projection
C ⊗ ∆n → C ⊗ ∆0 is a weak equivalence by the two-out-of-three property.

Now suppose that (1), (2), and (3) are satisfied. We wish to show that C

is a simplicial model category. We first show that the bifunctor

(C,K) �→ C ⊗K

preserves weak equivalences separately in each variable.
Fix the object C ∈ C and suppose that f : K → K′ is a weak homotopy

equivalence of simplicial sets. Choose a cofibration K → K ′′, where K ′′ is a
contractible Kan complex. Then we may factor f as a composition

K
f ′
→ K ×K ′′ f ′′

→ K.
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To prove that idC ⊗f is a weak equivalence, it suffices to prove that idC ⊗f ′
and idC ⊗f ′′ are weak equivalences. Note that the map f ′′ has a section s
which is a trivial cofibration. Thus, to prove that idC ⊗f ′′ is a weak equiva-
lence, it suffices to show that idC ⊗s is a weak equivalence. In other words,
we may reduce to the case where f is itself a trivial cofibration of simplicial
sets.

Consider the collection A of all monomorphisms f : K → K ′ of simplicial
sets having the property that idC ⊗f is a weak equivalence in C. It is easy
to see that this collection of morphisms is weakly saturated. Thus, to prove
that it contains all trivial cofibrations of simplicial sets, it suffices to show
that every horn inclusion Λni → ∆n belongs to A. We prove this by induction
on n > 0. Choose a vertex v belonging to Λni . We note that the inclusion
{v} → Λni is a pushout of horn inclusions in dimensions < n; by the inductive
hypothesis, this inclusion belongs to A. Thus it suffices to show that {v} →
∆n belongs to A, which is equivalent to assumption (3).

Now let us show that for each simplicial set K, the functor

C �→ C ⊗K

preserves weak equivalences. We will prove this by induction on the (possibly
infinite) dimension of K. Choose a weak equivalence g : C → C′ in C. Let
S denote the collection of all simplicial subsets L ⊆ K such that g ⊗ idL is
a weak equivalence. We regard S as a partially ordered set with respect to
inclusions of simplicial subsets. Clearly, ∅ ∈ S. Since weak equivalences in C

are stable under filtered colimits, the supremum of every chain in S belongs
to S. By Zorn’s lemma, S has a maximal element L. We wish to show that
L = K. If not, we may choose some nondegenerate simplex σ of K which
does not belong to L. Choose σ of the smallest possible dimension, so that all
of the faces of σ belong to L. Thus there is an inclusion L′ = L

∐
∂ σ σ ⊆ K.

Since C is left proper, assumption (2) implies that the diagram

D ⊗ ∂ σ ��

��

D ⊗ σ

��
D ⊗ L �� D ⊗ L′

is a homotopy pushout for every object D ∈ C. We observe that g ⊗ idL is
a weak equivalence by assumption, g ⊗ id∂ σ is a weak equivalence by the
inductive hypothesis (since ∂ σ has dimension smaller than the dimension of
K), and g⊗idσ is a weak equivalence by virtue of assumption (3) and the fact
that g is a weak equivalence. It follows that g ⊗ idL′ is a weak equivalence,
which contradicts the maximality of L. This completes the proof that the
bifunctor ⊗ : C× Set∆ → C preserves weak equivalences separately in each
variable.

Now suppose we are given a cofibration i : C → C ′ in C and another
cofibration j : S → S′ in Set∆. We wish to prove that the induced map

i ∧ j : (C ⊗ S′)
∐
C⊗S

(C ′ ⊗ S) → C ′ ⊗ S′
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is a cofibration in C, which is trivial if either i or j is trivial. The first point
follows immediately from (2). For the triviality, we will assume that i is a
weak equivalence (the case where j is a weak equivalence follows using the
same argument). Consider the diagram

C ⊗ S
i⊗idS ��

��

C′ ⊗ S

��
C ⊗ S′ f �� (C ′ ⊗ S)

∐
C⊗S(C ⊗ S′) �� C′ ⊗ S′.

The arguments above show that i⊗ idS and i⊗ idS′ are weak equivalences.
The square in the diagram is a homotopy pushout, so Proposition A.2.4.2
implies that f is a weak equivalence as well. Thus i∧ j is a weak equivalence
by the two-out-of-three property.

If C is a simplicial model category, then there is automatically a strong
relationship between the homotopy theory of the underlying model category
and the homotopy theory of the simplicial sets MapC(•, •). For example, we
have the following:

Remark A.3.1.8. Let C be a simplicial model category, let X be a cofibrant
object of C, and let Y be a fibrant object of C. The simplicial set K =
MapC(X,Y ) is a Kan complex; moreover, there is a canonical bijection

π0K � HomhC(X,Y ).

We conclude this section by studying a situation which arises in Chapter
3. Let C and D be model categories enriched over another model category
S, and suppose we are given a Quillen adjunction

C
F �� D
G

��

between the underlying model categories. We wish to study the situation
where G (but not F ) has the structure of an S-enriched functor. Thus, for
every triple of objects X ∈ C, Y ∈ D, S ∈ S, we have a canonical map

HomC(S ⊗X,GY ) � HomS(S,MapC(X,GY ))
→HomS(S,MapD(FX,FGY ))
� HomD(S ⊗ FX,FGY )
→HomD(S ⊗ FX, Y ).

Taking Y = F (S ⊗X) and applying this map to the unit of the adjunction
between F andG, we obtain a map S⊗FX → F (S⊗X), which we will denote
by βX,S . The collection of maps βX,S is simply another way of encoding the
data of G as an S-enriched functor. If the maps βX,S are isomorphisms,
then F is again an S-enriched functor and (F,G) is an adjunction between
S-enriched categories. We wish to study an analogous situation where the
maps βX,S are only assumed to be weak equivalences.



APPENDIX 849

Remark A.3.1.9. Suppose that S is the category Set∆ of simplicial sets
with its usual model structure. Then the map βX,S is automatically a weak
equivalence for every cofibrant object X ∈ C. To prove this, we consider
the collection K of all simplicial sets S such that βS,X is an equivalence. It
is not difficult to show that K is closed under weak equivalences, homotopy
pushout squares, and coproducts. Since ∆0 ∈ K, we conclude that K = Set∆.

Proposition A.3.1.10. Let C and D be S-enriched model categories. Let

C
F �� D
G

�� be a Quillen adjunction between the underlying model categories.

Assume that every object of C is cofibrant, and that the map βX,S : S ⊗
F (X) → F (S ⊗X) is a weak equivalence for every pair of cofibrant objects
X ∈ C, S ∈ S. The following are equivalent:

(1) The adjunction (F,G) is a Quillen equivalence.

(2) The restriction of G determines a weak equivalence of S-enriched cat-
egories D◦ → C◦ (see §A.3.2).

Remark A.3.1.11. Strictly speaking, in §A.3.2, we define only weak equiv-
alences between small S-enriched categories; however, the definition extends
to large categories in an obvious way.

Proof. Since G preserves fibrant objects and every object of C is cofibrant,
it is clear that G carries D◦ into C◦. Condition (1) is equivalent to the
assertion that for every pair of fibrant-cofibrant objects C ∈ C, D ∈ D,
a map g : C → GD is a weak equivalence in C if and only if the adjoint
map f : FC → D is a weak equivalence in D. Choose a factorization of f ′

as a composition FC
f ′
→ D′ f ′′

→ D, where f ′ is a trivial cofibration and f ′′

is a fibration. By the two-out-of-three property, f is a weak equivalence if
and only if f ′′ is a weak equivalence. We note that g admits an analogous
factorization as

C
g′→ GD′ g′′→ GD.

Using (2), we deduce that f ′′ is an equivalence in D◦ if and only if g′′ is an
equivalence in C◦. It will therefore suffice to show that g′ is an equivalence
in C◦. For this, it will suffice to show that C and GD′ corepresent the same
functor on the homotopy category hC. Invoking (2) again, it will suffice to
show that for every fibrant-cofibrant object D′′ ∈ D, the induced map

HomhC(GD′, GD′′) → HomhC(C,GD′′) � HomhD(FC,D′′)

is bijective. Using (2), we deduce that the map

HomhD(D′, D′′) → HomhD(GD′, GD′′)

is bijective. The desired result now follows from the fact that f ′ is a weak
equivalence in D.

We now show that (1) ⇒ (2). The S-enriched functor G◦ : D◦ → C◦ is
essentially surjective since the right derived functor RG is essentially surjec-
tive on homotopy categories. It suffices to show that G◦ is fully faithful: in
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other words, that for every pair of fibrant-cofibrant objects X,Y ∈ D, the
induced map

i : MapD(X,Y ) → MapC(G(X), G(Y ))

is a weak equivalence in S.
Since the left derived functor LF is essentially surjective, there exists an

object X ′ ∈ C and a weak equivalence FX ′ → X. We may regard X as a
fibrant replacement for FX ′ in D; it follows that the adjoint map X ′ → GX
may be identified with the adjunction X ′ → (RG ◦ LF )X ′ and is therefore
a weak equivalence by (1). Thus we have a diagram

MapD(X,Y )

��

i �� MapC(G(X), G(Y ))

��
MapD(F (X ′), Y ) i′ �� MapC(X ′, G(Y ))

in which the vertical arrows are homotopy equivalences; thus, to show that
i is a weak equivalence, it suffices to show that i′ is a weak equivalence. For
this, it suffices to show that i′ induces a bijection from [S,MapD(F (X ′), Y )]
to [S,MapC(X ′, G(Y ))] for every cofibrant object S ∈ S; here [S,K] denotes
the set of homotopy classes of maps from S into K in the homotopy category
hS. But we may rewrite this map of sets as

i′S : MaphD(F (X ′)⊗S, Y ) → MaphC(X ′⊗S,G(Y )) = MaphD(F (X ′⊗S), Y ),

and it is given by composition with βX′,S . (Here hC and hD denote the
homotopy categories of C and D as model categories; these are equivalent
to the corresponding homotopy categories of C◦ and D◦ as S-enriched cat-
egories). Since βX′,S is an isomorphism in the homotopy category hD, the
map i′S is bijective and (2) holds, as desired.

Corollary A.3.1.12. Let C
F �� D
G

�� be a Quillen equivalence between sim-

plicial model categories, where every object of C is cofibrant. Suppose that
G is a simplicial functor. Then G induces an equivalence of ∞-categories
N(D◦) → N(C◦).

A.3.2 The Model Structure on S-Enriched Categories

Throughout this section, we will fix a symmetric monoidal model category S
and study the category of S-enriched categories. The main case of interest to
us is that in which S is the category of simplicial sets (with its usual model
structure and the Cartesian monoidal structure). However, the treatment of
the general case requires little additional effort, and there are a number of
other examples which arise naturally in other contexts:

(i) The category of simplicial sets equipped with the Cartesian monoidal
structure and the Joyal model structure defined in §2.2.5.
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(ii) The category of complexes

· · · → Mn → Mn → Mn−1 → · · · ,
of vector spaces over a field k with its usual model structure (in
which weak equivalences are quasi-isomorphisms, fibrations are epimor-
phisms, and cofibrations are monomorphisms) and monoidal structure
given by the formation of tensor products of complexes.

Let S be an monoidal model category and let CatS denote the category of
(small) S-enriched categories in which morphisms are given by S-enriched
functors. The goal of this section is to describe a model structure on CatS. We
first note that the monoidal structure on S induces a monoidal structure on
its homotopy category hS, which is determined up to (unique) isomorphism
by the requirement that there exist a monoidal structure on the functor

S → hS

given by inverting all weak equivalences. Consequently, we note that any
S-enriched category C gives rise to an hS-enriched category hC having the
same objects as C and where mapping spaces are given by

MaphC(X,Y ) = [MapC(X,Y )].

Here we let [K] denote the image in hS of an object K ∈ S. We will refer
to hC as the homotopy category of C; the passage from C to hC is a special
case of Remark A.1.4.3.

Definition A.3.2.1. Let S be an monoidal model category. We say that
a functor F : C → C′ in CatS is a weak equivalence if the induced functor
hC → hC′ is an equivalence of hS-enriched categories. In other words, F is a
weak equivalence if and only if:

(1) For every pair of objects X,Y ∈ C, the induced map

MapC(X,Y ) → MapC′(F (X), F (Y ))

is a weak equivalence in S.

(2) Every object Y ∈ C′ is equivalent to F (X) in the homotopy category
hC′ for some X ∈ C.

Remark A.3.2.2. If S is the category Set∆ (endowed with the Kan model
structure), then Definition A.3.2.1 reduces to the definition given in §1.1.3.

Remark A.3.2.3. Suppose that the collection of weak equivalences in S is
stable under filtered colimits. Then it is easy to see that the collection of
weak equivalences in CatS is also stable under filtered colimits. If S is also a
combinatorial model category, then a bit more effort shows that the class of
weak equivalences in CatS is perfect in the sense of Definition A.2.6.10.
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We now introduce a bit of notation for working with S-enriched categories.
If A is an object of S, we will let [1]A denote the S-enriched category having
two objects X and Y , with

Map[1]A(Z,Z′) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1S if Z = Z ′ = X

1S if Z = Z ′ = Y

A if Z = X,Z′ = Y

∅ if Z = Y, Z ′ = X.

Here ∅ denotes the initial object of S, and 1S denotes the unit object with
respect to the monoidal structure on S. We will denote [1]1S simply by [1]S.
We let [0]S denote the S-enriched category having only a single object X,
with Map∗(X,X) = 1S.

We let C0 denote the collection of all morphisms in S of the following
types:

(i) The inclusion ∅ ↪→ [0]S.

(ii) The induced maps [1]S → [1]S′ , where S → S′ ranges over a set of
generators for the weakly saturated class of cofibrations in S.

Proposition A.3.2.4. Let S be a combinatorial monoidal model category.
Assume that every object of S is cofibrant and that the collection of weak
equivalences in S is stable under filtered colimits. Then there exists a left
proper combinatorial model structure on CatS characterized by the following
conditions:

(C) The class of cofibrations in CatS is the smallest weakly saturated class
of morphisms containing the set of morphisms C0 appearing above.

(W ) The weak equivalences in CatS are defined as in §A.3.2.1.

Proof. It suffices to verify the hypotheses of Proposition A.2.6.13. Condi-
tion (1) follows from Remark A.3.2.3. For condition (3), we must show that
any functor F : C → C′ having the right lifting property with respect to all
morphisms in C0 is a weak equivalence. Since F has the right lifting prop-
erty with respect to i : ∅ → [0]S, it is surjective on objects and therefore
essentially surjective. The assumption that F has the right lifting property
with respect to the remaining morphisms of C0 guarantees that for every
X,Y ∈ C, the induced map

MapC(X,Y ) → MapC′(F (X), F (Y ))

is a trivial fibration in S and therefore a weak equivalence.
It remains to verify condition (2): namely, that the class of weak equiv-

alences is stable under pushout by the elements of C0. We must show that
given any pair of functors F : C → D, G : C → C′ with F a weak
equivalence and G a pushout of some morphism in C0, the induced map
F ′ : C′ → D′ = D

∐
C C′ is a weak equivalence. There are two cases to

consider.
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First, suppose that G is a pushout of the generating cofibration i : ∅ →
∗. In other words, the category C′ is obtained from C by adjoining a new
object X, which admits no morphisms to or from the objects of C (and no
endomorphisms other than the identity). The category D′ is obtained from
D by adjoining X in the same fashion. It is easy to see that if F is a weak
equivalence, then F ′ is also a weak equivalence.

The other basic case to consider is one in which G is a pushout of one of
the generating cofibrations [1]S → [1]T , where S → T is a cofibration in S.
Let H : [1]S → C denote the “attaching map,” so that H is determined by a
pair of objects x = H(X) and y = H(Y ) and a map of h : S → MapC(x, y).
By definition, C′ is universal with respect to the property that it receives a
map from C, and the map h extends to a map h̃ : T → MapC′(x, y). To carry
out the proof, we will give an explicit construction of an S-enriched category
C′ which has this universal property.

For the remainder of the proof, we will assume that S is the category of
simplicial sets. This is purely for notational convenience; the same arguments
can be employed without change in the general case.

We begin by declaring that the objects of C′ are the objects of C. The
definition of the morphisms in C′ is a bit more complicated. Let w and z be
objects of C. We define a sequence of simplicial sets Mk

C′ as follows:

M0
C = MapC(w, z)

M1
C = MapC(y, z) × T × MapC(w, x)

M2
C = MapC(y, z) × T × MapC(y, x) × T × MapC(w, x),

and so forth. More specifically, for k ≥ 1, the m-simplices of Mk
C are finite

sequences

(σ0, τ1, σ1, τ2, . . . , τk, σk),

where σ0 ∈ MapC(y, z)m, σk ∈ MapC(w, x)m, σi ∈ MapC(y, x)m for 0 < i <
k, and τi ∈ Tm for 1 ≤ i ≤ k.

We define MapC′(w, z) to be the quotient of the disjoint union
∐
kM

k
C by

the equivalence relation which is generated by making the identification

(σ0, τ1, . . . , σk) � (σ0, τ1, . . . , τj−1, σj−1 ◦ h(τj) ◦ σj , τj+1, . . . , σk)

whenever the simplex τj belongs to Sm ⊆ Tm.
We equip C′ with an associative composition law, which is given on the

level of simplices by

(σ0, τ1, . . . , σk) ◦ (σ′
0, τ

′
1, . . . , σ

′
l) = (σ0, τ1, . . . , τk, σk ◦ σ′

0, τ
′
1, . . . , σ

′
l).

It is easy to verify that this composition law is well-defined (that is, com-
patible with the equivalence relation introduced above) and associative and
that the identification M0

C = MapC(w, z) gives rise to an inclusion of cate-
gories C ⊆ C′. Moreover, the map h : S → MapC(x, y) extends to h̃ : T →
MapC′(x, y) given by the composition

T � {idy}×T ×{idx} ⊆ MapC(y, y)×T ×MapC(x, x) = M1
C → MapC′(x, y).
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Moreover, it is not difficult to see that C′ has the desired universal property.
We observe that, by construction, the simplicial sets MapC′(w, z) come

equipped with a natural filtration. Namely, define MapC′(w, z)k to be the
image of ∐

0≤i≤k
M i

C

in MapC′(w, z). Then we have

MapC(w, z) = MapC′(w, z)0 ⊆ MapC′(w, z)1 ⊆ · · ·
and

⋃
k MapC′(w, z)k = MapC′(w, z). Moreover, the inclusion

MapC′(w, z)k ⊆ MapC′(w, z)k+1

is a pushout of the inclusion Nk+1
C ⊆ Mk+1

C , where Nk+1 is the simpli-
cial subset of Mk+1

C whose m-simplices consist of those (2m + 1)-tuples
(σ0, τ1, . . . , σm) such that τi ∈ Sm for at least one value of i.

Let us now return to the problem at hand: namely, we wish to prove that
F ′ : C′ → D′ is an equivalence. We note that the construction outlined above
may also be employed to produce a model for D′ and an analogous filtration
on its morphism spaces.

Since G′ : D → D′ and F : C → D are essentially surjective, we deduce
that F ′ is essentially surjective. Hence it will suffice to show that, for any
objects w, z ∈ C′, the induced map

φ : MapC′(w, z) → MapD′(w, z)

is a weak homotopy equivalence. For this, it will suffice to show that for
each i ≥ 0, the induced map φi : MapC′(w, z)i → MapD′(w, z)i is a weak
homotopy equivalence; then φ, being a filtered colimit of weak homotopy
equivalences φi, will itself be a weak homotopy equivalence.

The proof now proceeds by induction on i. When i = 0, φi is a weak
homotopy equivalence by assumption (since F is an equivalence of simplicial
categories). For the inductive step, we note that φi+1 is obtained as a pushout

MapC′(w, z)i
∐
Ni+1

C

M i+1
C → MapD′(w, z)i

∐
Ni+1

D

M i+1
D .

Since S is left proper, both of these pushouts are homotopy pushouts. Con-
sequently, to show that φi+1 is a weak equivalence, it suffices to show that
φi is a weak equivalence and that both of the maps

N i+1
C → N i+1

D

M i+1
C → M i+1

D

are weak equivalences. These statements follow easily from the compatibility
of the monoidal structure of S with the model structure and the assumption
that every object of S is cofibrant.
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Remark A.3.2.5. It follows from the proof of Proposition A.3.2.4 that if
f : C → C′ is a cofibration of S-enriched categories, then the induced map
MapC(X,Y ) → MapC′(fX, fY ) is a cofibration for every pair of objects
X,Y ∈ C.

Remark A.3.2.6. The model structure of Proposition A.3.2.4 enjoys the
following functoriality: suppose that f : S → S′ is a monoidal left Quillen
functor between model categories satisfying the hypotheses of Proposition
A.3.2.4, with right adjoint g : S′ → S. Then f and g induce a Quillen
adjunction

CatS
F �� CatS′ ,
G

��

where F and G are as in Remark A.1.4.3. Moreover, if (f, g) is a Quillen
equivalence, then (F,G) is likewise a Quillen equivalence.

In order for Proposition A.3.2.4 to be useful in practice, we need to un-
derstand the fibrations in CatS. For this, we first introduce a few definitions.

Definition A.3.2.7. Let F : C → D be a functor between ordinary cat-
egories. We will say that F is a quasi-fibration if, for every object X ∈ C

and every isomorphism f : F (X) → Y in D, there exists an isomorphism
f : X → Y in C such that F (f) = f .

Remark A.3.2.8. The relevance of Definition A.3.2.7 is as follows: the
category Cat admits a model structure in which the weak equivalences are
the equivalences of categories and the fibrations are the quasi-fibrations. This
is a special case of Theorem A.3.2.24, which we will prove below (namely, the
special case where we take S = Set endowed with the trivial model structure
of Example A.2.1.2).

Definition A.3.2.9. Let S be a monoidal model category and let C be an
S-enriched category. We will say that a morphism f in C is an equivalence if
the homotopy class [f ] of f is an isomorphism in hC.

We will say that C is locally fibrant if, for every pair of objects X,Y ∈ C,
the mapping space MapC(X,Y ) is a fibrant object of S.

We will say that an S-enriched functor F : C → C′ is a local fibration if
the following conditions are satisfied:

(i) For every pair of objects X,Y ∈ C, the induced map MapC(X,Y ) →
MapC′(FX,FY ) is a fibration in S.

(ii) The induced map hC → hC′ is a quasi-fibration of categories.

Remark A.3.2.10. Let F : C → C′ be a functor between S-enriched cate-
gories which satisfies condition (i) of Definition A.3.2.9. Let X ∈ C and Y ∈
C′ be objects. If C′ is locally fibrant, then every morphism [f ] : F (X) → Y
in hC′ can be represented by an equivalence f : F (X) → Y in C′. Let Y be
an object of C such that F (Y ) = Y . Since 1S is a cofibrant object of S and
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the map MapC(X,Y ) → MapC(F (X), Y ) is a fibration, Proposition A.2.3.1
implies that [f ] can be lifted to an isomorphism [f ] : X → Y in hC if and
only if f can be lifted to an equivalence f : X → Y in C. Consequently, when
hC is locally fibrant, condition (ii) is equivalent to the following analogous
assertion:

(ii′) For every equivalence f : F (X) → Y in C′, there exists an equivalence
f : X → Y in C such that F (f) = f .

Notation A.3.2.11. We let [1]∼S denote the S-enriched category containing
a pair of objects X,Y , with

Map[1]∼S
(Z,Z ′) = 1S

for all Z,Z′ ∈ {X,Y }.
Definition A.3.2.12 (Invertibility Hypothesis). Let S be a monoidal model
category satisfying the hypotheses of Proposition A.3.2.4. We will say that
S satisfies the invertibility hypothesis if the following condition is satisfied:

(∗) Let i : [1]S → C be a cofibration of S-enriched categories, classifying a
morphism f in C which is invertible in the homotopy category hC, and
form a pushout diagram

[1]S
i ��

��

C

j

��
[1]∼S �� C〈f−1〉.

Then j is an equivalence of S-enriched categories.

In other words, the invertibility hypothesis is the assertion that inverting
a morphism f in an S-enriched category C does not change the homotopy
type of C when f is already invertible up to homotopy.

Remark A.3.2.13. Let S, f , and C be as in Definition A.3.2.12 and choose a
trivial cofibration F : C → C′, where C′ is a fibrant S-enriched category. Since
CatS is left proper, the induced map C〈f−1〉 → C′〈F (f)−1〉 is an equivalence
of S-enriched categories. Consequently, assertion (∗) holds for (C, f) if and
only if it holds for (C′, F (f)). In other words, to test whether S satisfies the
invertibility hypothesis, we need only check (∗) in the case where C is fibrant.

Remark A.3.2.14. In Definition A.3.2.12, the condition that i be a cofi-
bration guarantees that the construction C �→ C〈f−1〉 is homotopy invariant.
Alternatively, we can guarantee this by choosing a cofibrant replacement for
the map j : [1]S → [1]∼S . Namely, choose a factorization for j as a composition

[1]S
j′→ E

j′′→ [1]∼S ,

where j′′ is a weak equivalence and j′ is a cofibration. For every S-enriched
category containing a morphism f , define C[f−1] = C

∐
[1]S

E. Then we have
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a canonical map C[f−1] → C〈f−1〉, which is an equivalence whenever the
map [1]S → C classifying f is a cofibration. Moreover, the construction C �→
C[f−1] preserves weak equivalences in C. Consequently, we may reformulate
the invertibility hypothesis as follows:

(∗′) For every S-enriched category C containing an equivalence f , the map
C → C[f−1] is a weak equivalence of S-enriched categories.

Remark A.3.2.15. Let C be a fibrant S-enriched category containing an
equivalence f : X → Y and let C[f−1] be defined as in Remark A.3.2.14.
The canonical map C → C[f−1] is a trivial cofibration and therefore admits
a section. This section determines a map of S-enriched categories h : E → C.
We observe that E is a mapping cylinder for the object [0]CatS ∈ CatS, so
we can view h as a homotopy between the maps [0]CatS → C classifying the
objects X and Y .

More generally, the same argument shows that if F : C → D is a fibration
of S-enriched categories and f : X → Y is an equivalence in C such that
F (f) = idD for some object D ∈ D, then the functors [0]S → C classifying
the objects X and Y are homotopic in the model category (CatS)/D.

Definition A.3.2.16. We will say that a model category S is excellent if it
is equipped with a symmetric monoidal structure and satisfies the following
conditions:

(A1) The model category S is combinatorial.

(A2) Every monomorphism in S is a cofibration, and the collection of cofi-
brations is stable under products.

(A3) The collection of weak equivalences in S is stable under filtered co-
limits.

(A4) The monoidal structure on S is compatible with the model structure.
In other words, the tensor product functor ⊗ : S × S → S is a left
Quillen bifunctor.

(A5) The monoidal model category S satisfies the invertibility hypothesis.

Remark A.3.2.17. Axiom (A2) of Definition A.3.2.16 implies that every
object of S is cofibrant. In particular, S is left proper.

Example A.3.2.18 (Dwyer, Kan). The category of simplicial sets is an
excellent model category when endowed with the Kan model structure and
the Cartesian product. The only nontrivial point is to show that Set∆ satisfies
the invertibility hypothesis. This is one of the main theorems of [21].

Example A.3.2.19. Let S be a presentable category equipped with a closed
symmetric monoidal structure. Then S is an excellent model category with
respect to the trivial model structure of Example A.2.1.2.
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The following lemma guarantees a good supply of examples of excellent
model categories:

Lemma A.3.2.20. Suppose we are given a monoidal left Quillen functor
T : S → S′ between model categories S and S′ satisfying axioms (A1) through
(A4) of Definition A.3.2.16. If S satisfies axiom (A5), then so does S′.

Proof. As indicated in Remark A.3.2.6, the functor T determines a Quillen
adjunction

CatS
F �� CatS′
G

�� .

Let C be a S′-enriched category and i : [1]S′ → C a cofibration classifying
an equivalence f in C. We wish to prove that the map C → C〈f−1〉 is an
equivalence of S′-enriched categories. In view of Remark A.3.2.13, we may
assume that C is fibrant.

Choose a factorization of the map [1]S → [1]∼S as a composition

[1]S
j→ E

j′→ [1]∼S
as in Remark A.3.2.14, so that we have an analogous factorization

[1]S′ → F (E) → [1]∼S′

in CatS′ . Using the latter factorization, we can define C[f−1] as in Remark
A.3.2.14; we wish to show that the map h : C → C[f−1] is a trivial cofibration.

Let f0 be the morphism in G(C) classified by f , and let G(C)[f−1
0 ] ∈ CatS

be defined as in Remark A.3.2.14. Using the fact that C is locally fibrant
(see Theorem A.3.2.24 below), we conclude that f0 is an equivalence in G(C).
Since S satisfies the invertibility hypothesis, the map h0 : G(C) → G(C)[f−1

0 ]
is a trivial cofibration. We now conclude by observing that h is a pushout of
F (h0).

Remark A.3.2.21. Using a similar argument, we can prove a converse to
Lemma A.3.2.20 in the case where T is a Quillen equivalence.

Example A.3.2.22. Let S be the category Set+∆ of marked simplicial sets
endowed with the Cartesian model structure defined in §3.1. Then the func-
tor X �→ X� is a monoidal left Quillen functor Set∆ → S. Combining Exam-
ple A.3.2.18 with Lemma A.3.2.20, we conclude that S satisfies the invert-
ibility hypothesis, so that S is an excellent model category (with respect to
the Cartesian product).

Example A.3.2.23. Let S denote the category of simplicial sets, endowed
with the Joyal model structure. The functor X �→ X� determines a monoidal
left Quillen equivalence S → Set+∆. Using Remark A.3.2.21, we deduce that S
satisfies the invertibility hypothesis, so that S is an excellent model category
(with respect to the Cartesian product).

We are now ready to state our main result:
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Theorem A.3.2.24. Let S be an excellent model category. Then

(1) An S-enriched category C is a fibrant object of CatS if and only if it is
locally fibrant: that is, if and only if the mapping object MapC(X,Y ) ∈
S is fibrant for every pair of objects X,Y ∈ C.

(2) Let F : C → D be an S-enriched functor, where D is a fibrant object of
CatS. Then F is a fibration in CatS if and only if F is a local fibration.

Remark A.3.2.25. In the case where S is the category of simplicial sets
(with its usual model structure), Theorem A.3.2.24 is due to Bergner; see [7].
Moreover, Bergner proves a stronger result in this case: assertion (2) holds
without the assumption that D is fibrant.

Before giving the proof of Theorem A.3.2.24, we need to establish some
preliminaries. Fix an excellent model category S. We observe that CatS is
naturally cotensored over S. That is, for every S-enriched category C and
every object K ∈ S, we can define a new S-enriched category CK as follows:

(i) The objects of CK are the objects of C.

(ii) Given a pair of objects X,Y ∈ C, we have
MapCK (X,Y ) = MapC(X,Y )K ∈ S.

This construction does not endow CatS with the structure of an S-enriched
category because the construction D �→ DK is not compatible with colimits
in K. However, we can remedy the situation as follows. Let C and D be
S-enriched categories and let φ be a function from the set of objects of C

to the set of objects of D. Then there exists an object MapφCatS
(C,D) ∈ S

which is characterized by the following universal property: for every K ∈ S,
there is a natural bijection

HomS(K,MapuCatS
(C,D)) � Homφ

CatS
(C,DK),

where Homφ
CatS

(C,DK) denotes the set of all functors from C to DK which
is given on objects by the function φ.

Lemma A.3.2.26. Let S be an excellent model category. Fix a diagram of
S-enriched categories

C

F

��

u �� C′

F ′

��
D

u′
�� D′ .

Assume that

(a) For every pair of objects X,Y ∈ C, the diagram

MapC(X,Y ) ��

��

MapD(FX,FY )

��
MapC′(uX, uY ) �� MapD′(u′FX, u′FY )
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is a homotopy pullback square involving fibrant objects of S and the
vertical arrows are fibrations.

Let G : A → B be a functor between S-enriched categories which is a
transfinite composition of pushouts of generating cofibrations of the form
[1]S → [1]S′ , where S → S′ is a cofibration in S and let φ be a function from
the set of objects of B (which is isomorphic to the set of objects of A) to C.
Then the diagram

MapφCatS
(B,C)

��

�� MapFφCatS
(B,D) ×MapF φ

CatS
(A,D) MapφCatS

(A,C)

��

MapuφCatS
(B,C′) �� Mapu

′Fφ
CatS

(B,D′) ×
Mapu′F φ

CatS
(A,D′) MapuφCatS

(A,C′)

is a homotopy pullback square between fibrant objects of S, and the vertical
arrows are fibrations.

Proof. It is easy to see that the collection of morphisms G : A → B which
satisfy the conclusion of the lemma is weakly saturated. It will therefore
suffice to show that G contains every morphism of the form [1]S → [1]S′ ,
where S → S′ is a cofibration in S. In this case, φ determines a pair of
objects X,Y ∈ C, and we can rewrite the diagram of interest as

MapC(X,Y )S
′

,+





%%--
---

---
--

MapC′(uX, uY )S
′

%%--
---

---
--

MapC(X,Y )S ×MapD(FX,FY )S MapD(FX,FY )S
′

,+





MapC′(uX, uY )S ×MapD′ (u′FX,u′FY )S MapD′(u′FX, u′FY )S
′
.

The desired result now follows from (a) since the map S → S′ is a cofibration
between cofibrant objects of S.

Proof of Theorem A.3.2.24. Assertion (1) is just a special case of (2) where
we take D to be the final object of CatS. It will therefore suffice to prove (2).

We first prove the “only if” direction. If F is a fibration, then F has
the right lifting property with respect to every trivial cofibration of the
form [1]S → [1]S′ , where S → S′ is a trivial cofibration in S. It follows
that for every pair of objects X,Y ∈ C, the induced map MapC(X,Y ) →
MapD(FX,FY ) is a fibration in S. In particular, C is locally fibrant.

To complete the proof that F is a local fibration, we will show that F
satisfies condition (ii′) of Remark A.3.2.10. Suppose X ∈ C and that f :
FX → Y is an equivalence in D. We wish to show that we can lift f to an
equivalence f : X → Y . Let E and D[f−1] be defined as in Remark A.3.2.14.
Since S satisfies the invertibility hypothesis, the map h : D → D[f−1] is
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a trivial cofibration. Because we have assumed D to be fibrant, the map h
admits a section. This section determines a map s : E → D. We now consider
the lifting problem

[0]S
X ��

��

C

F

��
E

s ��

��%
%

%
%

%
D .

Since F is a fibration and the left vertical map is a trivial cofibration, there
exists a solution as indicated. This solution determines a morphism f : X →
Y in C lifting f . Moreover, f is the image of a morphism in E. Since every
morphism in E is an equivalence, we deduce that f is an equivalence in C.

Let us now suppose that F is a local fibration. We wish to show that F is
a fibration. Choose a factorization of F as a composition

C
u→ C′ F ′→ D,

where u is a weak equivalence and F ′ is a fibration. We will prove the fol-
lowing:

(∗) Suppose we are given a commutative diagram of S-enriched categories

A
v ��

G

��

C

F

��
B

v′ �� D,

where G is a cofibration. If there exists a functor α : B → C′ such that
αG = uv and F ′α = v′, then there exists a functor β : B → C such
that βG = v and Fβ = v′.

Since the map F ′ has the right lifting property with respect to all trivial
cofibrations, assertion (∗) implies that F also has the right lifting property
with respect to all trivial cofibrations, so that F is a fibration as desired.

We now prove (∗). Using the small object argument, we deduce that the
functor G is a retract of some functor G′ : A → B′, where G′ is a transfinite
composition of morphisms obtained as pushouts of generating cofibrations.
It will therefore suffice to prove (∗) after replacing G by G′.

Reordering the transfinite composition if necessary, we may assume that
G′ factors as a composition

A
G′

0→ B′
0

G′
1→ B′,

where B′
0 is obtained from A by adjoining a collection of new objects,

{Bi}i∈I , and B′ is obtained from B′
0 by a transfinite sequence of pushouts

by generating cofibrations of the form ES → ES′ , where S → S′ is a cofi-
bration in S. Let C ′

i = α(Bi) for each i ∈ I. Since u is an equivalence of
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S-enriched categories, there exists a collection of objects {Ci}i∈I and equiv-
alences fi : uCi → C ′

i. Let gi be the image of fi in D. Since F is a local
fibration, we can lift each gi to an equivalence f ′i : Ci → C ′′

i in C. Since the
maps MapC′(uC ′′

i , C
′
i) → MapD(FC ′′

i , F
′C′
i) are fibrations, we can choose

morphisms f ′′
i : uC ′′

i → C ′
i in C′ such that F ′(f ′i) is the identity for each i,

and the diagrams

uC ′′
i

f ′′
i

���
��

��
��

�

uCi
fi ��

f ′
i

����������
C ′
i

commute up to homotopy. Replacing Ci by C ′′
i , we may assume that each of

the maps fi projects to the identity in D.
Let α0 = α|B′

0 and let α′
0 : B′

0 → C′ be defined by the formula

α′
0(A) =

{
α0(A) if A ∈ A

uCi if A = Bi, i ∈ I.

Remark A.3.2.15 implies that the maps α0 and α′
0 are homotopic in the

model category (CatS)A / /D. Applying Proposition A.2.3.1, we deduce the
existence of a map α′ : B′ → C which extends α0 and satisfies α′G = uv
and F ′α′ = v′. We may therefore replace α by α′, v by α′

0, and A by B′
0

and thereby reduce to the case where the functor G : A → B is a transfinite
composition of generating cofibrations of the form ES → ES′ , where S → S′

is a cofibration in S.
Let φ be the map from the objects of B to the objects of C determined by

α. Applying Lemma A.3.2.26, we obtain a homotopy pullback diagram

MapφCatS
(B,C) ��

��

MapFφCatS
(B,D) ×MapF φ

CatS
(A,D) MapφCatS

(A,C)

��

Mapuφ CatS(B,C′) �� MapFφCatS
(B,D) ×MapF φ

CatS
(A,D) MapuφCatS

(A,C′).

in which the horizontal arrows are fibrations. We therefore have a weak
equivalence

MapφCatS
(B,C) → M = MapuφCatS

(B,C′) ×MapF φ
CatS

(B,D) MapφCatS
(A,C)

of fibrations over N = MapFφCatS
(B,D) ×MapF φ

CatS
(A,D) MapuφCatS

(A,C′). More-

over, the pair (α, v) determines a map 1S → M lifting the map (v′, uv′) :
1S → N . Applying Proposition A.2.3.1, we deduce that (v, uv′) : 1S → N

can be lifted to a map 1S → MapφCatS
(B,C), which is equivalent to the

existence of the desired map β.

We conclude this section with a few easy results concerning homotopy
limits in the model category CatS.
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Proposition A.3.2.27. Let S be an excellent model category, J a small
category, and {CJ}J∈J a diagram of S-enriched categories. Suppose we are
given a compatible family of functors {fJ : C → CJ}J∈J which exhibits C as
a homotopy limit of the diagram {CJ}J∈J in CatS. Then for every pair of
objects X,Y ∈ C, the maps {MapC(X,Y ) → MapCJ

(fJX, fJY )}J∈J exhibit
MapC(X,Y ) as a homotopy limit of the diagram {MapCJ

(fJX, fJY )}J∈J in
S.

Proof. Without loss of generality, we may assume that the diagram {CJ}J∈J

is injectively fibrant and that the maps fJ exhibit C as a limit of {CJ}J∈J. It
follows that MapC(X,Y ) is a limit of the diagram {MapCJ

(fJX, fJY )}J∈J. It
will therefore suffice to show that the diagram {MapCJ

(fJX, fJY )}J∈J is in-
jectively fibrant. For this, it will suffice to show that {MapCJ

(fJX, fJY )}J∈J

has the right lifting property with respect to every weak trivial cofibration
α : F → F ′ of diagrams F, F ′ : J → S. Let G : J → CatS be defined by
the formula G(J) = [1]F (J) and let G′ : J → CatS be defined likewise. The
desired result now follows from the observation that α induces a weak trivial
cofibration G → G′ in Fun(J,CatS).

Corollary A.3.2.28. Let S be an excellent model category, J a small cate-
gory, and {CJ}J∈J a diagram of S-enriched categories. Suppose we are given
S-enriched functors

D
β→ C

α→ lim{CJ}J∈J

such that α◦β exhibits D as a homotopy limit of the diagram {CJ}J∈J. Then
the following conditions are equivalent:

(1) The functor α exhibits C as a homotopy limit of the diagram {CJ}J∈J.

(2) For every pair of objects X,Y ∈ C, the functor α exhibits MapC(X,Y )
as a homotopy limit of the diagram {MapCJ

(αJX,αJY )}J∈J.

Proof. The implication (1) ⇒ (2) follows from Proposition A.3.2.27. To
prove the converse, we may assume that the diagram {CJ}J∈J is injectively
fibrant. In view of (2), Proposition A.3.2.27 implies that α induces a fully
faithful functor between hS-enriched homotopy categories. It will therefore
suffice to show that α is essentially surjective on homotopy categories, which
follows from our assumption that α ◦ β is a weak equivalence.

A.3.3 Model Structures on Diagram Categories

In this section, we consider enriched analogues of the constructions presented
in §A.2.8. Namely, suppose that S is an excellent model category, A a com-
binatorial S-enriched model category, and C a small S-enriched category. Let
AC denote the category of S-enriched functors from C to A. In this section,
we will study the associated projective and injective model structures on AC.
The ideas described here will be used in §A.3.4 to construct certain mapping
objects in CatS.

We begin with the analogue of Definition A.2.8.1.
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Definition A.3.3.1. Let C be a small S-category and A a combinatorial
S-enriched model category. A natural transformation α : F → G in AC is:

• an injective cofibration if the induced map F (C) → G(C) is a cofibra-
tion in A for each C ∈ C.

• a projective fibration if the induced map F (C) → G(C) is a fibration
in A for each C ∈ C.

• a weak equivalence if the induced map F (C) → G(C) is a weak equiv-
alence in A for each C ∈ C.

• an injective fibration if it has the right lifting property with respect to
every morphism β in AC which is simultaneously a weak equivalence
and a injective cofibration.

• a projective cofibration if it has the left lifting property with respect to
every morphism β in AC which is simultaneously a weak equivalence
and a projective fibration.

Proposition A.3.3.2. Let S be an excellent model category, let A be a
combinatorial S-enriched model category, and let C be a small S-enriched
category. Then there exist two combinatorial model structures on AC:

• The projective model structure determined by the strong cofibrations,
weak equivalences, and projective fibrations.

• The injective model structure determined by the weak cofibrations, weak
equivalences, and injective fibrations.

The proof of Proposition A.3.3.2 is identical to that of Proposition A.2.8.2,
except that it requires the following more general form of Lemma A.2.8.3:

Lemma A.3.3.3. Let A be a presentable category which is enriched, ten-
sored, and cotensored over a presentable category S. Let S0 be a (small) set
of morphisms of A and let S0 be the weakly saturated class of morphisms
generated by S0. Let C be a small S-enriched category. Let S̃ be the collec-
tion of all morphisms F → G in AC with the following property: for every
C ∈ C, the map F (C) → G(C) belongs to S0. Then there exists a (small)
set of morphisms S of AC which generates S̃ (as a weakly saturated class of
morphisms).

We will defer the proof until the end of this section.

Remark A.3.3.4. In the situation of Proposition A.3.3.2, the category AC

is again enriched, tensored, and cotensored over S. The tensor product with
an object K ∈ S is computed pointwise; in other words, if F ∈ AC, then we
have the formula

(K ⊗ F)(A) = K ⊗ F(A).
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Using criterion (2′) of Remark A.3.1.6, we deduce that AC is an S-enriched
model category with respect to the injective model structure. A dual ar-
gument (using criterion (2′′) of Remark A.3.1.6) shows that AC is also an
S-enriched model category with respect to the projective model structure.

Remark A.3.3.5. For each object C ∈ C and each A ∈ A, let FCA ∈ AC be
the functor given by

D �→ A⊗ MapC(C,D).

As in the proof of Proposition A.2.8.2, we learn that the class of projective
cofibrations in AC is generated by cofibrations of the form j : FCA → FCA′ ,
where A → A′ is a cofibration in A. It follows that every projective cofibra-
tion is a injective cofibration; dually, every injective fibration is a projective
fibration.

As in §A.2.8, the construction (C,A) �→ AC is functorial in both C and
A. We summarize the situation in the following propositions, whose proofs
are left to the reader:

Proposition A.3.3.6. Let S be an excellent model category, C a small S-

enriched model category, and A
F ��S
G

�� an S-enriched Quillen adjunction

between combinatorial S-enriched model categories. The composition with F
and G determines another S-enriched Quillen adjunction

AC
FC

��BC

GC

��

with respect to either the projective or the injective model structure. More-
over, if (F,G) is a Quillen equivalence, then (FC, GC) is also a Quillen
equivalence.

Because the projective and injective model structures on AC have the
same weak equivalences, the identity functor idAC is a Quillen equivalence
between them. However, it is important to distinguish between these two
model structures because they have different variance properties as we now
explain.

Let f : C → C′ be an S-enriched functor. Then composition with f yields
a pullback functor f∗ : AC′ → AC. Since A has all S-enriched limits and
colimits, f∗ has a right adjoint, which we will denote by f∗, and a left adjoint,
which we will denote by f!.

Proposition A.3.3.7. Let S be an excellent model category, A a combi-
natorial S-enriched model category, and f : C → C′ an S-enriched functor
between small S-enriched categories. Let f∗ : AC′ → AC be given by com-
position with f . Then f∗ admits a right adjoint f∗ and a left adjoint f!.
Moreover:

(1) The pair (f!, f∗) determines a Quillen adjunction between the projec-
tive model structures on AC and AC′

.
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(2) The pair (f∗, f∗) determines a Quillen adjunction between the injective
model structures on AC and AC′

.

We now study some aspects of the theory which are unique to the enriched
context.

Proposition A.3.3.8. Let S be an excellent model category, A a combi-
natorial S-enriched model category, and f : C → C′ an equivalence of small
S-enriched categories. Then

(1) The Quillen adjunction (f!, f
∗) determines a Quillen equivalence be-

tween the projective model structures on AC and AC′
.

(2) The Quillen adjunction (f∗, f∗) determines a Quillen equivalence be-
tween the injective model structures on AC and AC′

.

Proof. We first note that (1) and (2) are equivalent: they are both equivalent
to the assertion that f∗ induces an equivalence on homotopy categories.
It therefore suffices to prove (1). We first prove this under the following
additional assumption:

(∗) For every pair of objects C,D ∈ C′, the map
MapC′(C,D) → MapC(f(C), f(D))

is a cofibration in S.

Let Lf! : AC → AC′
denote the left derived functor of f!. We must show

that the unit and counit maps
hF : F �→ f∗Lf!F

kG : Lf!f∗G → G

are isomorphisms for all F ∈ hAC, G ∈ hAC. Since f is essentially surjective
on homotopy categories, a natural transformation K → K ′ of S-enriched
functors K,K ′ : C′ → A is a weak equivalence if and only if f∗K → f∗K ′ is
a weak equivalence. Consequently, to prove kG is an isomorphism, it suffices
to show that hf∗G is an isomorphism.

Let us say that a map F → F ′ in AC is good if the induced map

f∗f!F
∐
F

F ′ → f∗f!F ′

is a weak trivial cofibration. To complete the proof, it will suffice to show that
every projective cofibration is good. Since the collection of good transforma-
tions is weakly saturated, it will suffice to show that each of the generating
cofibrations FCA → FCA′ is good, where C ∈ C′ and j : A → A′ is a cofibration
in A. Unwinding the definitions, we must show that for each D ∈ C′ the
induced map

A′ ⊗ MapC′(C,D))
∐
A⊗MapC′ (C,D)(A⊗ MapC(f(C), f(D)))

θ

��
A′ ⊗ MapC(f(C), f(D))
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is a trivial cofibration. This follows from the fact that j is a cofibration and
our assumption (∗).

We now treat the general case. First, choose a trivial cofibration g : C →
C′′, where C′′ is fibrant. Then g satisfies (∗), so g! is a Quillen equivalence. By
a two-out-of-three argument, we see that f! is a Quillen equivalence if and
only if (g ◦ f)! is a Quillen equivalence. Replacing C by C′′, we may reduce
to the case where C is itself fibrant.

Choose a cofibration j : C
∐

C′ → D, where D is fibrant and equivalent to
the final object of CatS. Then f factors as a composition

C′ f ′
→ C×D

f ′′
→ C .

Since C and D are fibrant, the product C×D is equivalent to C. Moreover,
the map f ′′ admits a section s : C → C×D. Using another two-out-of-three
argument, it will suffice to show that f ′! and s! are Quillen equivalences. For
this, it will suffice to show that f ′ and s satisfy (∗).

We first show that f ′ satisfies (∗). Fix a pair of objects X,Y ∈ C′. Then
f ′ induces the composite map

MapC′(X,Y ) u→MapC(fX, fY ) × MapC′(X,Y )
u′→MapC(fX, fY ) × MapD(jX, jY )
� MapC×D(f ′X, f ′Y ).

The map u is a monomorphism (since it admits a left inverse) and therefore
a cofibration in view of axiom (A2) of Definition A.3.2.16. The map u′ is
a product of cofibrations and therefore also a cofibration (again by axiom
(A2)).

The proof that s satisfies (∗) is similar: for every pair of objects U, V ∈ C,
the map

MapC(U, V ) → MapC×D(sU, sV ) � MapC(U, V ) × MapD(jU, jV )

is a monomorphism since it admits a left inverse and is therefore a cofibra-
tion.

In the special case where f : C → C′ is a cofibration between S-enriched
categories, we have some additional functoriality:

Proposition A.3.3.9. Let S be an excellent model category and let f : C →
C′ be a cofibration of small S-enriched categories. Then

(1) For every combinatorial S-enriched model category A, the pullback map
f∗ : AC′ → AC preserves projective cofibrations.

(2) For every projectively cofibrant object F ∈ SC, the unit map F →
f∗f!F is a projective cofibration.
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Lemma A.3.3.10. Let S be an excellent model category and suppose we are
given a pushout diagram

[1]S ��

i

��

[1]S′

��
C

f �� C′

of S-enriched categories, where j : S → S′ is a cofibration in S. Let C be
an object of C and let F ∈ SC be the functor given by the formula D �→
MapC(C,D). Then the unit map F → f∗f!F is a projective cofibration in
SC.

Proof. The map i determines a pair of objects X,Y ∈ C and a map S →
MapC(X,Y ). The proof of Proposition A.3.2.4 shows that the functor f∗f!F
is the colimit of a sequence

F = F (0) h1→ F (1) h2→ F (2) → · · · ,
where each hk is a pushout of a map FYA → FYA′ induced by a map t : A → A′

in S. Moreover, the map t can be identified with the tensor product

idMapC(C,X) ⊗ id⊗k−1
MapC(Y,X) ⊗ ∧k (j),

where ∧k(j) denotes the kth pushout power of j. It follows that t is a cofi-
bration in S, so that each hk is a projective cofibration in SC.

Proof of Proposition A.3.3.9. The collection of S-enriched functors f which
satisfy (1) and (2) is clearly closed under the formation of retracts. We may
therefore assume without loss of generality that f is a transfinite compo-
sition of pushouts of generating cofibrations (see the discussion preceding
Proposition A.3.2.4). Reordering these pushouts if necessary, we can factor
f as a composition

C
f ′
→ C

f ′′
→ C′,

where C is obtained from C by freely adjoining a collection of new objects
and f ′′ is bijective on objects. Since f ′ clearly satisfies (1) and (2), it will
suffice to prove that f ′′ satisfies (1) and (2). Replacing f by f ′′, we may
assume that f is bijective on objects.

We now show that (2) ⇒ (1). Since the functor f∗ preserves colimits, the
collection of morphisms α in AC′

such that f∗ is a projective cofibration in
AC is weakly saturated. It will therefore suffice to show that for every object
X ∈ C′ and every cofibration A → A′ in A, if α : FXA → FXA′ denotes the
corresponding generating projective cofibration, then f∗(α) is a projective
cofibration in S.

There is a canonical left Quillen bifunctor

� : SC × A → AC

described by the formula (F � A)(C) = F (C) ⊗ A. (Here we regard SC

as endowed with the projective model structure.) We observe that f∗(α)
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is the induced map (f∗F ) � A → (f∗F ) � A′, where F ∈ SC′
is given by

F (C′) = MapC′(X,C ′). To prove (1), it will suffice to show that f∗F is
projectively cofibrant.

Since F is bijective on objects, we can choose an object X0 ∈ C such
that fX0 = X. We now observe that F � f!F0, where F0 ∈ SC is defined
by the formula F0(C) = MapC(X0, C). If (2) is satisfied, then the unit map
F0 → f∗F is a projective cofibration in SC. Since F0 is projectively cofibrant,
we conclude that f∗F is projectively cofibrant as well. This completes the
proof that (2) ⇒ (1).

To prove (2), let us write f as a transfinite composition of S-enriched
functors

C = C0 → C1 → · · · ,
each of which is a pushout of a generating cofibration of the form [1]S → [1]S′ ,
where S → S′ is a cofibration in S. For each α ≤ β, let fβα : Cα → Cβ be the
corresponding cofibration. We will prove that the following statement holds
for every pair of ordinals α ≤ β:

(2α,β) For every projectively cofibrant object F ∈ SCα , the unit map u : F →
(fβα )∗(fβα )!F is a projective cofibration.

The proof proceeds by induction on β. We observe that u is a transfinite
composition of maps of the form

uγ : (fγα)∗(fγα)!F → (fγα)∗(fγ+1
γ )∗(fγ+1

γ )!(fγα)!F,

where γ < β. It will therefore suffice to show that each uγ is a projective
cofibration. Our inductive hypothesis therefore guarantees that (2α,γ) holds,
so the first part of the proof shows that (fγα)∗ preserves trivial cofibrations.
We are therefore reduced to proving assertion (2γ,γ+1). In other words, to
prove (2) in general, it will suffice to treat the case in which f is a pushout
of a generating cofibration of the form [1]S → [1]S′ .

We will in fact prove the following stronger version of (2):

(3) For every projective cofibration φ : F ′ → F in SC, the induced map
φ′ : F

∐
F ′ f∗f!F ′ → f∗f!F is again a projective cofibration in SC.

Consider the collection of all morphisms φ : F ′ → F in SC such that the
induced map φ′ : F

∐
F ′ f∗f!F ′ → f∗f!F is a projective cofibration. It is

easy to see that this collection is weakly saturated. Consequently, to prove
(3) it suffices to treat the case where φ is a generating projective cofibration
of the form FCA → FCA′ , where A → A′ is a cofibration in S. In this case, we
can identify φ′ with the map

(FC �A′)
∐
FC�A

(f∗f!FC �A) → f∗f!FC �A′,

where FC ∈ SC is the functor D �→ MapC(C,D). Since � is a left Quillen bi-
functor, it will suffice to show that the unit map fC → f∗f!FC is a projective
cofibration in SC. This is precisely the content of Lemma A.3.3.10.
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In §A.2.8, we introduced the definitions of homotopy limits and colimits in
an arbitrary combinatorial model category A. We now discuss an analogous
construction in the case where A is enriched over an excellent model category
S. To simplify the exposition, we will discuss only the case of homotopy
limits; the case of homotopy colimits is entirely dual and is left to the reader.

Fix an excellent model category S and a combinatorial S-enriched model
category A. Let f : C → C′ be a functor between small S-enriched categories,
so that we have an induced Quillen adjunction

AC′ f∗
��AC.

f∗
��

We will refer to the right derived functor Rf∗ as the homotopy right Kan
extension functor. Suppose we are given a pair of functors F ∈ AC, G ∈ AC′

and a morphism η : G → f∗F in AC′
. We will say that η exhibits G as the

homotopy right Kan extension of F if, for some weak equivalence F → F ′

where F ′ is injectively fibrant in AC, the composite map G → f∗F → f∗F ′

is a weak equivalence in AC′
. Since f∗ preserves weak equivalences between

injectively fibrant objects, this condition is independent of the choice of F ′.

Remark A.3.3.11. In §A.2.8, we defined homotopy right Kan extensions
in the setting of the diagram categories Fun(C,A), where C is an ordinary
category. In fact, this is a special case of the above construction. Namely,
there is a unique colimit-preserving monoidal functor F : Set → S given by
F (S) =

∐
s∈S 1S. We can therefore define an S-enriched category C whose

objects are the objects of C, with MapC(X,Y ) = F MapC(X,Y ). We now
observe that we have an identification Fun(C,A) � AC which is functorial
in both C and A. This identification is compatible with the definition of the
injective model structures on both sides, so that either point of view gives
rise to the same theory of homotopy right Kan extensions.

We now discuss a special feature of the enriched theory of homotopy Kan
extensions: they can be reduced to the theory of homotopy Kan extensions
in the model category S:

Proposition A.3.3.12. Let S be an excellent model category, let A be a
combinatorial model category enriched over S, and let f : C → C′ be a
functor between small S-enriched categories. Suppose given objects F ∈ AC,
G ∈ AC′

and a map η : G → f∗F . Assume that F and G are projectively
fibrant. The following conditions are equivalent:

(1) The map η exhibits G as a homotopy right Kan extension of F .

(2) For each cofibrant object A ∈ A, the induced map

ηA : GA → f∗FA
exhibits GA as a homotopy right Kan extension of FA. Here FA ∈ SC

and GA ∈ SC′
are defined by FA(C) = MapA(A,F (C)), GA(C) =

MapA(A,G(C)).
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(3) For every fibrant-cofibrant object A ∈ A, the induced map

ηA : GA → f∗FA

exhibits GA as a homotopy right Kan extension of FA.

Proof. Choose an equivalence F → F ′, where F ′ is injectively fibrant. We
note that the induced maps FA → F ′

A are weak equivalences for any cofi-
brant A ∈ A since MapA(A, •) preserves weak equivalences between fibrant
objects. Consequently, we may without loss of generality replace F by F ′

and thereby assume that F is injectively fibrant.
Now suppose that A is any cofibrant object of A; we claim that FA is

injectively fibrant. To show that FA has the right lifting property with re-
spect to a trivial weak cofibration H → H ′ of functors C → S, one need only
observe that F has the right lifting property with respect to trivial injective
cofibration A⊗H → A⊗H ′ in AC.

Now we note that (1) is equivalent to the assertion that η is a weak
equivalence, (2) is equivalent to the assertion that ηA is a weak equivalence
for any cofibrant object A, and (3) is equivalent to the assertion that ηA
is a weak equivalence whenever A is fibrant-cofibrant. Because MapA(A, •)
preserves weak equivalences between fibrant objects, we deduce that (1) ⇒
(2). It is clear that (2) ⇒ (3). We will complete the proof by showing that
(3) ⇒ (1). Assume that (3) holds; we must show that η(C′) : G(C ′) →
f∗F (C ′) is an isomorphism in the homotopy category hA for each C ′ ∈ C′.
For this, it suffices to show that G(C′) and f∗F (C ′) represent the same H-
valued functors on the homotopy category hA, which is precisely the content
of (3).

Remark A.3.3.13. It follows from Proposition A.3.3.12 that we can make
sense of homotopy right Kan extensions for diagrams which do not take
values in a model category. Let f : C → C′ be an S-enriched functor as in
the discussion above and let A be an arbitrary locally fibrant S-enriched
category. Suppose we are given objects F ∈ AC, G ∈ AC′

and η : f∗G → F ;
we say that η exhibits G as a homotopy right Kan extension of F if, for each
object A ∈ A, the induced map

ηA : GA → f∗FA

exhibits GA ∈ SC′
as a homotopy right Kan extension of FA ∈ SC.

Suppose that the monoidal structure on S is given by the Cartesian prod-
uct and take C′ to be the final object of CatS, so that we can identify AC′

with A. In this case, we can identify G with a single object B ∈ A and
the map η with a collection of maps {B → F (C)}C∈C. We will say that η
exhibits B as a homotopy limit of F if it identifies G with a homotopy right
Kan extension of F . In other words, η exhibits B as a homotopy limit of F
if, for every object A ∈ A, the induced map

MapA(A,B) → lim{MapA(A,F (C))}C∈C
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exhibits MapA(A,B) as a homotopy limit of the diagram

{MapA(A,F (C))}C∈C

in the model category S.
We also have a dual notion of homotopy colimit in an arbitrary fibrant S-

enriched category A: a compatible family of maps {F (C) → B}C∈C exhibits
B as a homotopy colimit of F if, for every object A ∈ A, the induced maps
{MapA(B,A) → MapA(F (C), A)}C∈C exhibit MapA(B,A) as a homotopy
limit of the diagram {MapA(F (C), A)}C∈C in S.

Remark A.3.3.14. In view of Proposition A.3.3.12, the terminology intro-
duced in Remark A.3.3.13 for general A agrees with the terminology intro-
duced for a combinatorial S-enriched model category A if we set A = A◦.
We remark that, in general, the two notions do not agree if we take A = A,
so that our terminology is potentially ambiguous; however, we feel that there
is little danger of confusion.

We conclude this section by giving the proof of Lemma A.3.3.3. Let A be
a presentable category which is enriched, tensored, and cotensored over a
presentable category S. Let C be a small S-enriched category and let S0 be
a weakly saturated class of morphisms of A generated by a (small) set S0.
We regard this data as fixed for the remainder of this section.

Choose a regular cardinal κ satisfying the following conditions:

(i) The cardinal κ is uncountable.

(ii) The category C has fewer than κ-objects.

(iii) Let X,Y ∈ C and let K = MapC(X,Y ). Then the functor from A to
itself given by the formula A �→ AK preserves κ-filtered colimits. This
implies, in particular, that the collection of κ-compact objects of A is
stable with respect to the functors • ⊗K.

(iv) The category A is κ-accessible. It follows also that AC is κ-accessible,
and that an object F ∈ AC is κ-compact if and only if each F (C) ∈ A is
κ-compact. We prove an ∞-category generalization of this statement
as Proposition 5.4.4.3. The same proof also works in the setting of
ordinary categories.

(v) The source and target of every morphism in S0 is a κ-compact object
of A.

Enlarging S0 if necessary, we may assume that S0 consists of all morphisms
in f ∈ S0 such that the source and target of f are κ-compact. Let S be the
collection of all injective cofibrations between κ-compact objects of A (in
view of (iv), we can equally well define S to be the set of morphisms F → G
in AC such that each of the induced morphisms F (C) → G(C) belongs to
S0). Let S be the weakly saturated class of morphisms in AC generated by S
and choose a map f : F → G in AC such that f(C) ∈ S0 for each C ∈ C. We



APPENDIX 873

wish to show that f ∈ S. Corollary A.1.5.13 implies that, for each C ∈ C,
there exists a κ-good S0-tree {Y (C)α}α∈A(C) with root F (C) and colimit
G(C).

Let us define a slice to be the following data:

(a) For each object C ∈ C, a downward-closed subset B(C) ⊆ A(C).

(b) For every object C ∈ C, a morphism

ηC :
∐
C′∈C

Y (C ′)B(C′) ⊗ MapA(C ′, C) → Y (C)B(C),

rendering the following diagrams commutative:

Y (C ′′)B(C′′) ⊗ MapA(C ′′, C′) ⊗ MapA(C ′, C)

����
���

���
���

ηC′
##���

���
���

��

Y (C′)B(C′) ⊗ MapA(C ′, C)
ηC

����
���

���
���

Y (C′′)B(C′′) ⊗ MapA(C ′′, C)

ηC′′
##���

���
���

��

Y (C)B(C)

F (C ′) ⊗ MapA(C ′, C) ��

��

F (C)

��
Y (C ′)B(C′) ⊗ MapA(C ′, C)

��

ηC �� Y (C)B(C)

��
G(C′) ⊗ MapA(C ′, C) �� G(C).

We remark that (b) is precisely the data needed to endow C �→ Y (C)B(C)

with the structure of an S-enriched functor C → A lying between F and G
in AC.

Lemma A.3.3.15. Suppose we are given a collection of κ-small subsets
{B0(C) ⊆ A(C)}C∈C. Then there exists a slice {(B(C), ηC}C∈C such that
each B(C) is a κ-small subset of A(C) containing B0(C).

Proof. Enlarging each B0(C) if necessary, we may assume that each B0(C)
is downward-closed. Note that because each {Y (C)α}α∈A(C) is a κ-good S0-
tree, if A′ ⊆ A(C) is downward-closed and κ-small, Y (C)A′ is κ-compact
when viewed as an object of AF (C)/. It follows from (iii) that each tensor
product Y (C)B0(C) ⊗ MapA(C,C′) is a κ-compact object of the category
A(F (C)⊗MapA(C,C′))/. Consequently, each composition∐
C′∈C

Y (C ′)B0(C′) ⊗ MapA(C ′, C)→
∐
C′∈C

G(C′) ⊗ MapA(C ′, C) → G(C)
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admits another factorization∐
C′∈C

Y (C ′)B0(C′) ⊗ MapA(C ′, C)
η1

C→ Y (C)B1(C) → G(C),

where B1(C) is downward-closed and κ-small, and the diagram∐
C′∈C F (C ′) ⊗ MapA(C ′, C)

��

��
∐
C′∈C Y (C ′)B0(C′)

η1
C

����
F (C) �� Y (C)B1(C)

commutes. Enlarging B1(C) if necessary, we may suppose that each B1(C)
contains B0(C).

We now continue the preceding construction by defining, for each C ∈ C,
a sequence of κ-small downward-closed subsets

B0(C) ⊆ B1(C) ⊆ B2(C) ⊆ · · ·
of A(C) and maps ηiC :

∐
C′∈C Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C) → Y (C)Bi(C).

Suppose that i > 1 and that the sets Bj(C) and maps ηjC have been con-
structed for j < i. Using a compactness argument, we conclude that the
composition∐
C′∈C

Y (C′)Bi−1(C′) ⊗ MapA(C ′, C) →
∐
C′∈C

G(C′) ⊗ MapA(C ′, C) → G(C)

coincides with∐
C′∈C

Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)
ηi

C→ Y (C)Bi(C) → G(C),

where Bi(C) is κ-small and the diagram∐
C′∈C F (C ′) ⊗ MapA(C ′, C)

��

��
∐
C′∈C Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)

ηi
C

����
F (C) �� Y (C)Bi(C)

commutes. Enlarging Bi(C) if necessary, we may suppose that Bi(C) con-
tains Bi−1(C) and that the following diagrams commute as well (for all
C ′, C ′′ ∈ C):

Y (C′′)Bi−2(C′′) ⊗ MapA(C ′′, C′) ⊗ MapA(C ′, C)

##���
���

���
��

����
���

���
���

Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)
ηi

C

����
���

���
���

Y (C ′′)Bi−1(C′′) ⊗ MapA(C ′′, C)

ηi
C##���

���
���

��

Y (C)Bi(C)
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Y (C ′)Bi−2(C′) ⊗ MapA(C ′, C) ��

ηi−1
C

��

Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)

ηi
C

��
Y (C)Bi−1(C)

�� Y (C)Bi(C).

We now define B(C) =
⋃
Bi(C), and ηC to be the amalgam of the compo-

sitions ∐
C′∈C

Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)
ηi

C→ Y (C)Bi
(C) → Y (C)B(C).

We now introduce a bit more terminology. Suppose we are given a pair
of slices M = {(B(C), ηC)}C∈C, M ′ = {(B′(C), η′C}C∈C}. We will say that
M is κ-small if each B(C) is κ-small. We will say that M ′ extends M if
B(C) ⊆ B′(C) for each C ∈ C and each diagram

Y (C′)B(C′) ⊗ MapA(C ′, C) ��

ηC

��

Y (C ′)B′(C′) ⊗ MapA(C ′, C)

η′C
��

Y (C)B(C)
�� Y (C)B′(C)

is commutative. Equivalently, M ′ extends M if B(C) ⊆ B′(C) for each
C ∈ C, and the induced maps Y (C)B(C) → Y (C)B(C′) constitute a natural
transformation of simplicial functors from C to A.

Lemma A.3.3.16. Let M ′ = {(A′(C), θC)}C∈C be a slice and let {B0(C) ⊆
A(C)}C∈C be a collection of κ-small subsets of A(C). Then there exists a
pair of slices N = {(B(C), ηC)}C∈C, N ′ = {(B(C) ∩ A′(C), η′C)}, where
B(C) is κ-small and N ′ is compatible with both N and M ′.

Proof. Let B′
0(C) = A′(C) ∩ B0(C). For every positive integer i, we will

construct a pair of slices Ni = {(Bi(C), η(i)C)}, N ′
i = {(B′

i(C), η′(i)C)} so
that the following conditions are satisfied:

(a) Each Bi(C) is κ-small and contains Bi−1(C).

(b) Each B′
i(C) is κ-small, contains B′

i−1(C) and the intersection Bi(C)∩
A′(C), and is contained in A′(C).

(c) Each N ′
i is compatible with M ′.

(d) If i > 2 and C,C′ ∈ C, then the diagram

Y (C ′)Bi−2(C′) ⊗ MapA(C ′, C) ��

η(i−2)C

��

Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)

η(i−1)C

��
Y (C)Bi−2(C)

��

Y (C)Bi−1(C)

��
Y (C)Bi(C) Y (C)Bi(C)
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commutes.

(e) If i > 2 and C,C ′ ∈ C, then the diagram

Y (C ′)B′
i−2(C

′) ⊗ MapA(C ′, C) ��

η′(i−2)C

��

Y (C ′)B′
i−1(C

′) ⊗ MapA(C ′, C)

η(′i−1)C

��
Y (C)B′

i−2(C)

��

Y (C)B′
i−1

(C)

��
Y (C)B′

i(C) Y (C)B′
i(C)

commutes.

(f) If i > 1 and C,C ′ ∈ C, then the diagram

Y (C ′)B′
i−1(C

′) ⊗ MapA(C ′, C) ��

η′(i−1)C

��

Y (C ′)Bi−1(C′) ⊗ MapA(C ′, C)

η(i−1)C

��
Y (C)B′

i−1(C)

��

Y (C)Bi−1(C)

��
Y (C)B′

i(C)
�� Y (C)B′

i(C)

commutes.

The construction is by induction on i. The existence of Ni satisfying (a),
(d), and (f) follows from Lemma A.3.3.15 (and a compactness argument).
Similarly, the existence of N ′

i satisfying (b), (c), and (e) follows by apply-
ing Lemma A.3.3.15 after replacing G ∈ AC by the functor G′ given by
G′(C) = Y (C)A′(C), and the S0-trees {Y (C)α}α∈A(C) by the smaller trees
{Y (C)α}α∈A′(C).

We now define B(C) =
⋃
iBi(C). It follows from (d) that the η(i)C as-

semble to a map

ηC :
∐
C′∈C

Y (C ′)B(C′) ⊗ MapA(C ′, C) → Y (C)B(C).

Taken together, these maps determine a slice N = {(B(C), ηC)}. Simi-
larly, (e) implies that the maps η′(i)C assemble to a slice N ′ = {(B(C) ∩
A′(C), η′C)}. The compatibility of N and N ′ follows from (f), while the
compatibility of M ′ and N ′ follows from (c).

We now construct a transfinite sequence of compatible slices {M(γ) =
{(B(γ)(C), η(γ)C)}C∈C}γ<β . The construction is by recursion. Assume that
M(γ′) has been defined for γ′ < γ and let M ′(γ) = {(B′(γ)(C), η′(γ)C)}C∈C

denote the slice obtained by amalgamating the family of slices {M(γ′)}γ′<γ .
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If B′(γ)(C) = A(C) for all C ∈ C, we set β = γ and conclude the con-
struction. Otherwise, we choose C ∈ C and a ∈ A(C)−B′(γ)(C). According
to Lemma A.3.3.16, there exists a pair of slices N(γ) = {(B′′(C), θC)}C∈C,
N ′(γ) = {(B′′(C) ∩ B′(γ)(C), θ′C}C∈C such that N ′(γ) is compatible with
both N(γ) and M ′(γ). We now define M(γ) to be the slice obtained by
amalgamating M ′(γ) and N(γ).

For γ < β, let G(γ) : C → A be the simplicial functor corresponding to the
slice M(γ). Then we have a transfinite sequence of composable morphisms

G(0) → G(1) → · · ·
in (AC)F/ having colimit G � lim−→γ<β

G(γ). Since S is weakly saturated, to

prove that the map F → G belongs to S, it will suffice to show that for each
γ < β, the map

fγ : lim−→γ′<γ
G(γ′) → G(γ)

belongs to S. We observe that for each C ∈ C, the map fγ(C) can be identi-
fied with the map Y (C)B′(γ)(C) → Y (C)B(γ)(C). Since B(γ)(C)−B′(γ)(C) is
κ-small, Remark A.1.5.5, Lemma A.1.5.11, and Lemma A.1.5.6 imply that fγ
is the pushout of a morphism belonging to S0. We now conclude by applying
the following result (replacing G by G(γ) and F by lim−→γ′<γ

G(γ′)):

Lemma A.3.3.17. Suppose that f : F → G has the property that, for each
C ∈ C, there exists a pushout diagram

XC
gC ��

��

YC

��
F (C)

f(C) �� G(C),

where gC ∈ S0. Then f is the pushout of a morphism in S.

Proof. In view of (iv), we can write F as the colimit of a diagram {Fλ}λ∈P
indexed by a κ-filtered partially ordered set P , where each Fλ is a κ-compact
object of AC and is therefore a functor whose values are κ-compact objects of
A. Since each XC ∈ A is κ-compact, the map XC → F (C) factors through
Fλ(C)(C) for some sufficiently large λ(C) ∈ P . Since C has fewer than κ
objects and P is κ-filtered we can choose a single λ ∈ P which works for
every object C ∈ C.

Consider, for each C ∈ C, the composite map∐
C′∈C

YC′ ⊗ MapA(C ′, C)→
∐
C′∈C

G(C′) ⊗ MapA(C ′, C)

→G(C)

� lim−→λ′∈P Fλ′(C)
∐
XC

YC .

Using another compactness argument, we deduce that this map is equivalent
to a composition∐

C′∈C

YC′ ⊗ MapA(C ′, C) → Fλ′(C)(C)
∐
XC

YC
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for some sufficiently large λ′(C) ∈ P . Once again, because P is κ-filtered
we can choose a single λ′ ∈ P which works for all C. Enlarging λ and λ′,
we can assume λ = λ′. Using another compactness argument, we can (after
enlarging λ if necessary) assume that each of the diagrams

XC′ ⊗ MapA(C ′, C) ��

��

Fλ(C)

��
YC′ ⊗ MapA(C ′, C) �� Fλ(C)

∐
XC

YC

YC′′ ⊗ MapA(C ′′, C′) ⊗ MapA(C ′, C) ��

��

YC′′ ⊗ MapA(C ′′, C)

��
(Fλ(C ′)

∐
XC′ YC′) ⊗ MapA(C ′, C) �� Fλ(C)

∐
XC

YC

is commutative. Then the above maps allow us to define an S-enriched func-
tor Gλ : C → A by the formula Gλ(C) = Fλ(C)

∐
XC

YC . We now observe
that there is a pushout diagram

Fλ
fλ ��

��

Gλ

��
F

f �� G

and that fλ ∈ S.

A.3.4 Path Spaces in S-Enriched Categories

Let S be a excellent model category. We have seen that there exists a model
structure on the category CatS of S-enriched categories whose fibrant objects
are precisely those categories which are enriched over the full subcategory
S◦ of fibrant objects of S.

The theory of model categories provides a plethora of examples: for ev-
ery S-enriched model category A, the full subcategory A◦ ⊆ A of fibrant-
cofibrant objects is a fibrant object of CatS. In other words, A◦ is suitable
to use for computing the homotopy set [C,A◦] = HomhCatS(C,A◦): if C is
cofibrant, then every map from C to A◦ in the homotopy category of CatS
is represented by an actual S-enriched functor from C to A◦. Moreover, two
simplicial functors F, F ′ : C → A◦ represent the same morphism in hCatS if
and only if they are homotopic to one another. The relation of homotopy can
be described in terms of either a cylinder object for C or a path object for
A◦. Unfortunately, it is rather difficult to construct a cylinder object for C

explicitly since the cofibrations in CatS are difficult to describe directly even
when S = Set∆ (the class of cofibrations of simplicial categories is not stable
under products, so the usual procedure of constructing mapping cylinders
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via “product with an interval” cannot be applied). On the other hand, The-
orem A.3.2.24 gives a good understanding of the fibrations in CatS, which
will allow us to give a very explicit construction of a path object for A◦.

Let A be an S-enriched model category. Our goal in this section is to give
a direct construction of a path space object for A◦ in CatS. In other words,
we wish to supply a diagram of S-enriched categories

A◦ → P (A) → A◦ × A◦,

where the composite map is the diagonal, the left map is a weak equivalence,
and the right map is a fibration. For technical reasons, we will find it conve-
nient to work not with the entire category A but with some (usually small)
subcategory thereof. For this reason, we introduce the following definition:

Definition A.3.4.1. Let S be an excellent model category and let A be a
combinatorial S-enriched model category. A chunk of A is a full subcategory
U ⊆ A with the following properties:

(a) Let A be an object of U and let {φi : A → Bi}i∈I be a finite collection
of morphisms in U. Then there exists a factorization

A
p→ A

q→
∏
i∈I

Bi

of the product map
∏
i∈I φi, where p is a trivial cofibration, q is a

fibration, and A ∈ U. Moreover, this factorization can be chosen to
depend functorially on the collection {φi} via an S-enriched functor.

(b) Let A be an object of U and let {φi : Bi → A}i∈I be a finite collection
of morphisms in U. Then there exists a factorization∐

i∈I
Bi

p→ A
q→ A

of the coproduct map
∐
i∈I φi, where p is a cofibration, q is a trivial

fibration, and A ∈ U. Moreover, this factorization can be chosen to
depend functorially on the collection {φi} via an S-enriched functor.

If U is a chunk of A, we let U◦ denote the full subcategory A◦ ∩ U ⊆ U

consisting of fibrant-cofibrant objects of A which belong to U.
We will say that two chunks U,U′ ⊆ A are equivalent if they have the

same essential image in the homotopy category hA.

Remark A.3.4.2. In particular, if U is a chunk of A, then each object
A ∈ U admits (functorial) fibrant and cofibrant replacements which also
belong to U (take the set I to be empty in (a) and (b)).

Remark A.3.4.3. If U ⊆ U′ ⊆ A are equivalent chunks of A, then the
inclusion U◦ ⊆ U′◦ is a weak equivalence of S-enriched categories.

Example A.3.4.4. Let S be an excellent model category and let A be a
combinatorial S-enriched model category. Then A is a chunk of itself; this
follows from the small object argument.
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Example A.3.4.5. Let U ⊆ A be a chunk and let {Xα} be a collection of
objects in A. Let V ⊆ U be the full subcategory spanned by those objects
X ∈ U such that there exists an isomorphism [X] � [Xα] in the homotopy
category hA. Then V is also a chunk of A.

We will prove a general existence theorem for chunks below (see Lemma
A.3.4.15).

Lemma A.3.4.6. Let S be an excellent model category and let C be a small
S-enriched category. Then there exists a weak equivalence of S-enriched cat-
egories C → U◦, where U is a chunk of a combinatorial S-enriched category
A.

Proof. Without loss of generality, we may suppose that C is fibrant. Let
A = SCop

endowed with the projective model structure. We can identify
C with a full subcategory of A◦ via the Yoneda embedding. Using Lemma
A.3.4.15, we can enlarge C to a chunk in A having the same image in the
homotopy category hA.

Notation A.3.4.7. Let S be an excellent model category, let A be a com-
binatorial S-enriched model category, and let U be a chunk of A. We define
a new category P (U) as follows:

(i) The objects of P (U) are fibrations φ : A → B×C in A, where A,B,C ∈
U◦ and the composite maps A → B and A → C are weak equivalences.

(ii) Morphisms in P (U) are given by maps of diagrams

B

��

A�� ��

��

C

��
B′ A′�� �� C′.

We let π, π′ : P (U) → U◦ be the functors described by the formulas

π(φ : A → B × C) = B π′(φ : A → B × C) = C.

We observe that both π and π′ have the structure of S-enriched functors.
Invoking assumption (a) of Proposition A.3.4.1, we deduce the existence of
another S-enriched functor τ : U◦ → P (U), which carries an object A ∈ A◦

to the map q appearing in a functorial factorization

A
p→ A

q→ A×A

of the diagonal, where p is a trivial cofibration and q is a fibration.

Theorem A.3.4.8. Let S be an excellent model category, let A be a com-
binatorial S-enriched model category, and let U be a chunk of A. Then the
morphisms π, π′ : P (U) → U◦ and τ : U◦ → P (U) furnish P (U) with the
structure of a path object for U◦ in CatS.
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Proof. We first show that π × π′ is a fibration of S-enriched categories. In
view of Theorem A.3.2.24, it will suffice to show that π×π′ is a local fibration.
Let φ : A → B×C and φ′ : A′ → B′×C ′ be objects of P (U). We must show
that the induced map

MapP (U)(φ, φ
′) → MapA(B,B′) × MapA(C,C ′)

is a fibration in S. This map is a base change of

MapA(A,A′) → MapA(A,B′ × C′),

which is a fibration by virtue of the assumption that φ′ is a fibration (since
A is assumed to be cofibrant).

To complete the proof that π× π′ is a quasi-fibration, we must show that
if φ : A → B × C is an object of P (U) and we are given weak equivalences
f : B → B′, g : C → C′, then we can lift f and g to an equivalence in P (U).
To do so, we factor the composite map A → B′ ×C ′ as a trivial cofibration
A → A′ followed by a fibration φ′ : A′ → B′ × C′. Since U is a chunk of A,
we may assume that A′ ∈ U so that φ′ ∈ P (U). We have an evident natural
transformation α : φ → φ′. We will show below that π : P (U) → U◦ is an
equivalence of S-enriched categories; since π(α) = f is an isomorphism in
hU◦, we conclude that α is an isomorphism in hP(U), as required.

To complete the proof, we must show that τ is a weak equivalence of S-
enriched categories. By the two-out-of-three property, it will suffice to show
that π is a weak equivalence of S-enriched categories. Since τ is a section of
π, it is clear that π is essentially surjective. It remains only to prove that π is
fully faithful. Let φ : A → B ×C and φ′ : A′ → B′ ×C ′ be objects of P (U);
we wish to show that the induced map p : MapP (U)(φ, φ′) → MapA(B,B′)
is a weak equivalence in S. We have a commutative diagram

MapP (U)(φ, φ′) ��

��

MapA(A,A′)

u

��
MapA(B,B′) × MapA(C,C ′)

��

�� MapA(A,B′ × C′)

��
MapA(B,B′) × MapA(A,C ′)

��

�� MapA(A,B′) × MapA(A,C ′)

��
MapA(B,B′) �� MapA(A,B′).

We note that because the map A → B is a weak equivalence between cofi-
brant objects and B′ is fibrant, the bottom horizontal map is a weak equiv-
alence in S. Consequently, to show that the top horizontal map is a weak
equivalence in S, it will suffice to show that each square in the diagram is
homotopy Cartesian. The bottom square is Cartesian and fibrant, so there
is nothing to prove. The middle square is homotopy Cartesian because both
of the middle vertical maps are weak equivalences. The upper square is a
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pullback square between fibrant objects of S, and the map u is a fibration;
we now complete the proof by invoking Proposition A.2.4.4.

Fix an excellent model category S. The symmetric monoidal structure on
S induces a symmetric monoidal structure on CatS: if C and D are S-enriched
categories, then we can define a new S-enriched category C⊗D as follows:

(i) The objects of C⊗D are pairs (C,D), where C ∈ C and D ∈ D.

(ii) Given a pair of objects (C,D), (C ′, D′) ∈ C⊗D, we have

MapC⊗D((C,D), (C′, D′)) = MapC(C,C ′) ⊗ MapD(D,D′) ∈ S.

In the case where the tensor product on S is the Cartesian product, this
simply reduces to the usual product of S-enriched categories.

Note that the operation ⊗ : CatS ×CatS → CatS is not a left Quillen bi-
functor even when S = Set∆: for example, a product of cofibrant simplicial
categories is generally not cofibrant. Nevertheless, ⊗ behaves much like a
left Quillen bifunctor at the level of homotopy categories. For example, the
operation ⊗ respects weak equivalences in each argument and therefore in-
duces a functor ⊗ : hCatS × hCatS → hCatS, which is characterized by the
existence of natural isomorphisms [C⊗D] � [C] ⊗ [D].

Our goal for the remainder of this section is to show that the monoidal
structure ⊗ on CatS is closed: that is, there exist internal mapping objects
in hCatS. This is not completely obvious. It is easy to see that the monoidal
structure ⊗ on CatS is closed: given a pair of S-enriched categories C and D,
the category of S-enriched functors DC is itself S-enriched and possesses the
appropriate universal property. However, this is not necessarily the “correct”
mapping object in the sense that the homotopy equivalence class [DC] does
not necessarily coincide with the internal mapping object [D][C] in hCatS.
Roughly speaking, the problem is that DC consists of functors which are
strictly compatible with composition; the correct mapping object should also
incorporate functors which preserve composition only up to (coherent) weak
equivalence. However, when D is the category of fibrant-cofibrant objects of
an S-enriched model category A, then we can proceed more directly.

Definition A.3.4.9. Let S be an excellent model category, A a combina-
torial S-enriched model category, and C an S-enriched category. We will say
that a full subcategory U ⊆ A is a C-chunk of A if it is a chunk of A and
the subcategory UC is a chunk of AC. Here we regard AC as endowed with
the projective model structure.

Lemma A.3.4.10. Let S be an excellent model category, A a combinatorial
S-enriched model category, C a (small) cofibrant S-enriched category, and
U ⊆ A a C-chunk. Let f, f ′ : C → U◦ be a pair of maps. The following
conditions are equivalent:

(1) The homotopy classes [f ] and [f ′] coincide in HomhCatS(C,U◦).
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(2) The maps f and f ′ are weakly equivalent when regarded as objects of
AC.

Proof. Suppose first that (1) is satisfied. Using Theorem A.3.4.8, we deduce
the existence of a homotopy h : C → P (U) from f = π ◦h to f ′ = π′ ◦h. The
map h determines another simplicial functor f ′′ : C → U equipped with weak
equivalences f ′′ → f , f ′′ → f ′. This proves that f and f ′ are isomorphic in
the homotopy category of AC, so that (2) is satisfied.

Now suppose that (2) is satisfied. Since U is a C-chunk, we can find a
projectively cofibrant f ′′ : U → C equipped with a weak equivalence α : f ′′ →
f . Using (2), we deduce that there is also a weak equivalence β : f ′′ → f ′.
Again using the assumption that UC is a chunk of AC, we can choose a
factorization of α× β as a composition

f ′′ u→ f ′′′ v→ f × f ′

where u is a trivial projective cofibration, v is a projective fibration, and
f ′′′ ∈ UC. The map v can be viewed as an object of P(U), which determines
a right homotopy from f to f ′.

Corollary A.3.4.11. Let S be an excellent model category and let f : C →
C′ be an S-enriched functor. Suppose that f is fully faithful in the sense
that for every pair of objects X,Y ∈ C, the induced map MapC(X,Y ) →
MapC′(fX, fY ) is a weak equivalence in S. Let D be an arbitrary S-enriched
category. Then

(1) Composition with f induces an injective map φ : HomhCatS(D,C) →
HomhCatS(D,C′).

(2) The image of φ consists of those maps g : D → C′ in hCatS such that
the essential image of [g] in hC′ is contained in the essential image of
[f ] in hC′.

Proof. Using Lemma A.3.4.6, we may assume without loss of generality that
C′ = U◦, where U is a chunk of an S-enriched model category. Let V ⊆ U be
the full subcategory spanned by those objects which are weakly equivalent
to an object lying in the image of f . Since f is fully faithful, the induced
map C → V◦ is a weak equivalence. We may therefore assume that C = V◦.

Without loss of generality, we may suppose that D is cofibrant. Enlarging
U and V if necessary (using Lemma A.3.4.15), we may assume that U and
V are D-chunks. The desired results now follow immediately from Lemma
A.3.4.10.

Let π0AC denote the collection of weak equivalence classes of objects in
AC. Every equivalence class contains a fibrant-cofibrant representative which
determines an S-enriched functor C → A◦.

Proposition A.3.4.12. Let S be an excellent model category, A a combina-
torial S-enriched model category, and C a (small) S-enriched category. Then
the map

φ : π0AC → HomhCatS(C,A◦)
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described above is bijective.

Proof. In view of Proposition A.3.3.8, we may assume that C is cofibrant.
Lemma A.3.4.10 shows that φ is well-defined and injective. We show that
φ is surjective. Let [f ] ∈ HomhCatS(C,U◦). Since C is cofibrant and A◦ is
fibrant in CatS, we can find an S-enriched functor f : C → A◦ representing
[f ]. The simplicial functor f takes values in fibrant-cofibrant objects of A
but is not necessarily fibrant-cofibrant as an object of AC. However, we can
choose a weak trivial fibration f ′ → f , where f ′ is projectively cofibrant.
Consequently, it will suffice to show that a weak equivalence u : f ′ → f of
S-enriched functors C → A◦ guarantees that [f ] = [f ′] ∈ HomhCatS(C,A◦),
which follows from Lemma A.3.4.10.

Proposition A.3.4.13. Let S be an excellent model category, A a combina-
torial S-enriched model category, and C a small S-enriched category. Then
the evaluation map e : (AC)◦ ⊗C → A◦ has the following property: for every
small S-enriched category D, composition with e induces a bijection

HomhCatS(D, (AC)◦) → HomhCatS(C⊗D,A◦).

Proof. Using Proposition A.3.4.12, we can identify both sides with π0AC⊗D.

It is not clear that the conclusion of Proposition A.3.4.13 characterizes
(AC)◦ up to equivalence since (AC)◦ is a large S-enriched category, and the
proof of the proposition applies only in the case where D is small. To remedy
this defect, we establish a more refined version:

Corollary A.3.4.14. Let S be an excellent model category, A a combina-
torial S-enriched model category, and C a small S-enriched category. Let U

be a C-chunk of A. Then the evaluation map e : (UC)◦ ⊗ C → U◦ has the
following property: for every small S-enriched category D, composition with
e induces a bijection

HomhCatS(D, (UC)◦) → HomhCatS(C⊗D,U◦).

Proof. Combine Proposition A.3.4.13 with Corollary A.3.4.11.

We conclude this section with a technical result which ensures the exis-
tence of a good supply of chunks of combinatorial model categories.

Lemma A.3.4.15. Let S be an excellent model category, A a combinato-
rial S-enriched model category, and {Cα}α∈A a (small) collection of (small)
cofibrant S-enriched categories. Let U be a small full subcategory of A. Then
there exists a small subcategory V ⊆ A containing U, such that V is a Cα-
chunk for each α ∈ A. Moreover, we may arrange that U and V have the
same essential image in the homotopy category hA.
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Proof. Enlarging A if necessary, we may suppose that the collection {Cα}α∈A
includes the unit category [0]S. For each α ∈ A, we can choose S-enriched
functors

Fα : ACα ⊗[1]S → ACα ⊗[2]S Gα : ACα ⊗[1]S → ACα ⊗[2]S ,

such that F carries each morphism u : f → g in AC to a factorization

f
u′
→ f ′ u′′

→ g,

where u′ is a strong trivial cofibration and u′′ is a projective fibration, and
G carries u to a factorization

f
v′→ g′ v

′′→ g,

where v′ is a projective cofibration and v′′ is a weak trivial cofibration. For
C ∈ Cα, let FCα be the functor u �→ f ′(C) and define GCα likewise.

Choose a regular cardinal κ such that each Cα is κ-small. We define a
sequence of full subcategories {Uα ⊆ A}α<κ as follows:

(i) If α = 0, then Uα = U.

(ii) If α is a nonzero limit ordinal, then Uα =
⋃
β<αUβ.

(iii) If α = β + 1, then Uα is the full subcategory of A spanned by the
following:

(a) The objects which belong to Uβ .

(b) The objects FCα (u) ∈ A, where α ∈ A, C ∈ Cα, and u : f → g is
a morphism from an object of UCα

β to a finite product of objects
in UCα

β .

(c) The objects GCα (u) ∈ A, where α ∈ A, C ∈ Cα, and u : f → g is a
morphism from a finite coproduct of objects of UCα

β to an object
in UCα

β .

It is readily verified that the subcategory V =
⋃
α<κ Uα has the desired

properties.

A.3.5 Homotopy Colimits of S-Enriched Categories

Our goal in this section is to give an explicit construction of (certain) homo-
topy colimits in the model category CatS, where S is an excellent model
category. We begin with some general remarks concerning localization.

Notation A.3.5.1. Consider the canonical map i : [1]S → [1]∼S . We fix once
and for all a factorization of i as a composition

[1]S
i→ E

i′→ [1]∼S ,
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where i is a cofibration and i′ is a weak equivalence of S-enriched categories.
For every S-enriched category C and every map of setsW → HomCatS([1]S,C,
we define a new S-enriched category C[W−1] by a pushout diagram∐

w∈W [1]S ��

��

C

��∐
w∈W E �� C[W−1].

Remark A.3.5.2. Since the model category CatS is left proper, the con-
struction C �→ C[W−1] preserves weak equivalences in C.

We now characterize C[W−1] by a universal property in hCatS.

Lemma A.3.5.3. Let C be a fibrant S-enriched category and let f be a
morphism in C classified by a map j0 : [1]S → C. The following conditions
are equivalent:

(1) The map f is an equivalence in C.

(2) The extension problem depicted in the diagram

[1]S

i

��

j0 �� C

E

j

��	
	

	
	

admits a solution.

Proof. The implication (2) ⇒ (1) is clear since every morphism in E is an
equivalence. For the converse, we observe that the desired lifting problem
admits a solution if and only if the induced map i′ : C → C

∐
[1]S

E admits a
left inverse. Since C is fibrant, it suffices to show that i′ is a trivial cofibration.
The map i′ is a cofibration since it is a pushout of i, and a weak equivalence
because of the invertibility hypothesis.

Lemma A.3.5.3 immediately implies the following apparently stronger
claim:

Lemma A.3.5.4. Let f0 : C → D be an S-enriched functor, where D is a
fibrant S-enriched category. Let ψ : W → HomCatS([1]S,C) be a map of sets.
The following conditions are equivalent:

(1) The map f0 extends to a map f : C[W−1] → D.

(2) For each w ∈ W , f0 carries the morphism φ(w) to an equivalence in
D.
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Proposition A.3.5.5. Let C and D be S-enriched categories and let ψ :
W → HomCatS([1]S,C) be a map of sets. Then the induced map

φ : HomhCatS(C[W−1],D) → HomhCatS(C,D)

is injective, and its image is the subset HomW
hCatS

(C,D) ⊆ HomhCatS(C,D)
consisting of those homotopy classes of maps which induce functors hC → hD

carrying each element of W to an isomorphism in hD.

Proof. Without loss of generality, we may suppose that C is cofibrant and
D is fibrant. The description of the image of φ follows immediately from
Lemma A.3.5.4. It will therefore suffice to show that φ is injective. Sup-
pose we are given a pair of maps [f ], [g] ∈ HomhCatS(C[W−1],D) such that
φ([f ]) = φ([g]). Since C[W−1] is cofibrant, we may assume that [f ] and [g]
are represented by actual S-enriched functors f, g : C[W−1] → D. Moreover,
the condition that φ([f ]) = φ([g]) guarantees that the restrictions f |C and
g|C are homotopic. We wish to show that f and g are homotopic.

Invoking Proposition A.2.3.1, we deduce that g is homotopic to a map
g′ : C[W−1] → D such that g′|C = f |C. Replacing g by g′ if necessary,
we may assume that g|C = f |C. It will now suffice to show that f and g
are homotopic in the model category (CatS)C /. We observe that f and g
determine a map

h : C[(W
∐

W )−1] � C[W−1]
∐
C

C[W−1] → D .

Using the invertibility hypothesis, we conclude that C[(W
∐
W )−1] is a cylin-

der object for C[W−1] in the model category (CatS)C /, so that h is the desired
homotopy from f to g.

Lemma A.3.5.6. Let f : C → D be an S-enriched functor and let M be the
categorical mapping cylinder of f defined as follows:

(1) An object of M is either an object of C or an object of D.

(2) Given a pair of objects X,Y ∈ M, we have

MapM(X,Y ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
MapC(X,Y ) if X,Y ∈ C

MapD(X,Y ) if X,Y ∈ D

MapD(fX, Y ) if X ∈ C, Y ∈ D

∅ if X ∈ D, Y ∈ C .

Here ∅ denotes the initial object of S.

We observe that there is a canonical retraction j of M onto D described by
the formula

j(X) =

{
fX if X ∈ C

X if X ∈ D .

Let W be a collection of morphisms in M with the following properties:
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(i) For each w ∈ W , j(w) is an identity morphism in D.

(ii) For every object C ∈ C, the morphism C → fC in M classifying the
identity map from fC to itself belongs to W .

Assumption (i) implies that the map j canonically extends to a map j :
M[W−1] → D. The map j is a weak equivalence of S-enriched categories.

Proof. It will suffice to show that composition with j induces a bijection

HomhCatS(D,A) → HomhCatS(M[W−1],A)

for every S-enriched category A. Equivalently, we must show that the map

t : HomhCatS(D,A) → HomW
hCatS(M,A)

is bijective, where HomW
hCatS

(M,A) is defined as in Proposition A.3.5.5. The
map t has a section t′ given by composition with the inclusion D → M. It
will therefore suffice to show that t ◦ t′ is the identity on HomW

hCatS
(M,A).

Using Lemma A.3.4.6 and Corollary A.3.4.11, we can reduce to the case
where A = A◦, where A is a combinatorial S-enriched model category. Using
Proposition A.3.4.12, we deduce that every element [g] ∈ HomhCatS(M,A)
can be represented by a diagram g : M → A◦. We wish to prove that g
and g ◦ i ◦ j are homotopic. We observe that there is a canonical natural
transformation α : g → g ◦ i ◦ j. Moreover, if g carries each element of W
to an equivalence in A◦, then assumption (ii) guarantees that α is a weak
equivalence in the model category AM. We now invoke Proposition A.3.4.12
to deduce that g and g ◦ i ◦ j are homotopic, as desired.

Definition A.3.5.7. Let A be a partially ordered set. An A-filtered S-
enriched category is an S-enriched category C together with a map r :
Ob(C) → A with the following property: if C,D ∈ C and r(C) � r(D),
then MapC(C,D) � ∅, where ∅ denotes an initial object of S.

If C is an A-filtered S-enriched category and a ∈ A, then we let C≤a denote
the full subcategory of C spanned by those objects C ∈ C such that r(C) ≤ a.

Remark A.3.5.8. Let C be an A-filtered S-enriched category and let ψ :
W → HomCatS([1]S,C) be a map of sets. For each a ∈ A, we let Wa ⊆ W be
the subset consisting of those elements w ∈ W such that the morphism ψ(w)
belongs to Ca. This data determines a diagram χW : A → CatS described by
the formula a �→ C≤a[W−1

a ]. Moreover, we have a canonical isomorphism of
S-enriched categories C[W−1] � lim−→(χ).

Using the small object argument, we easily deduce the following result:

Lemma A.3.5.9. Let A be a partially ordered set and let C be an A-filtered
S-enriched category. Then there exists an S-enriched functor f : C′ → C with
the following properties:

(1) The functor f is bijective on objects, and for every pair of objects
C,D ∈ C′, the map MapC(C,D) → MapC(fC, fD) is a trivial fibration
in S. In particular, f is a weak equivalence of S-enriched categories.
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(2) The A-filtration on C induces an A-filtration on C′. In other words, if
C,D ∈ C′ and r(fC) � r(fD), then MapC′(C,D) is an initial object
of S.

(3) The diagram A → CatS described by the formula a �→ C′
≤a is projec-

tively cofibrant.

Proposition A.3.5.10. Let A be a partially ordered set, let C be an A-
filtered S-enriched category, and let ψ : W → HomCatS([1]S,C) be a map of
sets. Let χ : A → CatS be defined as in Remark A.3.5.8. Then the isomor-
phism lim−→χ � C[W−1] exhibits C as the homotopy colimit of the diagram
χ.

Proof. Choose a map C′ → C as in Lemma A.3.5.9 and a map ψ′ : W →
HomCatS([1]S,C′) lifting ψ, and let χ′ : A → CatS be defined as in Remark
A.3.5.8. Then we have a canonical map χ′ → χ, which is a cofibrant re-
placement for χ in the model category Fun(A,CatS). It will therefore suffice
to show that the induced map C′[W−1] � lim−→χ′ → lim−→χ � C[W−1] is a
weak equivalence of S-enriched categories, which follows immediately from
Remark A.3.5.2.

Definition A.3.5.11. Let A be a partially ordered set and let p : A → CatS
be an A-indexed diagram of S-enriched categories. Let us denote the image
of a ∈ A under p by Ca.

The Grothendieck construction on p is a category Groth(p) defined as
follows:

(1) The objects of Groth(p) are pairs (a,C), where a ∈ A and C ∈ Ca.

(2) Given a pair of objects (a,C), (a′, C ′) in Groth(p), we set

MapGroth(p)((a,C), (a′, C ′)) =

{
MapCa′ (p

a′
a C,C

′) if a ≤ a′

∅ otherwise.

Here pa
′
a denotes the functor Ca → Ca′ determined by p, and ∅ denotes

an initial object of S.

(3) Composition in Groth(p) is defined in the obvious way.

We observe that Groth(p) is A-filtered via the map r : Ob(Groth(p)) → A
given by the formula r(a,C) = a. We let W (p) denote the collection of all
morphisms in Groth(p) of the form α : (a,C) → (a′, pa

′
a C), where a ≤ a′ and

α corresponds to the identity in Ca′ .
For each a ∈ A, there is a canonical functor πa : Groth(p)≤a → Ca given by

the formula (C, a′) �→ paa′(C). We note that π carries each element of W (p)a
to an identity map in Ca, so that πa canonically extends to a map πa :
Groth(p)≤a[W (p)−1

a ] → Ca. The maps πa are functorial in a and therefore
determine a map of diagrams χ(p) → p, where χ(p) is defined as in Remark
A.3.5.8.
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Lemma A.3.5.12. Let p : A → CatS be as in Definition A.3.5.11. Then for
each a ∈ A, the map πa : Groth(p)≤a[W (p)−1

a ] → Ca is a weak equivalence
of S-enriched categories.

Proof. This is a special case of Lemma A.3.5.6.

Lemma A.3.5.13. Let p : A → CatS be as in Definition A.3.5.11. Then
there is a canonical isomorphism Groth(p)[W (p)−1] � hocolim(p) in the
homotopy category hCatS.

Proof. Combine Lemma A.3.5.12 with Proposition A.3.5.10.

Lemma A.3.5.14. Let C and D be small S-enriched categories. Let W be
a collection of morphisms in C and let W ′ be the collection of all morphisms
in C⊗D of the form w⊗ idD, where w ∈ W and D ∈ D. Then the canonical
map

(C⊗D)[W ′−1] → C[W−1] ⊗ D

is a weak equivalence of S-enriched categories.

Proof. It will suffice to show that for every S-enriched category A, the in-
duced map

φ : HomhCatS(C[W−1] ⊗ D,A) → HomhCatS((C⊗D)[W ′−1],A)

is bijective. Using Lemma A.3.4.6 and Corollary A.3.4.11, we can reduce
to the case where A = A◦, where A is a combinatorial S-enriched model
category. We now invoke Propositions A.3.4.13 and A.3.5.5 to get a chain of
bijections

HomhCatS(C[W−1] ⊗ D,A◦)�HomhCatS(C[W−1], (AD)◦)
�HomW

hCatS(C, (AD)◦)

�HomW ′
hCatS

(C⊗D,A◦)
�HomhCatS((C⊗D)[W ′],A◦)

whose composition is the map φ.

Theorem A.3.5.15. Let A be a partially ordered set and let D be an S-
enriched category. Then the functor C �→ C⊗D commutes with A-indexed
homotopy colimits. In other words, if p : A → CatS is a projectively cofibrant
diagram and p′ : A → CatS is defined by p′(a) = p(a)⊗D, then the canonical
isomorphism lim−→(p′) � lim−→(p)⊗D exhibits lim−→(p)⊗D as a homotopy colimit
of the diagram p′.

Proof. In view of Lemma A.3.5.13, it will suffice to show that the canonical
map h : Groth(p′)[W (p′)−1] → Groth(p)[W (p)−1]⊗D is a weak equivalence
of S-enriched categories. This is a special case of Lemma A.3.5.14.
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A.3.6 Exponentiation in Model Categories

Let C be a category which admits finite products, containing a pair of objects
X and Y . An exponential of X by Y is an object XY ∈ C together with a
map e : XY ×Y → X, with the following universal property: for every object
W ∈ C, the composition

HomC(W,XY ) → HomC(W × Y,XY × Y ) ◦e→ HomC(W × Y,Z)

is bijective.
Our goal in this section is to study the existence of exponentials in the

homotopy category of a model category A. Suppose we are given a pair of
objects X,Y ∈ A such that there exists an exponential of [X] by [Y ] in the
homotopy category hA. We can then represent this exponential as [Z] for
some object Z ∈ A. Without loss of generality, we may assume that X, Y ,
and Z are fibrant and cofibrant, so that we have a canonical identification
[Z] × [Y ] � [Z × Y ]. However, we encounter a technical difficulty: the evalu-
ation map [Z]× [Y ] → [X] need not be representable by any morphism from
Z × Y to X in the category A because Z × Y need not be cofibrant. We
wish to work in certain contexts where this difficulty does arise (for exam-
ple, where A is the category of simplicial categories). For this reason we are
forced to work with the following somewhat cumbersome definition:

Definition A.3.6.1. Let A be a model category. We will say that a diagram

P

p
+���
��
��
��
�

���
��

��
��

�

Z × Y X

exhibits Z as a weak exponential of X by Y if the following conditions are
satisfied:

(1) The map p exhibits P as a homotopy product of Z and Y ; in other
words, the induced map [p] : [P ] → [Z] × [Y ] is an isomorphism in the
homotopy category hA.

(2) The composition [Z]×[Y ]
[p]−1

→ [P ] → [X] exhibits [Z] as an exponential
of [X] by [Y ] in the homotopy category hA.

We will say that a map Z × Y → X exhibits Z as an exponential of X by
Y if the diagram

Z × Y

id((///
//
//
//

��*
**

**
**

**

Z × Y X

satisfies (1) and (2).
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Remark A.3.6.2. Suppose we are given a diagram

P

p
+���
��
��
��
�

���
��

��
��

�

Z × Y X

as in Definition A.3.6.1. We will say that this diagram is standard ifX,Y, Z ∈
A are fibrant, and the map p is a trivial fibration.

Suppose X and Y are fibrant objects of A such that there exists an expo-
nential of [X] by [Y ] in the homotopy category hA. Without loss of general-
ity, this exponential has the form [Z], where Z is a fibrant object of A. We
can then choose a trivial fibration P → Z × Y , where P is cofibrant. The
evaluation map [Z × Y ] � [Z] × [Y ] → [X] is then representable by a map
P → X in A, so that we obtain a standard diagram which exhibits Z as a
weak exponential of X by Y .

Remark A.3.6.3. Suppose we are given a diagram

P

p
+���
��
��
��
�

���
��

��
��

�

Z × Y X

in a model category A. The condition that this diagram exhibits Z as a
weak exponential of X by Y depends only on the image of this diagram in
the homotopy category hA. We may therefore replace the above diagram by
a weakly equivalent diagram when testing whether or not the conditions of
Definition A.3.6.1 are satisfied.

Remark A.3.6.4. Let A
F ��B
G

�� be a Quillen equivalence of model cate-

gories. Suppose we are given a standard diagram

P

p
+���
��
��
��
�

���
��

��
��

�

Z × Y X

in B. Then this diagram exhibits Z as a weak exponential of X by Y in B
if and only if the associated diagram

GP

(((((
(((

(((
(

��#
##

##
##

#

GZ ×GY GX

exhibits GZ as a weak exponential of GX by GY in A.

To work effectively with weak exponentials, we need to introduce an ad-
ditional assumption.
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Definition A.3.6.5. Let A be a combinatorial model category containing
a fibrant object Y . We will say that multiplication by Y preserves homotopy
colimits if the following condition is satisfied:

(∗) LetA be a (small) partially ordered set, let F : A → A be a projectively
cofibrant diagram, and let F ′ : A → A be another strongly cofibrant
diagram equipped with a natural transformation F ′(a) → F (a) × Y
which is weak equivalence for each a ∈ A. Then the induced map
lim−→F ′ → (lim−→F )×Y exhibits lim−→F ′ as a homotopy product of Y with
lim−→F in A.

We will say that multiplication in A preserves homotopy colimits if condition
(∗) is satisfied for every fibrant object Y ∈ A.

Remark A.3.6.6. Definition A.3.6.5 refers only to homotopy colimits in-
dexed by partially ordered sets. However, every diagram indexed by an arbi-
trary category can be replaced by a diagram indexed by a partially ordered
set having the same homotopy colimit. We formulate and prove a precise
statement to this effect (in the language of ∞-categories) in §4.2. However,
we will not need (or use) any such result in this appendix.

Remark A.3.6.7. Let A
F ��B
G

�� be a Quillen equivalence between combi-

natorial model categories and let Y ∈ B be a fibrant object. Then multipli-
cation by Y preserves homotopy colimits in B if and only if multiplication by
G(Y ) preserves homotopy colimits in A. Since the right derived functor RG
is essentially surjective on homotopy categories, we see that multiplication
in B preserves homotopy colimits if and only if multiplication in A preserves
homotopy colimits.

Example A.3.6.8. Let S be an excellent model category with respect to the
symmetric monoidal structure given by the Cartesian product in S. Then
multiplication in CatS preserves homotopy colimits. This is precisely the
content of Theorem A.3.5.15.

Lemma A.3.6.9. Let S be a collection of simplicial sets satisfying the fol-
lowing conditions:

(i) The simplicial set ∆0 belongs to S.

(ii) If f : X → Y is a weak homotopy equivalence, then X ∈ S if and only
if Y ∈ S.

(iii) For every small partially ordered set A, if F : A → Set∆ is a projec-
tively cofibrant diagram such that each F (a) ∈ S, then lim−→F ∈ S.

Proof. Using (ii) and (iii), we deduce that if F : A → Set∆ is any diagram
such that each F (a) belongs to S, then the homotopy colimit of F belongs to
S. In particular, S is closed under the formation of coproducts and homotopy
pushouts.
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We now prove by induction on n that every n-dimensional simplicial set X
belongs to S. For this, we observe that there is a homotopy pushout diagram

B × ∂∆n

��

�� B × ∆n

��
skn−1X �� X,

where B denotes the set of n-simplices of X. The simplicial sets B × ∂∆n

and skn−1X belong to S by the inductive hypothesis. The simplicial set
B×∆n is weakly equivalent to the constant simplicial set B, which belongs
to S in view of (i) and the fact that S is stable under coproducts. Since S
is stable under homotopy pushouts, we conclude that X ∈ S, as desired.

An arbitrary simplicial setX can be written as the colimit of a projectively
cofibrant diagram

sk0X ⊆ sk1X ⊆ sk2X ⊆ · · ·
and therefore belongs to S by assumption (iii).

Proposition A.3.6.10. Let A be a combinatorial simplicial model category
containing a standard diagram

P

p
+���
��
��
��
�

��















Z × Y X.

Assume further that multiplication by Y preserves homotopy colimits in A.
The following conditions are equivalent:

(i) The above diagram exhibits Z as a weak exponential of X by Y .

(ii) Let W and W ′ be cofibrant objects of A and let W ′ → W × Y be a
map which exhibits W ′ as a homotopy product of W and Y . Then the
induced map

MapA(W,Z) ×MapA(W ′,Z×Y ) MapA(W ′, P ) → MapA(W ′, X)

is a homotopy equivalence of Kan complexes.

Remark A.3.6.11. In the situation of part (ii) of Proposition A.3.6.10,
the projection map MapA(W ′, P ) → MapA(W ′, Z × Y ) is a trivial Kan
fibration, so the fiber product MapA(W,Z)×MapA(W ′,Z×Y ) MapA(W ′, P ) is
automatically a Kan complex which is homotopy equivalent to MapA(W,Z).

Proof of Proposition A.3.6.10. First suppose that (ii) is satisfied. We wish
to show that for every object [W ] ∈ hA, the composition

HomhA([W ], [Z])→HomhA([W ] × [Y ], [Z] × [Y ])
� HomhA([W ] × [Y ], [P ])
→HomhA([W ] × [Y ], [P ])
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is bijective. Without loss of generality, we may assume that [W ] is the homo-
topy equivalence class of a fibrant-cofibrant object W ∈ A. Choose a cofi-
brant replacement W ′ → W × Y . We observe that the map in question can
be identified with the composition

π0 MapA(W,Z)→π0 MapA(W ′, Z × Y )
� π0 MapA(W ′, P )
→π0 MapA(W ′, X),

which is bijective in view of (ii) and Remark A.3.6.11.
We now assume (i) and prove (ii). It will suffice to show that for every

simplicial set K, the induced map

HomhSet∆(K,MapA(W,Z) ×MapA(W ′,Z×Y ) MapA(W ′, P ))

��
HomhSet∆(K,MapA(W ′, X))

is a bijection. Using Remark A.3.6.11, we can identify the left side with the
set HomhSet∆(K,MapA(W,Z)) � HomhA(W ⊗ K,Z). Similarly, the right
side can be identified with HomhA(W ′⊗K,X). In view of assumption (i), it
will suffice to show that the map βK : W ′⊗K → Y ×(W⊗K) exhibitsW ′⊗K
as a homotopy product of Y and W ⊗K. The collection of simplicial sets K
with this property clearly contains ∆0 and is stable under weak homotopy
equivalence. The assumption that multiplication by Y preserves homotopy
colimits guarantees that the hypotheses of Lemma A.3.6.9 are satisfied, so
that the desired conclusion holds for every simplicial set K.

Lemma A.3.6.12. Let A be a combinatorial model category and i : B0 → B
an inclusion of partially ordered sets. Suppose that there exists a retraction
r : B → B0 such that r(b) ≤ b for each b ∈ B. Let F : B → A be a diagram.
Then a map α : X → lim(F ) in A exhibits X as a homotopy limit of F if
and only if α exhibits X as a homotopy limit of i∗F .

Proof. Without loss of generality, we may assume that F is injectively fi-
brant. We have a canonical isomorphism lim(F ) � lim(i∗F ). It will therefore
suffice to show that the functor i∗ preserves injective fibrations. It now suf-
fices to observe that i∗ is right adjoint to r∗ and that the functor r∗ preserves
weak trivial cofibrations.

Lemma A.3.6.13. Let A be a combinatorial model category, C a small
category, F : C → A a diagram, and α : X → lim(F ) a morphism in the
category A. Suppose that

(i) For each C ∈ C, the induced map X → F (C) is a weak equivalence in
A.

(ii) The category C has a final object C0.



896 APPENDIX

Then α exhibits X as a homotopy limit of the diagram F .

Proof. Without loss of generality, we may assume that the diagram F is pro-
jectively fibrant. Let F ′ : C → A be defined by the formula F ′(C) = F (C0).
We observe that, for every G ∈ Fun(C,A), we have HomFun(C,A)(G,F ′) =
HomA(G(C0), F (C0)). In particular, we have a canonical map β : F → F ′.
Condition (i) guarantees that β is a weak equivalence. Since F (C0) ∈ A is
fibrant, the diagram F ′ is injectively fibrant. It therefore suffices to show
that the induced map X → lim(F ′) � F (C0) is a weak equivalence, which
follows from (i).

Lemma A.3.6.14. Let A be a combinatorial model category, let A be a
partially ordered set, and set B = {(a, b) ∈ Aop × A : a ≥ b}, regarded as a
partially ordered subset of Aop × A. Let π : B → Aop denote the projection
onto the first factor.

Suppose we are given diagrams F : B → A, G : A → A, and a natural
transformation α : π∗(G) → F , which induces weak equivalences G(a) →
F (a, b) for each (a, b) ∈ B. Then α exhibits G as a homotopy right Kan
extension of F .

Proof. In view of Proposition A.2.8.9, it will suffice to show that for each
a0 ∈ A, the transformation α exhibits G(a0) as a homotopy limit of the
diagram F |{(a, b) ∈ B : a ≤ a0}. Let B0 = {(a, b) ∈ B : a = a0}. In view of
Lemma A.3.6.12, it will suffice to show that α exhibits G(a0) as a limit of the
diagram F0 = F |B0. This follows immediately from Lemma A.3.6.13.

Proposition A.3.6.15. Let A be a combinatorial model category and A =
A0 ∪{∞} a partially ordered set with a largest element ∞. Let B = {(a, b) ∈
Aop ×A : a ≥ b}, regarded as a partially ordered subset of Aop ×A.

Suppose we are given an object X ∈ A together with functors Y : A → A,
Z : Aop → A, P : B → A, and diagrams σa,b:

P (a, b)

,+





��*
**

**
**

**

Z(a) × Y (b) X,

which depend functorially on (a, b) ∈ B. Suppose further that

(i) Each diagram σa,b exhibits P (a, b) as a homotopy product of Z(a) and
Y (b) in A.

(ii) The diagrams σa,a exhibit Z(a) as a weak exponential of X by Y (a).

(iii) Multiplication in A preserves homotopy colimits.

(iv) The diagram Y exhibits Y (∞) as a homotopy colimit of Y0 = Y |A0.

Then the diagram Z exhibits Z(∞) as the homotopy limit of the diagram
Z0 = Z|Aop0 .
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Proof. Making fibrant replacements if necessary, we may assume that each
diagram σa,b is standard. According to the main result of [19], there exists a

Quillen equivalence A′ F ��A,
G

�� where A′ is a combinatorial simplicial model

category. In view of Remark A.3.6.4, we may replace A by A′ and thereby
reduce to the case where A is a simplicial model category.

In view of Proposition A.3.3.12, it will suffice to prove the following: for
every fibrant-cofibrant object C ∈ A, if we define G : Aop → Set∆ by the
formula G(a) = MapA(C,Z(a)), then G exhibits G(∞) as a homotopy limit
of the diagram G|Aop0 .

Let W : A → A be a cofibrant replacement for the functor a �→ C×Y (a).
Let G′ : Aop → Set∆ be defined by the formula G′(a) = MapA(W (a), X).

Define G′′ : B → Set∆ by the formula

G′′(a, b) = MapA(C,Z(a)) ×MapA(W (a),Z(a)×Y (b)) MapA(W (a), P (a, b)).

Let π : B → Aop denote projection onto the first factor, so that we have
natural transformations of diagrams

π∗G α← G′′ β→ π∗G′.

We observe that β induces a trivial Kan fibration G′′(a, b) → G′(a) for all
(a, b) ∈ B. In particular, for a ≤ b the induced map G′′(a, a) → G′′(a, b) is a
homotopy equivalence. Condition (ii) guarantees that α induces a homotopy
equivalence G′′(a, b) → G(a) if a = b and therefore for all (a, b) ∈ B.

Using Lemma A.3.6.14, we conclude that α and β exhibit G and G′ as
homotopy right Kan extensions of G′′ along π. In particular, G and G′ are
equivalent in the homotopy category hFun(Aop ,A). Assumptions (iii) and
(iv) guarantee that W exhibits W (∞) as the homotopy colimit of W |A0.
Using Proposition A.3.3.12, we deduce that G′ exhibits G′(∞) as the homo-
topy limit of G′|Aop0 . It follows that G exhibits G(∞) as the homotopy limit
of G|Aop0 , as desired.

We conclude this section with an application of Proposition A.3.6.15.

Proposition A.3.6.16. Let S be an excellent model category in which the
monoidal structure is given by the Cartesian product. Let A be a combina-
torial S-enriched model category, A = A0 ∪ {∞} a partially ordered set with
a largest element ∞, and {Ca}a∈A a diagram of small S-enriched categories
indexed by A. Let U ⊆ A be a chunk. For each a ∈ A, let UCa

f denote the
full subcategory of UCa ⊆ ACa spanned by the projectively fibrant diagrams
and let Wa denote the collection of weak equivalences in Va. Assume that

(a) For each a ∈ A, the S-enriched category Ca is cofibrant and U is a
Ca-chunk of A.

(b) The diagram {Ca}a∈A exhibits C∞ as a homotopy colimit of the dia-
gram {Ca}a∈A0 .

(c) The chunk U is small.
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Then the induced diagram {UCa

f [W−1
a ]}a∈A exhibits UC∞

f [W−1
∞ ] as a homo-

topy limit of the diagram {UCa

f [W−1
a ]}a∈A0 .

Before proving Proposition A.3.6.16, we need a simple lemma.

Lemma A.3.6.17. Let S be an excellent model category, A a combinatorial
S-enriched model category, and U ⊆ A a chunk. Let Uf denote the full
subcategory of U spanned by those objects which are fibrant in A and let
W denote the collection of weak equivalences in Uf . Then the induced map
U◦ → Uf [W−1] is a weak equivalence of S-enriched categories.

Proof. Let W0 = W ∩ U◦. Since every weak equivalence in U◦ is actually an
equivalence, we conclude that the induced map U◦ → U◦[W−1

0 ] is a weak
equivalence. It will therefore suffice to prove that the map i : U◦[W−1

0 ] →
Uf [W−1] is a weak equivalence. Let F be an S-enriched fibrant replacement
functor which carries U to itself, so that F induces a map j : Uf [W−1] to
U◦[W−1

0 ]. We claim that j is a homotopy inverse to i. To prove this, we
observe that there is a natural transformation α : id → F , which we can
identify with a map

h : Uf ⊗[1]S → U◦ .

Let W ′
0 be the collection of all morphisms in Uf ⊗[1]S of the form e ⊗ id,

where e is an equivalence in Uf , and let W ′
1 be the collection of all morphisms

of Uf ⊗[1]S of the form id⊗g, where g : 0 → 1 is the tautological morphism
in [1]S. Let W ′ = W ′

0 ∪W ′
1, so that h determines a map

h : (Uf ⊗[1]S)[W ′−1] → U◦[W−1
0 ].

We will prove that h determines a homotopy from the identity to j ◦ i, so
that j is a left homotopy inverse to i. Applying the same argument to the
restriction h|U◦ ⊗[1]S will show that j is a right homotopy inverse to i.

To prove that h gives the desired homotopy, it will suffice to show that
the inclusions {0}, {1} ↪→ [1]S induce weak equivalences

Uf [W−1] → (Uf ⊗[1]S)[W ′−1].

This follows immediately from Corollary A.3.4.11 and Lemma A.3.5.14.

Proof of Proposition A.3.6.16. Let B = {(a, b) ∈ Aop ×A : a ≥ b}. For each
(a, b) ∈ B, we define P (a, b) = (UCa

f ×Cb)[V −1
a,b ], where Va,b is the collection

of all morphisms of UCa

f ×Cb of the form e⊗ idC , where e ∈ Wa and C ∈ Cb.
We have an evident family of diagrams σ(a, b):

P (a, b)

,+&&&
&&&

&&&
&&

 !))
)))

)))
))

UCa

f [W−1
a ] × Cb Uf [W ],

where Uf denotes the full subcategory of U spanned by the fibrant objects
and W is the collection of weak equivalences in Uf ⊆ A. To complete the
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proof, it will suffice to show that the hypotheses of Proposition A.3.6.15 are
satisfied. Condition (i) follows from Lemma A.3.5.14, condition (iii) from
Theorem A.3.5.15, and condition (iv) from (b). To prove (ii), we observe
that for each a ∈ A, the diagram σ(a, a) is weakly equivalent to the diagram

(UCa)◦ × Ca

∼
##���

���
���

��

!"..
...

...
..

(UCa)◦ × Ca U◦ .

This diagram exhibits (UCa)◦ as a weak exponential of U◦ by Ca by Corollary
A.3.4.14.

Corollary A.3.6.18. Let S be an excellent model category in which the
monoidal structure is given by the Cartesian product. Let A be a combinato-
rial S-enriched model category, let A = A0 ∪ {∞} be a partially ordered set
with a largest element ∞, and let {Ca}a∈A be a diagram of small S-enriched
categories indexed by A.

For each a ∈ A, let ACa

f denote the collection of projectively fibrant objects
of ACa and let Wa denote the collection of weak equivalences in ACa

f . Assume
that the diagram {Ca}a∈A exhibits C∞ as a homotopy colimit of the diagram
{Ca}a∈A0 . Then the induced diagram {ACa

f [W−1
a ]}a∈A exhibits AC∞ [W−1

∞ ]
as a homotopy limit of the diagram {ACa

f [W−1
a ]}a∈A0 .

Proof. Without loss of generality, we may suppose that each Ca is cofibrant.
The proof of Proposition A.2.8.2 shows that there exists a (small) regular car-
dinal κ such that the collection of homotopy limit diagrams in Fun(A,CatS)
is stable under κ-filtered colimits. This cardinal depends only on A and S
and remains invariant if we enlarge the universe. Using Lemma A.3.4.15,
we can write A as a κ-filtered union of full subcategories U ⊆ A, where U

is a Ca-chunk for each a ∈ A. We now conclude by applying Proposition
A.3.6.16.

A.3.7 Localizations of Simplicial Model Categories

Let A and A′ be two model categories with the same underlying category.
We say that A′ is a (Bousfield) localization of A if the following conditions
are satisfied:

(C) A morphism f of C is a cofibration in A if and only if f is a cofibration
in A′.

(W ) If a morphism f of C is a weak equivalence in A, then f is a weak
equivalence in A′.

It then also follows that

(F ) If a morphism f of C is a fibration in A′, then f is a fibration in A.
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Our goal in this section is to study the localizations of a fixed model
category A and to relate this to our study of localizations of presentable
∞-categories (§5.5.4).

Let A be a simplicial model category. Let hA be the homotopy category
of A obtained from A by inverting all weak equivalences. Alternatively, we
can obtain hA by first passing to the full subcategory A◦ ⊆ A spanned by
the fibrant-cofibrant objects and then passing to the homotopy category of
the simplicial category A◦. From the second point of view, we see that hA
has a natural enrichment over the homotopy category H: if X,Y ∈ hA are
represented by fibrant-cofibrant objects X,Y ∈ A, then we let

MaphA(X,Y ) = [MapA(X,Y )].

Here [K] ∈ H denotes the object of H represented by a Kan complex K. In
fact, this description is accurate if we assume only that X is cofibrant and
Y fibrant.

Let S be a collection of morphisms in hA. Then

(i) We will say that an object Z ∈ hA is S-local if, for every morphism
f : X → Y in S, the induced map

MaphA(Y,Z) → MaphA(X,Z)

is a homotopy equivalence. We say that an object Z ∈ A is S-local if
its image in hA is S-local.

(ii) We will say that a morphism f : X → Y of hA is an S-equivalence if,
for every S-local object Z ∈ hA, the induced map

MaphA(Y,Z) → MaphA(X,Z)

is a homotopy equivalence. We say that a morphism f in A is an
S-equivalence if its image in hA is an S-equivalence.

If S is a collection of morphisms in hA, with image S in hA, we will apply
the same terminology: an object of A (or hA) is said to be S-local if it is
S-local, and a morphism of A (or hA) is said to be an S-equivalence if it is
an S-equivalence.

Lemma A.3.7.1. Let A be a left proper simplicial model category, let S be
a collection of morphisms in hA, and let i : A → B be a cofibration in A.
The following conditions are equivalent:

(1) The map i is an S-equivalence.

(2) For every fibrant object X ∈ A which is S-local, the map i induces a
trivial Kan fibration MapA(B,X) → MapA(A,X).

Proof. Choose a trivial fibration f : A′ → A, where A′ is cofibrant, and
choose a factorization

A′ i′→ B′ f ′
→ B
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of i ◦ f , where i′ is a cofibration and f ′ is a trivial fibration. We have a
commutative diagram

A′ i′ ��

f

��

B′

g

��

f ′

 !)
))

))
))

))
)

A
i �� A

∐
A′ B′ j �� B.

Since f is a weak equivalence and i′ is a cofibration, the left properness of A
guarantees that g is a weak equivalence. It follows from the two-out-of-three
property that j is also a weak equivalence.

Suppose first that (1) is satisfied. Let X be an S-local fibrant object of
A. The map p : MapA(B,X) → MapA(A,X) is a Kan fibration. We wish
to show that p is a trivial Kan fibration. Our assumption that X is S-local
guarantees that the map q′ : MapA(B′, X) → MapA(A′, X) is a homotopy
equivalence and therefore a trivial fibration (since i′ is a cofibration). The
map

q : MapA(A
∐
A′
B′, X) → MapA(A)

is a pullback of q′ and therefore also a trivial fibration. To show that p is a
trivial Kan fibration, it will suffice to show that for every t : A → X, the
fiber p−1{t} is a contractible Kan complex. Since the corresponding fiber
q−1{t} is contractible, it will suffice to show that composition with j induces
a homotopy equivalence

p−1{t} → q−1{t}.
This is clear since j is a weak equivalence between cofibrant objects of the
simplicial model category AA/.

Now assume that (2) holds. We wish to show that i is an S-equivalence.
For this, it suffices to show that for every fibrant S-local object X ∈ A, the
map

q′ : MapA(B′, X) → MapA(A′, X)
is a trivial Kan fibration. The preceding argument shows that the fiber of q′

over a morphism t′ : A′ → X is contractible, provided that t′ factors as a
composition

A′ f→ A
t→ X.

To complete the proof, it suffices to show that the same result holds for an
arbitrary vertex t′ of MapA(A′, X). The map t′ factors as a composition

A′ u→ Y
v→ X,

where u is a cofibration and v is a trivial fibration. We have a commutative
diagram

MapA(B′, Y ) ��

��

MapA(A′, Y )

��
MapA(B′, X) �� MapA(A′, X)
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in which the vertical arrows are trivial Kan fibrations. It will therefore suffice
to show that the fiber MapA(B′, Y )×MapA(A′,Y ) {u} is contractible. Choose
a trivial cofibration A′ ∐

A Y → Z, where Z is fibrant. We observe that the
map Y → A′ ∐

A Y is the pushout of a weak equivalence by a cofibration
and therefore a weak equivalence (since A is left proper). It follows that the
map Y → Z is a weak equivalence between fibrant objects of A. We have a
commutative diagram

MapA(B′, Y ) ��

��

MapA(A′, Y )

��
MapA(B′, Z)

q′′ �� MapA(A′, Z)

in which the vertical maps are homotopy equivalences and the horizontal
maps are Kan fibrations. It will therefore suffice to show that the fiber of
q′′ is contractible when taken over the composite map t′′ : A′ u→ Y → Z.
We now observe that t′′ factors through A, so that the desired result follows
from the first part of the proof.

Corollary A.3.7.2. Let A and B be simplicial model categories and suppose
we are given a simplicial adjunction

A
F ��B.
G

��

Assume that B is left proper. The following conditions are equivalent:

(1) The adjunction between F and G is a Quillen adjunction.

(2) The functor F preserves cofibrations, and the functor G preserves fi-
brant objects.

Proof. The implication (1) ⇒ (2) is obvious. Conversely, suppose that (2) is
satisfied. We wish to prove that F is a left Quillen functor. Since F preserves
cofibrations, it will suffice to show that for every trivial cofibration u : A →
A′ in A, the image Fu is a weak equivalence in B. Applying Lemma A.3.7.1
in the case S = ∅, it will suffice to prove the following: for every fibrant
object B ∈ B, the induced map

MapB(FA′, B) → MapB(FA,B)

is a trivial Kan fibration. Since F andG are adjoint simplicial functors, this is
equivalent to the requirement that the map MapA(A′, GB) → MapA(A,GB)
be a trivial Kan fibration, which follows from our assumption that u is a
trivial cofibration in A and that GB ∈ A is fibrant.

Proposition A.3.7.3. Let A be a left proper combinatorial simplicial model
category and let S be a (small) set of cofibrations in A. Let S−1A denote
the same category, with the following distinguished classes of morphisms:
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(C) A morphism g in S−1A is a cofibration if it is a cofibration when
regarded as a morphism in A.

(W ) A morphism g in S−1A is a weak equivalence if it is an S-equivalence.

Then

(1) The above definitions endow S−1A with the structure of a combinato-
rial simplicial model category.

(2) The model category S−1A is left proper.

(3) An object X ∈ A is fibrant in S−1A if and only if X is S-local and
fibrant in A.

Proof. Enlarging S if necessary, we may assume:

(a) For every morphism f : A → B in S and every n ≥ 0, the induced map

(A× ∆n)
∐

A×∂∆n

(B × ∂∆n) → B × ∆n

belongs to S.

(b) The set S contains a collection of generating trivial cofibrations for A.

It follows that an object X ∈ A is fibrant and S-local if and only if it has the
extension property with respect to every morphism in S. Since S ⊆ C ∩W ,
we deduce that every fibrant object of S−1A is S-local and fibrant in A.
The converse follows from Lemma A.3.7.1; this proves (3).

To prove (1), it will suffice to show that the classes C and W satisfy the
hypotheses of Proposition A.2.6.8 (the compatibility of the simplicial struc-
ture on S−1A with its model structure follows immediately from Proposition
A.3.1.7). We observe that Lemma A.3.7.1 implies that C ∩ W is a weakly
saturated class of morphisms in A. The only other nontrivial point is to
show that W is an accessible subcategory of A[1].

Proposition A.1.2.5 implies the existence of a functor T : A → A and a
natural transformation idA → T having the following properties:

(i) For every X ∈ A, the object TX ∈ A is fibrant and S-local.

(ii) For every X ∈ A, the map X → TX belongs to the smallest weakly
saturated class of morphisms containing S; in particular, it belongs to
W ∩ C and is therefore an S-equivalence.

(iii) There exists a regular cardinal κ such that T commutes with κ-filtered
colimits.

It follows that a morphism f : X → Y in A is an S-equivalence if and
only if the induced map Tf : TX → TY is an S-equivalence. Since TX and
TY are S-local, Yoneda’s lemma (in the category hA) implies that Tf is an
S-equivalence if and only if Tf is a weak equivalence in A. It follows that
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W is the inverse image under T of the collection of weak equivalences in A.
Corollaries A.2.6.5 and A.2.6.6 imply that W is an accessible subcategory of
A[1], as desired. This completes the proof of (1).

We now prove (2). We need to show that the collection of S-equivalences in
A is stable under pushouts by cofibrations. We observe that every morphism
f : X → Z admits a factorization

X
f ′
→ Y

f ′′
→ Z,

where f ′ is a cofibration and f ′′ is a weak equivalence in A (in fact, we can
choose f ′′ to be a trivial fibration in A). If f is an S-equivalence, then f ′ is
an S-equivalence, so that f ′ ∈ C ∩W . It will therefore suffice to show that
C ∩W and the class of weak equivalences in A are stable under pushouts
by cofibrations. The first follows from the assertion that C ∩ W is weakly
saturated, and the second from the assumption that A is left proper.

Proposition A.3.7.4. Let A be a left proper combinatorial simplicial model
category. Then

(1) Every combinatorial localization of A has the form S−1A, where S is
some (small) set of cofibrations in A.

(2) Given two (small) sets of cofibrations S and T , the localizations S−1A
and T−1A coincide if and only if the class of S-local objects of hA
coincides with the class of T -local objects of hA.

Proof. The “if” direction of (2) is obvious, and the converse follows from
the characterization of the fibrant objects of S−1A given in Proposition
A.3.7.3. We now prove (1). Let B be a combinatorial model category which
is a localization of A and let S be a set of generating trivial cofibrations
for B. We claim that B = S−1A. The cofibrations of S−1A and B coincide.
Moreover, the collection of trivial cofibrations in S−1A is a weakly saturated
class of morphisms which contains S and therefore contains every trivial
cofibration in B. To complete the proof, it will suffice to show that every
trivial cofibration f : X → Y in S−1A is a trivial cofibration in B.

Choose a diagram

X ′ f ′
��

��

Y ′

��
X

f �� Y,

where X ′ is cofibrant, f ′ is a cofibration, and the vertical maps are weak
equivalences in A. Then f ′ is a trivial cofibration in S−1A, and it will suffice
to show that f ′ is a trivial cofibration in B. For this, it will suffice to show
that for every fibrant object Z ∈ B, the map

MapB(Y ′, Z) → MapB(X ′, Z)
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is a trivial fibration. In view of Lemma A.3.7.1, it will suffice to show that
Z is S-local and fibrant as an object of A. The second claim is obvious, and
the first follows from the fact that S consists of trivial cofibrations in B.

Remark A.3.7.5. In the situation of Proposition A.3.7.4, we may assume
that for every cofibration f : A → B in S, the objects A and B are themselves
cofibrant. To see this, choose for each cofibration f : A → B in S a diagram

A′ gf ��

u

��

B′

v

��

w

�� 
  

  
  

  
 

A
f ′
�� A

∐
A′ B′ f ′′

�� B

as in the proof of Lemma A.3.7.1, so that u and w are trivial cofibrations,
f = f ′′ ◦ f ′, and gf is a cofibration between cofibrant objects. Then gf is
a trivial cofibration in S−1A. We claim that the localizations S−1A and
T−1A coincide, where T = {gf}f∈S . To prove this, it will suffice to show
that for each f ∈ S, every gf -local fibrant object X ∈ A is also f -local.

Suppose that X is gf -local. We wish to prove that the map

p : MapA(B,X) → MapA(A,X)

is a trivial Kan fibration. Since p is automatically a Kan fibration, it will
suffice to show that the fiber p−1{t} is contractible for every morphism t :
A → X. Since X is gf -local, we deduce that the fiber q−1{t} is contractible,
where q is the projection map MapA(A

∐
A′ B′, X) → MapA(A,X). It will

therefore suffice to show that f ′′ induces a homotopy equivalence of fibers

MapAA/
(B,X) → MapAA/

(A
∐
A′
B′, X).

This is clear because f ′′ is a weak equivalence between cofibrant objects of
the simplicial model category AA/.

Proposition A.3.7.6. Let C be an ∞-category. The following conditions
are equivalent:

(1) The ∞-category C is presentable.

(2) There exists a combinatorial simplicial model category A and an equiv-
alence C � N(A◦).

Proof. According to Theorem 5.5.1.1 and Proposition 5.5.4.15, C is present-
able if and only if there exists a small simplicial set K, a small set S of
morphisms in P(K), and an equivalence C � S−1 P(K). Let D be the sim-
plicial category C[K]op and let B be the category SetD

∆ of simplicial functors
D → Set∆ endowed with the injective model structure. Proposition 4.2.4.4
implies that there is an equivalence P(K) � N(B◦). Moreover, Propositions
A.3.7.3 and A.3.7.4 imply that there is a bijective correspondence between
accessible localizations of P(K) (as a presentable ∞-category) and combina-
torial localizations of B (as a model category). This proves the implication
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(1) ⇒ (2). Moreover, it also shows that (2) ⇒ (1) in the special case where
A is a localization of a category of simplicial presheaves.

We now complete the proof by invoking the following result, proven in [19]:
for every combinatorial model category A, there exists a small category D, a
set S of morphisms of SetDop

∆ , and a Quillen equivalence of A with S−1 SetD
∆ .

Moreover, the proof given in [19] shows that when A is a simplicial model
category, then F and G can be chosen to be simplicial functors.

Remark A.3.7.7. Let A and B be combinatorial simplicial model cate-
gories. Then the underlying ∞-categories N(A◦) and N(B◦) are equivalent
if and only if A and B can be joined by a chain of simplicial Quillen equiva-
lences. The “only if” assertion follows from Corollary A.3.1.12, and the “if”
direction can be proven using the methods described in [19].

Proposition A.3.7.8. Let A be a left proper combinatorial simplicial model
category and let C = N(A◦) denote its underlying ∞-category. Suppose that
C0 ⊆ C is an accessible localization of C and let L : C → C0 denote a left
adjoint to the inclusion.

Then there exists a localization A′ of A satisfying the following conditions:

(1) An object X ∈ A′ is fibrant if and only if it is fibrant in A and the
associated object of the homotopy category hA � hC belongs to the full
subcategory hC0 .

(2) A morphism f : X → Y in A′ is a weak equivalence if and only if the
functor L : hC → hC0 carries f to an isomorphism in the homotopy
category hC0 .

Proof. According to Proposition A.3.7.6, the ∞-category C is presentable.
The results of §5.5.4 imply that we can write C0 = S−1 C for some small
collection of morphisms S in C. We then take S̃ to be a collection of repre-
sentatives for the elements of S as cofibrations between cofibrant objects of
A and let A′ denote the localization S̃−1A.

We conclude this section by establishing a universal property enjoyed by
the localization of a combinatorial simplicial model category.

Proposition A.3.7.9. Suppose we are given a simplicial Quillen adjunction

A
F ��B
G

��

between left proper combinatorial simplicial model categories and let A′ be a
Bousfield localization of A. The following conditions are equivalent:

(1) The adjoint functors F and G determine a Quillen adjunction between
A′ and B.

(2) Let α be a morphism in A which is a weak equivalence in A′. Then
the left derived functor LF : hA → hB carries α to an isomorphism
in the homotopy category hB.
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(3) For every fibrant object X ∈ B, the image GX is a fibrant object of
A′.

Proof. The implication (1) ⇒ (2) is obvious, and the implication (3) ⇒ (1)
follows from Corollary A.3.7.2. We will complete the proof by showing that
(2) ⇒ (3). According to Proposition A.3.7.4 and Remark A.3.7.5, we may
suppose that A′ = S−1A, where S is a small collection of cofibrations be-
tween cofibrant objects of A. Let X be a fibrant object of B; we wish
to show that GX is a fibrant object of A′. Since GX is fibrant in A,
it will suffice to show that GX is S-local (Proposition A.3.7.3). In other
words, we must show that if α : A → B belongs to S, then the induced
map p : MapA(B,GX) → MapA(A,GX) is a weak homotopy equiva-
lence. Since F and G are simplicial functors, we can identify p with the
map MapB(FB,X) → MapB(FA,X). To prove that p is a weak homotopy
equivalence, it will suffice to show that F (α) is a weak equivalence between
cofibrant objects of B. This follows immediately from assumption (2) (be-
cause α is a cofibration between cofibrant objects of A, we can identify F (α)
with the left derived functor LF (α)).

Corollary A.3.7.10. Let A and B be left proper combinatorial simplicial
model categories and suppose we are given a simplicial Quillen adjunction

A
F ��B.
G

��

Then

(1) There exists a new left proper combinatorial simplicial model structure
A′ on the category A with the following properties:

(C) A morphism α in A′ is a cofibration if and only if it is a cofibra-
tion in A.

(W ) A morphism α in A′ is a weak equivalence if and only if the left
derived functor LF carries α to an isomorphism in the homotopy
category hB.

(F ) A morphism α in A′ is a fibration if and only if it has the right
lifting property with respect to every morphism in A′ satisfying
(C) and (W ).

(2) The functors F and G determine a new simplicial Quillen adjunction

A′ F ′
��B.

G′
��

(3) Suppose that the right derived functor RG is fully faithful. Then the
adjoint pair (F ′, G′) is a Quillen equivalence.
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Proof. The functors F and G determine a pair of adjoint functors

NA◦ f �� NB◦
g

��

between the underlying ∞-categories (see Proposition 5.2.4.6), which are
themselves presentable (Proposition A.3.7.6). Let S be the collection of all
morphisms u in NA◦ such that f(u) is an equivalence in NB◦. Proposi-
tion 5.5.4.16 implies that S is generated (as a strongly saturated class of
morphisms) by a small subset S ⊆ S. Without loss of generality, we may
suppose that the morphisms of S are represented by some (small) collection
T of cofibrations between cofibrant objects of A. Let A′ = T−1A. We claim
that A′ satisfies the description given in (1). In other words, we claim that
a morphism α in A is a T -equivalence if and only if the left derived functor
LF carries α to an isomorphism in hB. Without loss of generality, we may
suppose that α is a morphism between fibrant-cofibrant objects of A, so
that we can view α as a morphism in the ∞-category NA◦. In this case,
both conditions on α are equivalent to the requirement that α belong to
S. This completes the proof of (1). Assertion (2) follows immediately from
Proposition A.3.7.9.

We now prove (3). Note that the homotopy category hA′ can be identified
with a full subcategory of the homotopy category hA and that under this
identification the left derived functor LF restricts to the left derived functor
LF ′. It follows that for every fibrant object X ∈ B, the counit map

(LF ′)(RG′)X � (LF ′)(GX) � (LF )(GX) � (LF )(RG)X � X

is an isomorphism in hB (where the last equivalence follows from our as-
sumption that RG is fully faithful). It follows that the functor RG′ is fully
faithful. To complete the proof, it will suffice to show that the left derived
functor LF ′ is conservative. In other words, we must show that if α : X → Y
is a morphism in A′, then α is a weak equivalence if and only if LF (α) is an
isomorphism in B; this follows immediately from (1).
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abelian category
Grothendieck, 763

absolute neighborhood retract, 774
accessible

adjoint functors, 450
category, xiv
coproducts, 448
functor, 422
functor categories, 433
homotopy fiber products, 446
∞-category, 421
∞-category of sections, 455
localization, 457
overcategories, 447
products, 448
subcategory, 450, 812
undercategories, 442

adjoint functor
between categories, 331
and (co)limits, 346
and composition, 339
existence of, 342
between Ind-categories, 406
between ∞-categories, 337
Quillen, 350
and unit transformations, 340

adjoint functor theorem, 465
adjunction, 337

Quillen, 811
algebraic morphism, 628
anodyne, 53

inner, 53
left, 53, 63
marked, 148
right, 53

Berkovich space, 778
bicategory, 3
bifibration, 141

associated to a correspondence, 143
and smoothness, 235

canonical covering, 588
canonical topology, 589
Cartesian

equivalence, 157

locally, 121
Cartesian edge, 115, 118

and composition, 117
and simplicial categories, 120

Cartesian fibration, 123
and categorical fibrations, 209
classified by f : S → Catop∞, 211
and functor categories, 153
and overcategories, 128
and pullbacks, 205
and right fibrations, 124
and trivial fibrations, 134
universal, 211

Cartesian model structure, 159
Cartesian transformation, 543
categorical equivalence, 25

and products, 92
weak, 94

categorical fibration, 90
of ∞-categories, 139

category, 1, 781
cofibered in groupoids, 56
enriched, 790
homotopy, 806
model, 803
monoidal, 786
Reedy, 829
of simplices, 254, 537
simplicial, 18
topological, 7

Čech nerve, 542
cell-like, 681

map of ∞-topoi, 775
map of topological spaces, 774

chunk, 879
classifying map

for a (co)Cartesian fibration, 211
for a collection of morphisms, 565
for a left fibration, 212
for objects, 565
for relatively κ-compact morphisms,

569
for a right fibration, 212
for subobjects, 564

closed
immersion, 754
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subtopos, 754
coCartesian edge, 118
coCartesian equivalence, 160
coCartesian fibration, 123

classified by f : S → Cat∞, 211
and overcategories, 130
and smoothness, 235

coCartesian model structure, 160
coend, 75, 98
coequalizer, 299

reflexive, 505
cofibrant, 804
cofibration, 804

covariant, 68
injective, 823
projective, 823
Reedy, 835
of simplicial sets, 53, 823
strong, 864
weak, 864

cofinal, 224
weakly, 438

coherent topological space, 677, 771
cohomological dimension, 724
cohomology group

of an ∞-topos, 723
colimit, 47

diagram, 47
in families, 248
finite, 296
functor, 391
in a functor category, 315
homotopy, 258, 872
and homotopy fiber products, 435
of ∞-categories, 218
of ∞-topoi, 597
of presentable ∞-categories, 471
preservation of, 48
relative, 262
of spaces, 220
universal, 529, 531

combinatorial model category, 812
compact

object of a category, 782
compact object

of a category, 393
completely, 325
of a functor ∞-category, 397
of an ∞-category, 393
limits of, 449

compactly generated, 500, 677
complete lattice, 635
completely compact, 325

left fibration, 327
and presheaf ∞-categories, 329

completely regular, 748
cone

left, 68
right, 68

cone point, 41
connected

object of an ∞-topos, 655
connective

n-connective morphism, 655
n-connective object, 655
strongly, 737

continuous functor, 393
contravariant equivalence, 71
contravariant fibration, 71
contravariant model structure, 71
coproduct, 294

disjoint, 532
homotopy, 293
of ∞-topoi, 596

corepresentable
functor, 301, 321, 325, 464, 792
left fibration, 301

correspondence
adjunction, 337
associated functor, 332
associated to a functor, 98
between categories, 96
between ∞-categories, 97

coskeletal, 671
coskeleton, 669
cotensored, 793
counit transformation, 339
covariant

cofibration, 68
equivalence, 68, 86
fibration, 68
model structure, 69

covering dimension, 731
cylinder object, 805

degeneracy map, 822
derived functor, 351, 511

left, 811
right, 811

diagonal functor, 261
diagram

(co)limit, 47
homotopy coherent, 37
homotopy commutative, 37

dimension
cohomological, 724
covering, 731
Heyting, 736
homotopy, 711
Krull, 735

discrete, 492

effective epimorphism, 533, 580
effective equivalence relation, 533
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Eilenberg-MacLane object, 718
enough points, 679
enriched category, 790
equalizer, 299
equivalence

away from U , 752
Cartesian, 157
coCartesian, 160
contravariant, 71
covariant, 68
in an ∞-category, 33, 34
pointwise, 80
of presheaf ∞-categories, 330
of S-enriched categories, 851
in an S-enriched category, 855
of simplicial categories, 19
of topological categories, 17
in a topological category, 17, 34

essentially κ-small
∞-category, 418
space, 419

essentially small, 51
essentially surjective, 43
étale morphism, 610
excellent

model category, 857
exponential, 891

weak, 891
extension property, 783

face map, 822
factorization system, 369
fibrant, 804

locally, 855
simplicial category, 18

fibration, 804
Cartesian, 123
categorical, 90
coCartesian, 123
contravariant, 71
covariant, 68
injective, 823
inner, 53
Kan, 53, 823
left, 53
local, 855
locally Cartesian, 125
presentable, 466
projective, 823
Reedy, 835
right, 53
strong, 864
topos, 594
trivial, 53
weak, 864

filtered
category, 379

∞-category, 380
partially ordered set, 378, 782
simplicial set, 380
topological category, 379

filtered colimit
of colimit-preserving functors, 503
left exactness of, 391, 763

filtered limit
of ∞-topoi, 597

final object
of a category, 44
of an ∞-category, 44
of the ∞-category of ∞-topoi, 603
uniqueness, 46

fully faithful, 43
functor

associated to a correspondence, 332
colimit, 391
continuous, 393
corepresentable, 301, 464
derived, 351, 511
enriched, 791
fully faithful, 43
between ∞-categories, 39
κ-continuous, 393
κ-right exact, 387
lax monoidal, 788
left exact, 387
localization, 362
monoidal, 789
representable, 461
representable by an object, 300
right exact, 386

fundamental n-groupoid, 3

generation under colimits, 325
generator

projective, 513
geometric morphism, 593

of n-topoi, 648
geometric realization, 75, 542

of simplicial categories, 19
of simplicial sets, 8

gerbe, ix, 724
banded, 724

Giraud’s axioms
for ∞-topoi, 529
for n-topoi, 633
for ordinary topoi, 527

Giraud’s theorem
for ∞-topoi, 528
for n-topoi, 633
for 0-topoi, 635

Grothendieck abelian category, 763
Grothendieck construction, 889
Grothendieck topology, 574
Grothendieck universe, 51
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Grothendieck’s vanishing theorem, 742
nonabelian version, 741

group object, 718
groupoid object, 534

of a category, 534
effective, 534, 542
of an ∞-category, 537, 540
n-efficient, 638

Heyting
algebra, 736
dimension, 736
space, 735

Hilbert cube, 676
homotopy

coproduct, 293
between morphisms in a model cat-

egory, 806
between morphisms of C, 29
relative to K′ ⊆ K, 106

homotopy category
enriched over H, 16
of an ∞-category, 29
of a model category, 806
of an S-enriched category, 851
of a simplicial category, 19
of a simplicial set, 25
of spaces, 16
of a topological category, 16

homotopy coherence, 37
homotopy colimit, 258, 872
homotopy dimension, 711

finite, 711
of a geometric morphism, 713
locally finite, 714

homotopy groups
in an ∞-topos, 652

homotopy limit, 871
homotopy product, 46
homotopy pullback, 46, 810
homotopy pushout, 809
homotopy right Kan extension, 870
homotopy varieties, 506
horn, 822

inner, 12
hypercomplete

∞-topos, 663
object, 663

hypercovering, 668, 670
effective, 670

idempotent
completeness, 303
effective, 309
in an ∞-category, 304
in an ordinary category, 303

idempotent complete, 309

and accessibility, 428
idempotent completion, 318, 421

universal property of, 320
image of a geometric morphism, 628
Ind-object, 377

characterization of, 404
of an ∞-category, 400

∞-bicategory, 5
∞-category, x, xiv, 5, 8, 14

accessible, 421
essentially κ-small, 418
as a fibrant object of Set∆, 137
of functors, 94
of Ind-objects, 400
of ∞-categories, 145
locally small, 420
presentable, 312, 455, 456
of presentable ∞-categories, 465
of spaces, 51

∞-groupoid, 5, 35
underlying an ∞-category, 35

(∞, n)-category, 5
∞-topos, 528

elementary, 548
of local systems, 710
of sheaves on a topological space,

675
initial object

homotopy fiber product
in a homotopy fiber product, 434

in an ∞-category of sheaves, 578
injective

cofibration, 823
fibration, 823

inner anodyne, 53, 99
inner fibration, 53

and functor categories, 101
inner horn, 12
invertibility hypothesis, 856
irreducible

closed set, 735
topological space, 778

join
of categories, 40
of simplicial sets, 40

κ-accessible ∞-category, 421
κ-accessible subcategory, 812
Kan

model structure, 822
Kan complex, 8

weak, xiv, 14
Kan extension, 261, 273, 286

homotopy, 827, 870
Kan fibration, 53, 823
κ-closed, 391
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κ-cofinal, 438
κ-compact

left fibration, 393
object, 393

κ-compactly generated, 500
κ-continuous functor, 393
κ-filtered, 380
κ-right exact, 387
Krull dimension, 735
K-sheaf, 763
κ-small, 781
k-truncated

map between Kan complexes, 493
morphism in an ∞-category, 493
object of an ∞-category, 492

latching object, 830
left adjoint, 337
left adjointable, 744
left anodyne, 53, 63
left cone, 68
left derived functor, 351, 511, 811
left exact

functor, 387
at an object Z, 555

left extension, 285
left fibration, 53

classified by S → S, 212
and functor categories, 65
and Kan fibrations, 66
and undercategories, 61

left lifting property, 783
left orthogonal, 367
left proper, 808
left Quillen bifunctor, 845
limit, xi, 47

of accessible ∞-categories, 448
of compactly generated ∞-categories,

502
diagram, 47
in a functor category, 315
homotopy, 871
of ∞-categories, 214
of presentable ∞-categories, 469
in a presentable ∞-category, 463
of spaces, 216

limits
preservation of, 48

local
class of morphisms, 547
object, 472

locale, 636
localic

n-topos, 650
localic topos, 637
localization, 362

accessible, 457

Bousfield, 899
and colimits, 364
cotopological, 666
left exact, 570
of a model category, 899
of an object, 364
topological, 572

locally Cartesian
edge, 121
fibration, 125

locally compact, 746
locally fibrant, 855
locally small ∞-category, 420
long exact sequence of homotopy groups,

654

MacLane pentagon, 787
MacLane’s coherence theorem, 787
mapping cone, 68
mapping simplex, 179

marked, 179
marked

anodyne, 148
edge, 147
simplicial set, 147

marked relative nerve, 199
matching object, 830
minimal

∞-category, 102
inner fibration, 101

model category, 803
Cartesian, 159
coCartesian, 160
combinatorial, 812
contravariant, 71
covariant, 69
excellent, 857
injective, 824, 864
Joyal, 49, 89
left proper, 808
local, 659
monoidal, 845
perfect, 820
projective, 824, 864
Reedy, 835
right proper, 808
S-enriched, 845
simplicial, 845
of simplicial categories, 852
of spaces over X, 686

monoidal category, 786
Cartesian, 788
closed, 788
left closed, 788
right closed, 788
strict, 787

monoidal model category, 845
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monomorphism, 494, 572
morphism

Cartesian, 115
coCartesian, 118
in an ∞-category, 33

multiplication
and homotopy colimits, 893

natural equivalence, 39
natural transformation, 39

enriched, 792
n-categories

and functor categories, 109
and overcategories, 110

n-category, 107, 113
underlying an ∞-category, 111

nerve
of a category, 9
marked relative, 199
relative, 196
of a simplicial category, 22
of a topological category, 22

n-gerbe, 724
n-topos, x, 632

object
cylinder, 805
Eilenberg-MacLane, 718
final, 44
group, 718
of an ∞-category, 33
latching, 830
matching, 830
path, 805
pointed, 718
projective, 511

opposite
of a category, 26
of a simplicial set, 26

orthogonal, 367
left, 367
right, 367

overcategory, 41, 781
accessible, 447
of an ∞-category, 43
of an ∞-topos, 609
of presentable ∞-categories, 468

overconvergent sheaf, 780

path object, 805
in simplicial categories, 879

pentagon axiom, 787
perfect

class of morphisms, 819
model category, 820

point
of an ∞-topos, 679

pointed object, 718
pointwise equivalence, 80
Postnikov pretower, 497
Postnikov tower, 491, 497
presentable

category, xiv, 782
fibration, 466
functor categories, 466
∞-category, 312, 455, 456
overcategories, 468
undercategories, 468

presheaf, 312
and overcategories, 330
universal property of P(S), 324
with values in C, 757

pretower, 497
highly connected, 499

Pro-space, 708
product, 294

homotopy, 46
of ∞-topoi, 756

projective
cofibration, 823
fibration, 823

projective object, 511
projectively generated, 513
proper

base change theorem, 676
map of topological spaces, 748
morphism of ∞-topoi, 745

proper base change theorem
nonabelian, 749
for sheaves of sets, 742

pullback, 294
homotopy, 46, 810

pullback functor, 531, 593
push-pull transformation, 743
pushforward functor, 593
pushout, 294

homotopy, 294, 809
of ∞-topoi, 596

quasi-category, xiv, 8
quasi-equivalence, 180
Quillen adjunction, 350, 811
Quillen bifunctor, 845
Quillen equivalence, 812
Quillen’s theorem A, 239

for ∞-categories, 237

Reedy
category, 829
cofibration, 835
fibration, 835
model structure, 835

reflective subcategory, 365
strongly, 482
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reflexive coequalizer, 505
relative nerve, 196

marked, 199
relatively κ-compact morphism, 566
representable

functor, 300, 461
right fibration, 301

resolution
groupoid, 556
simplicial, 556

retract, 303
retraction diagram

small, 304
weak, 304

right adjoint, 337
right anodyne, 53, 229
right cone, 68
right derived functor, 351, 811
right exact

and colimits, 390
right exact functor, 386
right fibration, 53

classifed by S → Sop, 212
universal, 212

right Kan extension
homotopy, 870

right lifting property, 783
right orthogonal, 367
right proper, 808
root of an S-tree, 793

saturated, 484
strongly, 475
weakly, 783

semitopos, 579
S-equivalence, 472, 900
shape, 708

equivalence, 708
of an ∞-topos, 708
trivial, 709

sheaf, 575
sieve, 573

covering, 573
sifted, 505
simplicial category, 18
simplicial model category, 845
simplicial nerve, 22
simplicial object

augmented, 535
of a category, 821
of an ∞-category, 535

simplicial set, 821
Joyal model structure, 89
Kan model structure, 822
marked, 147
sifted, 505

skeleton, 108, 669

S-local, 472
object, 900

small, 51, 782
object of a category, 782

small generation, 476, 485
small object argument, 785
smooth, 233
square, 294

Cartesian, 294
coCartesian, 294
pullback, 294
pushout, 294

stable under pullbacks, 545
stack, ix
standard diagram, 892
standard simplex, 75
straightening functor, 73, 171
straightening of diagrams, 259
S-tree, 793

associated, 794
κ-good, 794

strong
cofibration, 864
fibration, 864

strong equivalence, 15
strongly k-connective, 737
strongly final, 45
strongly reflective, 482
strongly saturated, 475
subcategory

full, 44
of an ∞-category, 44
reflective, 365

subobject, 564
support, 754

tensor product with spaces, 302
tensored, 792, 793
topological

class of morphisms, 572
localization, 572

topological category, 7
topological nerve, 22
topological space

absolute neighborhood retract, 774
coherent, 771
completely regular, 748
Heyting, 735
irreducible, 778
locally compact, 746
Noetherian, 735

topos, xiv, 527
localic, 637

tower, 497
highly connected, 499
Postnikov, 491

transformation



922 GENERAL INDEX

counit, 339
unit, 339

tree, 793
κ-good, 794

trivial
cofibration, 804
fibration, 804

trivial fibration, 53
trivial on U , 753
truncated

and homotopy groups, 654
map between Kan complexes, 493
morphism in an ∞-category, 493
object of an ∞-category, 492
space, 112, 114

undercategory, 135, 781
accessibility, 442
and compact objects, 441
and homotopy fiber products, 435
of an ∞-category, 43
of a presentable ∞-category, 468

unit transformation, 339
universal

Cartesian fibration, 211
right fibration, 212

unstraightening functor, 73, 172

Wall finiteness obstruction, 420
weak

cofibration, 864
fibration, 864

weak equivalence, 804
weak exponential, 891
weak homotopy equivalence

of simplicial sets, 823
of topological spaces, 16

weak Kan complex, xiv
weakly cofinal, 438
weakly saturated, 783
Whitehead’s theorem, 16

Yoneda embedding, 317
classical, 312
and left Kan extensions, 323
and limits, 317
simplicial, 316

Yoneda’s lemma, 317
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[1]∼S , 856
[n], 821
[0]S, 852
[1]S, 852
[1]A, 852

Acc, 424
Accκ, 424
A◦, 803

BandA(X), 725
Band(X), 725

C/p, 43
C/X , 43, 781

C(0), 573
C/p, 243
Cp/, 242
Cκ, 393
Cp/, 43

C[W−1], 885
CX/, 43, 781
Cat, 781
Cat∞, 145
Cat∆∞, 145
Catlex∞ , 605
Cat∨∞, 425

Cat
Rex(κ)
∞ , 502

dCat
Rex(κ)

∞ , 502
Cat∆, 18
CatS, 844
Cattop, 7
C∆, 535
C∆+ , 535
CG, 7
dCat∞, 146
C�(f), 68
C[S], 20, 23
coskn, 669
C�(f), 68

di, 822
∆, 821
∆+, 535
∆J , 822

∆/K , 537

∆≤n
+ , 540

∆≤n, 669
∆n, 822
�, 240
�S , 243
Disc(C), 492

EMn(X), 718
Env(C), 516
Env+(C), 516

F+, 668
FC

A, 824
FX(C), 196
F+

X
(C), 199

f ⊥ g, 367
Fσ , 685
Fun(C, C′), 39
FunA(C, D), 424
FunK(C, D), 409
FunL(C, D), 357
Fun∗(X, Y), 648
Fun∗(X, Y), 595
FunR(C, D), 357
FunR(C, D), 409
FunΣ(C, D), 509
Fun∗(X, Y), 595

GerbA
n (X), 726

Gerbn(X), 725
Groth(p), 889
Grp(X), 718
Gpd(C), 540

H, 16, 19
hC, 16, 19, 806, 851
hnC, 111
Hn(X; A), 723
HomC(X, Y ), 781
HomL

S(X, Y ), 28

HomR
S (X, Y ), 27

HomS(X, Y ), 28
HomZ(X, Y ), 781
hS , 25
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Idem, 304
Idem+, 304
Ind(C), 377, 400
Indκ, 425
Indκ(C), 400
Inv, 885

K(A, n), 723
Kan, 51
κ � τ , 254, 423
K(X), 763
KK�(X), 763
KF , 249
K�, 41
K�, 41
K � K′, 763

ΛJ
j , 822

Λn
k , 822

lim−→K
, 391

LJ (X), 830
LTop, 594
LTopét, 611

Map�(X, Y ), 155
MapS(X, Y ), 26

Map�
S(X, Y ), 155

Map�(X, Y ), 155

Map�
S(X, Y ), 155

M�(φ), 179
Mod(k), 679
M(φ), 179
MJ (X), 830
M(K), 521

NU , 689
N(C), 9, 22
NR

F (C), 196

N+
F (C), 199

Ob(C), 781
OC , 530

O
(n)
X , 644

On
X , 644

O
(S)
X , 545

OS
X , 545

P (A), 880
P(C), 312
P(B), 689
P(f), 358
P≤n(C), 633
⊥S, 368
π≤nX, 3
πn(X), 652

PK′
K (C), 412

Post+(C), 497
Post(C), 497
PrL, 465
PrLκ, 502
PrR, 465
PrRκ , 502
Pro(S), 708
PΣ(C), 506

Q•, 76
Q•, 76

Res(X), 556
Ret, 304
RFib(S), 83
RTopét, 610
RTop, 594

S−1 C, 482
si, 822
Set, 781
Sh(X), 708
Shv(C), 575
ShvKU (X; C), 768
ShvK(X), 763
ShvK(X; C), 763
ShvC(X), 619
Shv(X), 675
SingC• (X), 75
SingX , 686
Sing C, 19
Sing X, 8
S−1 C, 362
skn, 669
skn X, 108
S⊥, 368

⊥S, 783
S, 51
Set∆, 822
bS, 52
Set+∆, 147

(Set+∆)/S , 147
S � S′, 40
S⊥, 783
Stφ, 73

St+φ , 171
StS , 73
St+S , 172
Sub(X), 564, 572

τC
≤k, 497

τ≤k, 496
τ≤k C, 493
⊗, 759
⊗C , 759
Top, 686
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TopR
n , 648

U(X), 675
U0(X), 771
U◦, 879
Unφ, 73

Un+
φ , 172

UnS , 73
Un+

S , 172

X/U , 753, 754
XpS/, 244
X∗, 718
X�, 147
X∧, 663
X�, 152
X ⊗ K, 302
X�, 147
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